Abstract

We describe a polarization sensitive spectral domain optical coherence tomography technique based on a single camera spectrometer that includes a multiplexed custom grating, camera lenses, and a high-speed three-line CCD camera. Two orthogonally polarized beams could be separately taken by two lines of the camera as a result of vertically different incident angles. The system could provide the imaging capabilities of a full camera speed and increased measurable depth. The proposed optical coherence tomography system could make a distinction between the normal muscle and cancerous tissue from the chest of a DSred GFP mouse and the OCT images were compared with those of in vivo confocal microscopy.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. G. Häusler and M. W. Lindner, “Coherence radar and spectral radar - new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
    [CrossRef]
  3. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [CrossRef] [PubMed]
  4. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  5. J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997).
    [CrossRef] [PubMed]
  6. J. F. De Boer, S. M. Srinivas, A. Malekafzali, Z. Chen, and J. S. Nelson, “Imaging thermally damaged by polarization-sensitive optical coherence tomography,” Opt. Express 3(6), 212–218 (1998).
    [CrossRef] [PubMed]
  7. M. J. Everett, K. Schoenenberger, B. W. Colston, and L. B. Da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23(3), 228–230 (1998).
    [CrossRef]
  8. J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1200–1204 (1999).
    [CrossRef]
  9. M. G. Ducros, J. F. de Boer, H.-E. Huang, L. C. Chao, Z. Chen, J. S. Nelson, T. E. Milner, and H. G. Rylander, “Polarization sensitive optical coherence tomography of the rabbit eye,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1159–1167 (1999).
    [CrossRef]
  10. S. Yazdanfar, M. D. Kulkarni, and J. A. Izatt, “High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography,” Opt. Express 1(13), 424–431 (1997).
    [CrossRef] [PubMed]
  11. Z. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, “Optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1134–1142 (1999).
    [CrossRef]
  12. Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, and D. Huang, “Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography,” Opt. Express 17(5), 4061–4073 (2009).
    [CrossRef] [PubMed]
  13. U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25(2), 111–113 (2000).
    [CrossRef]
  14. C. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spectroscopic spectral-domain optical coherence microscopy,” Opt. Lett. 31(8), 1079–1081 (2006).
    [CrossRef] [PubMed]
  15. F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17(8), 6799–6812 (2009).
    [CrossRef] [PubMed]
  16. J. Yi, J. Gong, and X. Li, “Analyzing absorption and scattering spectra of micro-scale structures with spectroscopic optical coherence tomography,” Opt. Express 17(15), 13157–13167 (2009).
    [CrossRef] [PubMed]
  17. M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9(6), 903–908 (1992).
    [CrossRef]
  18. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography,” Opt. Lett. 27(20), 1803–1805 (2002).
    [CrossRef]
  19. E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13(25), 10217–10229 (2005).
    [CrossRef] [PubMed]
  20. B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express 15(3), 1054–1063 (2007).
    [CrossRef] [PubMed]
  21. B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15(5), 2421–2431 (2007).
    [CrossRef] [PubMed]
  22. M. Zhao and J. A. Izatt, “Single-camera sequential-scan-based polarization-sensitive SDOCT for retinal imaging,” Opt. Lett. 34(2), 205–207 (2009).
    [CrossRef] [PubMed]
  23. S.-W. Lee, H.-W. Jeong, and B.-M. Kim, “High-speed spectral domain polarization-sensitive optical coherence tomography using a single camera and an optical switch at 1.3 µm,” J. Biomed. Opt. 15(1), 010501 (2010).
    [CrossRef] [PubMed]
  24. C. Fan, Y. Wang, and R. K. Wang, “Spectral domain polarization sensitive optical coherence tomography achieved by single camera detection,” Opt. Express 15(13), 7950–7961 (2007).
    [CrossRef] [PubMed]
  25. T. Schmoll, E. Götzinger, M. Pircher, C. K. Hitzenberger, and R. A. Leitgeb, “Single-camera polarization-sensitive spectral-domain OCT by spatial frequency encoding,” Opt. Lett. 35(2), 241–243 (2010).
    [CrossRef] [PubMed]
  26. N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29(5), 480–482 (2004).
    [CrossRef] [PubMed]
  27. K. Schoenenberger, B. W. Colston, D. J. Maitland, L. B. Da Silva, and M. J. Everett, “Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography,” Appl. Opt. 37(25), 6026–6036 (1998).
    [CrossRef]
  28. C. K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001).
    [CrossRef] [PubMed]
  29. M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
    [CrossRef] [PubMed]
  30. A. B. Shafer, L. R. Megill, and L. Droppleman, “Optimization of the Czerny-Turner spectrometer,” J. Opt. Soc. Am. 54(7), 879–887 (1964).
    [CrossRef]
  31. D. R. Austin, T. Witting, and I. A. Walmsley, “Broadband astigmatism-free Czerny-Turner imaging spectrometer using spherical mirrors,” Appl. Opt. 48(19), 3846–3853 (2009).
    [CrossRef] [PubMed]
  32. www.ondaxinc.com
  33. L. Carretero, M. Ulibarrena, P. Acebal, S. Blaya, R. Madrigal, and A. Fimia, “Multiplexed holographic gratings for fabricating 3D photonic crystals in BB640 photographic emulsions,” Opt. Express 12(13), 2903–2908 (2004).
    [CrossRef] [PubMed]
  34. S. Massenot, J.-L. Kaiser, M. C. Perez, R. Chevallier, and J. L. de Bougrenet de la Tocnaye, “Multiplexed holographic transmission gratings recorded in holographic polymer-dispersed liquid crystals: static and dynamic studies,” Appl. Opt. 44(25), 5273–5280 (2005).
    [CrossRef] [PubMed]

2010 (2)

S.-W. Lee, H.-W. Jeong, and B.-M. Kim, “High-speed spectral domain polarization-sensitive optical coherence tomography using a single camera and an optical switch at 1.3 µm,” J. Biomed. Opt. 15(1), 010501 (2010).
[CrossRef] [PubMed]

T. Schmoll, E. Götzinger, M. Pircher, C. K. Hitzenberger, and R. A. Leitgeb, “Single-camera polarization-sensitive spectral-domain OCT by spatial frequency encoding,” Opt. Lett. 35(2), 241–243 (2010).
[CrossRef] [PubMed]

2009 (5)

2007 (4)

2006 (1)

2005 (2)

2004 (2)

2003 (2)

2002 (1)

2001 (1)

2000 (1)

1999 (3)

J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1200–1204 (1999).
[CrossRef]

M. G. Ducros, J. F. de Boer, H.-E. Huang, L. C. Chao, Z. Chen, J. S. Nelson, T. E. Milner, and H. G. Rylander, “Polarization sensitive optical coherence tomography of the rabbit eye,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1159–1167 (1999).
[CrossRef]

Z. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, “Optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1134–1142 (1999).
[CrossRef]

1998 (4)

1997 (2)

1992 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

1964 (1)

Acebal, P.

Austin, D. R.

Baumann, B.

Blaya, S.

Boppart, S. A.

Bouma, B. E.

Carretero, L.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chao, L. C.

M. G. Ducros, J. F. de Boer, H.-E. Huang, L. C. Chao, Z. Chen, J. S. Nelson, T. E. Milner, and H. G. Rylander, “Polarization sensitive optical coherence tomography of the rabbit eye,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1159–1167 (1999).
[CrossRef]

Chen, T. C.

Chen, Z.

M. G. Ducros, J. F. de Boer, H.-E. Huang, L. C. Chao, Z. Chen, J. S. Nelson, T. E. Milner, and H. G. Rylander, “Polarization sensitive optical coherence tomography of the rabbit eye,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1159–1167 (1999).
[CrossRef]

Z. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, “Optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1134–1142 (1999).
[CrossRef]

J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1200–1204 (1999).
[CrossRef]

J. F. De Boer, S. M. Srinivas, A. Malekafzali, Z. Chen, and J. S. Nelson, “Imaging thermally damaged by polarization-sensitive optical coherence tomography,” Opt. Express 3(6), 212–218 (1998).
[CrossRef] [PubMed]

Chevallier, R.

Colston, B. W.

Da Silva, L. B.

de Boer, J. F.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[CrossRef] [PubMed]

B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15(5), 2421–2431 (2007).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29(5), 480–482 (2004).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
[CrossRef] [PubMed]

J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1200–1204 (1999).
[CrossRef]

M. G. Ducros, J. F. de Boer, H.-E. Huang, L. C. Chao, Z. Chen, J. S. Nelson, T. E. Milner, and H. G. Rylander, “Polarization sensitive optical coherence tomography of the rabbit eye,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1159–1167 (1999).
[CrossRef]

J. F. De Boer, S. M. Srinivas, A. Malekafzali, Z. Chen, and J. S. Nelson, “Imaging thermally damaged by polarization-sensitive optical coherence tomography,” Opt. Express 3(6), 212–218 (1998).
[CrossRef] [PubMed]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997).
[CrossRef] [PubMed]

de Bougrenet de la Tocnaye, J. L.

Drexler, W.

Droppleman, L.

Ducros, M. G.

M. G. Ducros, J. F. de Boer, H.-E. Huang, L. C. Chao, Z. Chen, J. S. Nelson, T. E. Milner, and H. G. Rylander, “Polarization sensitive optical coherence tomography of the rabbit eye,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1159–1167 (1999).
[CrossRef]

Everett, M. J.

Fan, C.

Fawzi, A.

Fercher, A. F.

Fimia, A.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Frostig, R. D.

Z. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, “Optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1134–1142 (1999).
[CrossRef]

Fujimoto, J. G.

Gil-Flamer, J.

Goetzinger, E.

Gong, J.

Götzinger, E.

Graf, R. N.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Häusler, G.

G. Häusler and M. W. Lindner, “Coherence radar and spectral radar - new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[CrossRef]

Hee, M. R.

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9(6), 903–908 (1992).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

Huang, D.

Huang, H.-E.

M. G. Ducros, J. F. de Boer, H.-E. Huang, L. C. Chao, Z. Chen, J. S. Nelson, T. E. Milner, and H. G. Rylander, “Polarization sensitive optical coherence tomography of the rabbit eye,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1159–1167 (1999).
[CrossRef]

Ippen, E. P.

Itoh, M.

Izatt, J. A.

Jeong, H.-W.

S.-W. Lee, H.-W. Jeong, and B.-M. Kim, “High-speed spectral domain polarization-sensitive optical coherence tomography using a single camera and an optical switch at 1.3 µm,” J. Biomed. Opt. 15(1), 010501 (2010).
[CrossRef] [PubMed]

Kaiser, J.-L.

Kärtner, F. X.

Kim, B.-M.

S.-W. Lee, H.-W. Jeong, and B.-M. Kim, “High-speed spectral domain polarization-sensitive optical coherence tomography using a single camera and an optical switch at 1.3 µm,” J. Biomed. Opt. 15(1), 010501 (2010).
[CrossRef] [PubMed]

Kulkarni, M. D.

Lee, S.-W.

S.-W. Lee, H.-W. Jeong, and B.-M. Kim, “High-speed spectral domain polarization-sensitive optical coherence tomography using a single camera and an optical switch at 1.3 µm,” J. Biomed. Opt. 15(1), 010501 (2010).
[CrossRef] [PubMed]

Leitgeb, R.

Leitgeb, R. A.

Li, X.

Li, X. D.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lindner, M. W.

G. Häusler and M. W. Lindner, “Coherence radar and spectral radar - new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[CrossRef]

Luo, W.

Madrigal, R.

Maitland, D. J.

Makita, S.

Malekafzali, A.

Massenot, S.

Megill, L. R.

Milner, T. E.

J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1200–1204 (1999).
[CrossRef]

M. G. Ducros, J. F. de Boer, H.-E. Huang, L. C. Chao, Z. Chen, J. S. Nelson, T. E. Milner, and H. G. Rylander, “Polarization sensitive optical coherence tomography of the rabbit eye,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1159–1167 (1999).
[CrossRef]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997).
[CrossRef] [PubMed]

Morgner, U.

Mujat, M.

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[CrossRef] [PubMed]

B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15(5), 2421–2431 (2007).
[CrossRef] [PubMed]

Nassif, N.

Nelson, J. S.

Z. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, “Optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1134–1142 (1999).
[CrossRef]

M. G. Ducros, J. F. de Boer, H.-E. Huang, L. C. Chao, Z. Chen, J. S. Nelson, T. E. Milner, and H. G. Rylander, “Polarization sensitive optical coherence tomography of the rabbit eye,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1159–1167 (1999).
[CrossRef]

J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1200–1204 (1999).
[CrossRef]

J. F. De Boer, S. M. Srinivas, A. Malekafzali, Z. Chen, and J. S. Nelson, “Imaging thermally damaged by polarization-sensitive optical coherence tomography,” Opt. Express 3(6), 212–218 (1998).
[CrossRef] [PubMed]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997).
[CrossRef] [PubMed]

Park, B. H.

Perez, M. C.

Pham, T. H.

J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1200–1204 (1999).
[CrossRef]

Pierce, M. C.

Pircher, M.

Pitris, C.

Prakash, N.

Z. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, “Optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1134–1142 (1999).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Ralston, T. S.

Robles, F.

Rylander, H. G.

M. G. Ducros, J. F. de Boer, H.-E. Huang, L. C. Chao, Z. Chen, J. S. Nelson, T. E. Milner, and H. G. Rylander, “Polarization sensitive optical coherence tomography of the rabbit eye,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1159–1167 (1999).
[CrossRef]

Schmoll, T.

Schoenenberger, K.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Shafer, A. B.

Srinivas, S. M.

J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1200–1204 (1999).
[CrossRef]

Z. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, “Optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1134–1142 (1999).
[CrossRef]

J. F. De Boer, S. M. Srinivas, A. Malekafzali, Z. Chen, and J. S. Nelson, “Imaging thermally damaged by polarization-sensitive optical coherence tomography,” Opt. Express 3(6), 212–218 (1998).
[CrossRef] [PubMed]

Sticker, M.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Sutoh, Y.

Swanson, E. A.

M. R. Hee, D. Huang, E. A. Swanson, and J. G. Fujimoto, “Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging,” J. Opt. Soc. Am. B 9(6), 903–908 (1992).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tan, O.

Tan, W.

Tearney, G. J.

Ulibarrena, M.

van Gemert, M. J. C.

Vinegoni, C.

Walmsley, I. A.

Wang, R. K.

Wang, Y.

Wax, A.

Witting, T.

Xu, C.

Yasuno, Y.

Yatagai, T.

Yazdanfar, S.

Yi, J.

Yun, S. H.

Zhao, M.

Zhao, Y.

Z. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, “Optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1134–1142 (1999).
[CrossRef]

Appl. Opt. (3)

IEEE J. Sel. Top. Quantum Electron. (3)

J. F. de Boer, S. M. Srinivas, B. H. Park, T. H. Pham, Z. Chen, T. E. Milner, and J. S. Nelson, “Polarization effects in optical coherence tomography of various biological tissues,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1200–1204 (1999).
[CrossRef]

M. G. Ducros, J. F. de Boer, H.-E. Huang, L. C. Chao, Z. Chen, J. S. Nelson, T. E. Milner, and H. G. Rylander, “Polarization sensitive optical coherence tomography of the rabbit eye,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1159–1167 (1999).
[CrossRef]

Z. Chen, Y. Zhao, S. M. Srinivas, J. S. Nelson, N. Prakash, and R. D. Frostig, “Optical Doppler tomography,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1134–1142 (1999).
[CrossRef]

J. Biomed. Opt. (3)

G. Häusler and M. W. Lindner, “Coherence radar and spectral radar - new tools for dermatological diagnosis,” J. Biomed. Opt. 3(1), 21–31 (1998).
[CrossRef]

M. Mujat, B. H. Park, B. Cense, T. C. Chen, and J. F. de Boer, “Autocalibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination,” J. Biomed. Opt. 12(4), 041205 (2007).
[CrossRef] [PubMed]

S.-W. Lee, H.-W. Jeong, and B.-M. Kim, “High-speed spectral domain polarization-sensitive optical coherence tomography using a single camera and an optical switch at 1.3 µm,” J. Biomed. Opt. 15(1), 010501 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Opt. Express (12)

F. Robles, R. N. Graf, and A. Wax, “Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution,” Opt. Express 17(8), 6799–6812 (2009).
[CrossRef] [PubMed]

J. Yi, J. Gong, and X. Li, “Analyzing absorption and scattering spectra of micro-scale structures with spectroscopic optical coherence tomography,” Opt. Express 17(15), 13157–13167 (2009).
[CrossRef] [PubMed]

Y. Wang, A. Fawzi, O. Tan, J. Gil-Flamer, and D. Huang, “Retinal blood flow detection in diabetic patients by Doppler Fourier domain optical coherence tomography,” Opt. Express 17(5), 4061–4073 (2009).
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[CrossRef] [PubMed]

S. Yazdanfar, M. D. Kulkarni, and J. A. Izatt, “High resolution imaging of in vivo cardiac dynamics using color Doppler optical coherence tomography,” Opt. Express 1(13), 424–431 (1997).
[CrossRef] [PubMed]

J. F. De Boer, S. M. Srinivas, A. Malekafzali, Z. Chen, and J. S. Nelson, “Imaging thermally damaged by polarization-sensitive optical coherence tomography,” Opt. Express 3(6), 212–218 (1998).
[CrossRef] [PubMed]

C. K. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, and A. F. Fercher, “Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography,” Opt. Express 9(13), 780–790 (2001).
[CrossRef] [PubMed]

L. Carretero, M. Ulibarrena, P. Acebal, S. Blaya, R. Madrigal, and A. Fimia, “Multiplexed holographic gratings for fabricating 3D photonic crystals in BB640 photographic emulsions,” Opt. Express 12(13), 2903–2908 (2004).
[CrossRef] [PubMed]

C. Fan, Y. Wang, and R. K. Wang, “Spectral domain polarization sensitive optical coherence tomography achieved by single camera detection,” Opt. Express 15(13), 7950–7961 (2007).
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, “High speed spectral domain polarization sensitive optical coherence tomography of the human retina,” Opt. Express 13(25), 10217–10229 (2005).
[CrossRef] [PubMed]

B. Baumann, E. Götzinger, M. Pircher, and C. K. Hitzenberger, “Single camera based spectral domain polarization sensitive optical coherence tomography,” Opt. Express 15(3), 1054–1063 (2007).
[CrossRef] [PubMed]

B. Cense, M. Mujat, T. C. Chen, B. H. Park, and J. F. de Boer, “Polarization-sensitive spectral-domain optical coherence tomography using a single line scan camera,” Opt. Express 15(5), 2421–2431 (2007).
[CrossRef] [PubMed]

Opt. Lett. (9)

M. Zhao and J. A. Izatt, “Single-camera sequential-scan-based polarization-sensitive SDOCT for retinal imaging,” Opt. Lett. 34(2), 205–207 (2009).
[CrossRef] [PubMed]

T. Schmoll, E. Götzinger, M. Pircher, C. K. Hitzenberger, and R. A. Leitgeb, “Single-camera polarization-sensitive spectral-domain OCT by spatial frequency encoding,” Opt. Lett. 35(2), 241–243 (2010).
[CrossRef] [PubMed]

N. Nassif, B. Cense, B. H. Park, S. H. Yun, T. C. Chen, B. E. Bouma, G. J. Tearney, and J. F. de Boer, “In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography,” Opt. Lett. 29(5), 480–482 (2004).
[CrossRef] [PubMed]

M. J. Everett, K. Schoenenberger, B. W. Colston, and L. B. Da Silva, “Birefringence characterization of biological tissue by use of optical coherence tomography,” Opt. Lett. 23(3), 228–230 (1998).
[CrossRef]

J. F. de Boer, T. E. Milner, M. J. C. van Gemert, and J. S. Nelson, “Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography,” Opt. Lett. 22(12), 934–936 (1997).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
[CrossRef] [PubMed]

U. Morgner, W. Drexler, F. X. Kärtner, X. D. Li, C. Pitris, E. P. Ippen, and J. G. Fujimoto, “Spectroscopic optical coherence tomography,” Opt. Lett. 25(2), 111–113 (2000).
[CrossRef]

C. Xu, C. Vinegoni, T. S. Ralston, W. Luo, W. Tan, and S. A. Boppart, “Spectroscopic spectral-domain optical coherence microscopy,” Opt. Lett. 31(8), 1079–1081 (2006).
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, “Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography,” Opt. Lett. 27(20), 1803–1805 (2002).
[CrossRef]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other (1)

www.ondaxinc.com

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the polarization-sensitive spectral domain optical coherence tomography system using a single camera spectrometer. The system was composed of a broadband superluminescent diode laser (SLD), a Michelson interferometer that used polarization optics, and a home-built spectrometer, including a high-speed camera module and camera lenses. The POL (linear polarizer), NPBS (non-polarizing beam splitter), PBS (polarizing cube beam splitter), VND filter (variable neutral density filter), QWP (quarter wave plate), PMF (polarization maintaining fiber), and HWP (half wave plate) are indicated.

Fig. 2
Fig. 2

Schematic of multiplexed custom transmission grating. (a) Orientation. (b) Cross section.

Fig. 3
Fig. 3

Characteristics of multiplexed custom transmission grating. (a) Dispersion of the grating. (b) Diffraction efficiencies in p-polarized dependent grating. (c) Diffraction efficiencies in s-polarized dependent grating. (d) Calculated overall efficiencies.

Fig. 4
Fig. 4

Schematic diagrams of the proposed spectrometer. The PC (P-pol. collimator), SC (S-pol. collimator), G (Multiplexed grating), L (Camera lens), C (Multi-line camera), and HW (Half-wave plate) are indicated. (a) Home-built spectrometer. (b) Upward view. (c) Isometric view.

Fig. 5
Fig. 5

RMS wave-front errors along the wavelength predicted by ZEMAX. (a) Incidence angle, 0°. (b) Incidence angle, 0.0266°.

Fig. 6
Fig. 6

The measured system performance. (a) Axial resolution of two orthogonal polarization states as a function of the depth. (b) Phase retardation (δ) and axis orientation (θ) measured along the depth, by using a combination of a quarter wave plate and a mirror. Here, error bars denote the standard deviation.

Fig. 7
Fig. 7

In-vivo PS-OCT scans of human palm. The white arrow represents the sweat duct of human palm. (a) Reflectivity image (logarithmic scale). (b) Phase retardation image (color, °). (c) Cumulative fast axis orientation image (color, °). The scale bar is 250 μm.

Fig. 8
Fig. 8

Comparison between normal chest muscle and LLC of mouse using PS SD-OCT. The image scales are as follows: reflectivity image (logarithmic scale), phase retardation image (color, °) and cumulative fast axis orientation image (color, °). The scale bar is 200 μm.

Fig. 9
Fig. 9

Reflection and fluorescence images of normal chest muscle and LLC tissues measured by a home-built in vivo confocal microscope. (a) Reflection image of normal muscle. (b) Reflection image of LLC. (c) Fluorescence image of normal muscle. (d) Fluorescence image of LLC tissue. The scale bar is 100 μm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R(z)    [ A H (z) ] 2 + [ A V (z) ] 2 =I H (z)+I V (z)
δ(z) = arctan [ A H (z) A V (z) ] =arctan [ I H (z) I V (z) ]
θ   =   180 o -ΔΦ 2 ,    ΔΦ = Φ H  - Φ V

Metrics