Abstract

In this paper a new approach to improve contrast in optical subsurface imaging is presented. The method is based on time-resolved reflectance and selection of ballistic photons using polarization gating. Numerical studies with a statistical Monte Carlo method also reveal that weakly scattered diffuse photons can be eliminated by employing a small aperture and that the contrast improvement strongly depends on the single-scattering phase function. A possible experimental setup is discussed in the conclusions.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, "Time-Resolved Reflectance at Null Source-Detector Separation: Improving Contrast and Resolution in Diffuse Optical Imaging," Phys. Rev. Lett. 95, 078101 (2005).
    [CrossRef] [PubMed]
  2. S. G. Demos, and R. R. Alfano, "Optical polarization imaging," Appl. Opt. 36, 150-155 (1997).
    [CrossRef] [PubMed]
  3. S. G. Demos, H. B. Radousky, and R. R. Alfano, "Deep subsurface imaging in tissues using spectral and polarization filtering," Opt. Express 7, 23-28 (2000).
    [CrossRef] [PubMed]
  4. X. Ni, and R. R. Alfano, "Time-resolved backscattering of circularly and linearly polarized light in a turbid medium," Opt. Lett. 29, 2773-2775 (2004).
    [CrossRef] [PubMed]
  5. S. A. Kartazayeva, X. Ni, and R. R. Alfano, "Backscattering target detection in a turbid medium by use of circularly and linearly polarized light," Opt. Lett. 30, 1168-1170 (2005).
    [CrossRef] [PubMed]
  6. R. Nothdurft, and G. Yao, "Expression of target optical properties in subsurface polarization-gated imaging," Opt. Express 13, 4185-4195 (2005).
    [CrossRef] [PubMed]
  7. Y. Liu, Y. L. Kim, X. Li, and V. Backman, "Investigation of depth selectivity of polarization gating for tissue characterization," Opt. Express 13, 601-611 (2005).
    [CrossRef] [PubMed]
  8. A. D. Kim, and M. Moscoso, "Backscattering of circularly polarized pulses," Opt. Lett. 27, 1589-1591 (2002).
    [CrossRef]
  9. W. Cai, X. Ni, S. K. Gayen, and R. R. Alfano, "Analytical cumulant solution of the vector radiative transfer equation investigates backscattering of circularly polarized light from turbid media," Phys. Rev. E 74, 056605 (2006).
    [CrossRef]
  10. A. D. Kim, and M. Moscoso, "Backscattering of beams by forward-peaked scattering media," Opt. Lett. 29, 74-76 (2004).
    [CrossRef] [PubMed]
  11. K. G. Phillips, M. Xu, S. K. Gayen, and R. R. Alfano, "Time-resolved ring structure of circularly polarized beams backscattered from forward scattering media," Opt. Express 13, 7954-7969 (2005).
    [CrossRef] [PubMed]
  12. P. Jenny, S. Mourad, T. Stamm, M. Vöge, and K. Simon, "Computing light statistics in heterogeneous media based on a mass weighted probability density function method," J. Opt. Soc. Am. A 24, 2206-2219 (2007).
    [CrossRef]
  13. M. Šormaz, T. Stamm, S. Mourad, and P. Jenny, "Stochastic modeling of light scattering with fluorescence using a Monte Carlo-based multiscale approach," J. Opt. Soc. Am. A 26, 1403-1413 (2009).
    [CrossRef]
  14. M. Šormaz, T. Stamm, and P. Jenny, "Stochastic modeling of polarized light scattering using a Monte Carlo-based stencil method," J. Opt. Soc. Am. A 27, 1100-1110 (2010).
    [CrossRef]
  15. M. Šormaz, T. Stamm, and P. Jenny, "Influence of linear birefringence in the computation of scattering phase functions," J. Biomed. Opt. 15, 055010 (2010).
    [CrossRef] [PubMed]
  16. M. Xu, "Electric field Monte Carlo simulation of polarized light propagating in turbid media," Opt. Express 12, 6530-6539 (2004).
    [CrossRef] [PubMed]

2010

M. Šormaz, T. Stamm, and P. Jenny, "Influence of linear birefringence in the computation of scattering phase functions," J. Biomed. Opt. 15, 055010 (2010).
[CrossRef] [PubMed]

M. Šormaz, T. Stamm, and P. Jenny, "Stochastic modeling of polarized light scattering using a Monte Carlo-based stencil method," J. Opt. Soc. Am. A 27, 1100-1110 (2010).
[CrossRef]

2009

2007

2006

W. Cai, X. Ni, S. K. Gayen, and R. R. Alfano, "Analytical cumulant solution of the vector radiative transfer equation investigates backscattering of circularly polarized light from turbid media," Phys. Rev. E 74, 056605 (2006).
[CrossRef]

2005

2004

2002

2000

1997

Alfano, R. R.

Backman, V.

Cai, W.

W. Cai, X. Ni, S. K. Gayen, and R. R. Alfano, "Analytical cumulant solution of the vector radiative transfer equation investigates backscattering of circularly polarized light from turbid media," Phys. Rev. E 74, 056605 (2006).
[CrossRef]

Cubeddu, R.

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, "Time-Resolved Reflectance at Null Source-Detector Separation: Improving Contrast and Resolution in Diffuse Optical Imaging," Phys. Rev. Lett. 95, 078101 (2005).
[CrossRef] [PubMed]

Del Bianco, S.

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, "Time-Resolved Reflectance at Null Source-Detector Separation: Improving Contrast and Resolution in Diffuse Optical Imaging," Phys. Rev. Lett. 95, 078101 (2005).
[CrossRef] [PubMed]

Demos, S. G.

Gayen, S. K.

W. Cai, X. Ni, S. K. Gayen, and R. R. Alfano, "Analytical cumulant solution of the vector radiative transfer equation investigates backscattering of circularly polarized light from turbid media," Phys. Rev. E 74, 056605 (2006).
[CrossRef]

K. G. Phillips, M. Xu, S. K. Gayen, and R. R. Alfano, "Time-resolved ring structure of circularly polarized beams backscattered from forward scattering media," Opt. Express 13, 7954-7969 (2005).
[CrossRef] [PubMed]

Jenny, P.

Kartazayeva, S. A.

Kim, A. D.

Kim, Y. L.

Li, X.

Liu, Y.

Martelli, F.

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, "Time-Resolved Reflectance at Null Source-Detector Separation: Improving Contrast and Resolution in Diffuse Optical Imaging," Phys. Rev. Lett. 95, 078101 (2005).
[CrossRef] [PubMed]

Moscoso, M.

Mourad, S.

Ni, X.

Nothdurft, R.

Phillips, K. G.

Pifferi, A.

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, "Time-Resolved Reflectance at Null Source-Detector Separation: Improving Contrast and Resolution in Diffuse Optical Imaging," Phys. Rev. Lett. 95, 078101 (2005).
[CrossRef] [PubMed]

Radousky, H. B.

Simon, K.

Šormaz, M.

Spinelli, L.

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, "Time-Resolved Reflectance at Null Source-Detector Separation: Improving Contrast and Resolution in Diffuse Optical Imaging," Phys. Rev. Lett. 95, 078101 (2005).
[CrossRef] [PubMed]

Stamm, T.

Torricelli, A.

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, "Time-Resolved Reflectance at Null Source-Detector Separation: Improving Contrast and Resolution in Diffuse Optical Imaging," Phys. Rev. Lett. 95, 078101 (2005).
[CrossRef] [PubMed]

Vöge, M.

Xu, M.

Yao, G.

Zaccanti, G.

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, "Time-Resolved Reflectance at Null Source-Detector Separation: Improving Contrast and Resolution in Diffuse Optical Imaging," Phys. Rev. Lett. 95, 078101 (2005).
[CrossRef] [PubMed]

Appl. Opt.

J. Biomed. Opt.

M. Šormaz, T. Stamm, and P. Jenny, "Influence of linear birefringence in the computation of scattering phase functions," J. Biomed. Opt. 15, 055010 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Opt. Express

Opt. Lett.

Phys. Rev. E

W. Cai, X. Ni, S. K. Gayen, and R. R. Alfano, "Analytical cumulant solution of the vector radiative transfer equation investigates backscattering of circularly polarized light from turbid media," Phys. Rev. E 74, 056605 (2006).
[CrossRef]

Phys. Rev. Lett.

A. Torricelli, A. Pifferi, L. Spinelli, R. Cubeddu, F. Martelli, S. Del Bianco, and G. Zaccanti, "Time-Resolved Reflectance at Null Source-Detector Separation: Improving Contrast and Resolution in Diffuse Optical Imaging," Phys. Rev. Lett. 95, 078101 (2005).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Sketch of a single scattering event.

Fig. 2
Fig. 2

Simulation setup with semi-infinite background medium and spherical inhomogeneity with diameter D = l2l1 placed at depth z and the center on the line of the incident laser beam. Source and detector are coaxial (ρ = 0). The trajectories t1 and t2 represent two possible paths of detected photons using polarization filtering.

Fig. 3
Fig. 3

Results for the test cases 1 and 2 computed without polarization filtering using phantoms 1 and 2, respectively; the spherical inhomogeneity of diameter D = 1mm is placed at z = 3mm. Lines marked with circles and squares represent mean values for the test cases 1 and 2, respectively, and the lines with diamonds and asterisks show the corresponding standard deviations. Sub-plots (a), (b), (c) and (d) show detected intensity, V-component of the Stokes vector, reached depth and contrast as functions of time-of-flight, respectively.

Fig. 4
Fig. 4

(Color online) Standard deviations (in cm) of photon trajectories for test case 2 conditional on the V-component of the Stokes vector and time-of-flight.

Fig. 5
Fig. 5

(Color online) 3D histogram of detected photons in test case 2 as a function of time-of-flight and V-component.

Fig. 6
Fig. 6

(Color online) Angles (in degrees) between photon propagation directions and outer surface normal as a function of V-component of the Stokes vector and time-of-flight. Results are shown for test case 2.

Fig. 7
Fig. 7

Results for the test cases 3 and 4. Lines marked with circles and squares represent mean values for the cases 3 and 4, respectively, while the lines with diamonds and asterisks represent the corresponding standard deviations. The sub-plots (a), (b), (c) and (d) show the detected intensity, V-component of the Stokes vector, reached depth and contrast as functions of time-of-flight, respectively.

Fig. 8
Fig. 8

Results for the test cases 5 and 6. Lines marked with circles and squares represent mean values for the test cases 5 and 6, respectively, while the lines with diamonds and asterisks show the corresponding standard deviations. The sub-plots (a), (b), (c) and (d) show intensity, V-component of the Stokes vector, reached depth and contrast as functions of time-of-flight, respectively.

Fig. 9
Fig. 9

Sub-plots (a) and (b) depict the reconstructed inclusion of test cases 5 and 6, respectively.

Tables (1)

Tables Icon

Table 1 Overview of all considered test cases. Incident light is circularly polarized I = [1 0 0 1]T with λ = 780nm

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

d I ( x , s , λ , t ) d s = γ t I ( x , s , λ , t ) + γ s 4 π 4 π M ( s , s ) I ( x , s , λ , t ) d ω
I = E l E l * + E r E r * = a l 2 + a r 2 , Q = E l E l * + E r E r * = a l 2 a r 2 , U = E l * E r + E l E r * = 2 a l a r cos δ and V = i ( E l * E r E l E r * ) = 2 a l a r sin δ ,
( E l new E r new ) = [ F ( θ , ϕ ) ] 1 / 2 ( S 2 cos ϕ S 2 sin ϕ S 1 sin ϕ S 1 cos ϕ ) ( E l old E r old ) ,
C = I 0 I I 0 ,

Metrics