Abstract

In this paper, I systematically investigated Micro-Cavity PhotoThermal Spectroscopy (MC-PTS), a novel technique for ultra-sensitive detection of chemical molecular species. I first derive the photothermal enhancement factor and noise characteristics of the technique using a generic theoretical model, followed by numerical analysis of a design example using chalcogenide glass micro-disk cavities. Guidelines for sensor material selection and device design are formulated based on the theoretical insight. The numerical analysis shows that this technique features a record photothermal enhancement factor of 104 with respect to conventional cavity-enhanced (multi-pass) infrared absorption spectroscopy, and is capable of detecting non-preconcentrated chemical vapor molecules down to the ppt level with a moderate cavity quality factor of 105 and a pump laser power of 0.1 W. Such performance qualifies this technique as one of the most sensitive methods for chemical vapor spectroscopic analysis.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. E. Bialkowski, “Photothermal Spectroscopy Methods for Chemical Analysis,” in Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications, J. D. Winefordner, ed. (John Wiley & Sons 1996).
  2. A. Sedlacek and J. Lee, “Photothermal interferometric aerosol absorption spectrometry,” Aerosol Sci. Technol. 41(12), 1089–1101 (2007).
    [CrossRef]
  3. N. Dovichi and J. Harris, “Laser Induced Thermal Lens Effect for Calorimetric Trace Analysis,” Anal. Chem. 51(6), 728–731 (1979).
    [CrossRef]
  4. C. C. Davis and S. J. Petuchowski, “Phase fluctuation optical heterodyne spectroscopy of gases,” Appl. Opt. 20(14), 2539–2554 (1981).
    [CrossRef] [PubMed]
  5. H. A. Schuessler, S. H. Chen, Z. Rong, Z. C. Tang, and E. C. Benck, “Cavity-enhanced photothermal spectroscopy: dynamics, sensitivity, and spatial resolution,” Appl. Opt. 31(15), 2669–2677 (1992).
    [CrossRef] [PubMed]
  6. H. A. Schuessler, S. H. Chen, Z. C. Tang, and Z. Rong, “Cavity-enhanced photothermal spectroscopy and detection,” Appl. Surf. Sci. 48-49, 254–256 (1991).
    [CrossRef]
  7. R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Appl. Opt. 40(31), 5742–5747 (2001).
    [CrossRef] [PubMed]
  8. J. Nadeau, V. Ilchenko, D. Kossokovski, G. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).
  9. G. Farca, S. I. Shopova, and A. T. Rosenberger, “Cavity-enhanced laser absorption spectroscopy using microresonator whispering-gallery modes,” Opt. Express 15(25), 17443–17448 (2007).
    [CrossRef] [PubMed]
  10. A. Nitkowski, L. Chen, and M. Lipson, “Cavity-enhanced on-chip absorption spectroscopy using microring resonators,” Opt. Express 16(16), 11930–11936 (2008).
    [CrossRef] [PubMed]
  11. B. Koch, Y. Yi, J. Zhang, S. Znameroski, and T. Smith, “Reflection-mode sensing using optical microresonators,” Appl. Phys. Lett. 95(20), 201111 (2009).
    [CrossRef]
  12. J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-enhanced infrared absorption in planar chalcogenide glass resonators: experiment & analysis,” J. Lightwave Technol. 27(23), 5240–5245 (2009).
    [CrossRef]
  13. B. B. Kyotoku, L. Chen, and M. Lipson, “Sub-nm resolution cavity enhanced microspectrometer,” Opt. Express 18(1), 102–107 (2010).
    [CrossRef] [PubMed]
  14. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
    [CrossRef] [PubMed]
  15. J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
    [CrossRef]
  16. J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of nanoparticles in resonant cavities,” Phys. Rev. A (submitted to).
  17. J. Hu, “Planar Chalcogenide Glass Materials and Devices,” Massachusetts Institute of Technology Ph.D Thesis (2009).
  18. S. Arnold, S. I. Shopova, and S. Holler, “Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism,” Opt. Express 18(1), 281–287 (2010).
    [CrossRef] [PubMed]
  19. Encyclopedia of Optical Engineering, R. G. Driggers and C. Hoffman, ed. (CRC Press 2003).
  20. A. Rogalski, “Comparison of photon and thermal detector performance,” In Handbook of Infra-red Detection Technologies, M. Henini and M. Razeghi, ed. (Elsevier Science 2002).
  21. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
    [CrossRef] [PubMed]
  22. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
    [CrossRef]
  23. K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
    [CrossRef]
  24. J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009).
    [CrossRef]
  25. P. Lucas, A. Doraiswamy, and E. King, ““Photoinduced structural relaxation in chalcogenide glasses,” J. Non-Cryst. Sol. 332, 35–42 (2003).
  26. A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
    [CrossRef]
  27. S. C. H. O. T. T. North America, Inc., “Infrared Chalcogenide Glass IG3,” http://www.us.schott.com/advanced_optics/english/download/ir_grade_ig3_dec09.pdf
  28. J. Hu, N. Carlie, N. N. Feng, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing,” Opt. Lett. 33(21), 2500–2502 (2008).
    [CrossRef] [PubMed]
  29. J. Hu, N. N. Feng, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Optical loss reduction in high-index-contrast chalcogenide glass waveguides via thermal reflow,” Opt. Express 18(2), 1469–1478 (2010).
    [CrossRef] [PubMed]
  30. G. R. Elliott, D. W. Hewak, G. S. Murugan, and J. S. Wilkinson, “Chalcogenide glass microspheres; their production, characterization and potential,” Opt. Express 15(26), 17542–17553 (2007).
    [CrossRef] [PubMed]
  31. T. Gensty and W. Elsasser, “Semiclassical model for the relative intensity noise of intersubband quantum cascade lasers,” Opt. Commun. 256(1-3), 171–183 (2005).
    [CrossRef]
  32. S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, and T. Manabe, “Prediction of loss minima in infrared optical fibers,” Electron. Lett. 17(21), 775 (1981).
    [CrossRef]
  33. J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of Low-Loss IR-Transmitting Ge30As10Se30Te30 Glass Fibers,” J. Lightwave Technol. 12(5), 737–741 (1994).
    [CrossRef]
  34. T. Ikegami, “Differential Temperature Controller for Stable Temperature Control of a Nonlinear Optical Crystal at Approximately 200 °C,” Jpn. J. Appl. Phys. 39(Part 1, No. 8), 4814–4815 (2000).
    [CrossRef]
  35. A. Densmore, M. Vachon, D.-X. Xu, S. Janz, R. Ma, Y.-H. Li, G. Lopinski, A. Delâge, J. Lapointe, C. C. Luebbert, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection,” Opt. Lett. 34(23), 3598–3600 (2009).
    [CrossRef] [PubMed]

2010

2009

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[CrossRef]

A. Densmore, M. Vachon, D.-X. Xu, S. Janz, R. Ma, Y.-H. Li, G. Lopinski, A. Delâge, J. Lapointe, C. C. Luebbert, Q. Y. Liu, P. Cheben, and J. H. Schmid, “Silicon photonic wire biosensor array for multiplexed real-time and label-free molecular detection,” Opt. Lett. 34(23), 3598–3600 (2009).
[CrossRef] [PubMed]

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[CrossRef]

J. Hu, X. Sun, A. Agarwal, and L. C. Kimerling, “Design guidelines for optical resonator biochemical sensors,” J. Opt. Soc. Am. B 26(5), 1032–1041 (2009).
[CrossRef]

B. Koch, Y. Yi, J. Zhang, S. Znameroski, and T. Smith, “Reflection-mode sensing using optical microresonators,” Appl. Phys. Lett. 95(20), 201111 (2009).
[CrossRef]

J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-enhanced infrared absorption in planar chalcogenide glass resonators: experiment & analysis,” J. Lightwave Technol. 27(23), 5240–5245 (2009).
[CrossRef]

2008

2007

G. R. Elliott, D. W. Hewak, G. S. Murugan, and J. S. Wilkinson, “Chalcogenide glass microspheres; their production, characterization and potential,” Opt. Express 15(26), 17542–17553 (2007).
[CrossRef] [PubMed]

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

A. Sedlacek and J. Lee, “Photothermal interferometric aerosol absorption spectrometry,” Aerosol Sci. Technol. 41(12), 1089–1101 (2007).
[CrossRef]

G. Farca, S. I. Shopova, and A. T. Rosenberger, “Cavity-enhanced laser absorption spectroscopy using microresonator whispering-gallery modes,” Opt. Express 15(25), 17443–17448 (2007).
[CrossRef] [PubMed]

2005

T. Gensty and W. Elsasser, “Semiclassical model for the relative intensity noise of intersubband quantum cascade lasers,” Opt. Commun. 256(1-3), 171–183 (2005).
[CrossRef]

2003

P. Lucas, A. Doraiswamy, and E. King, ““Photoinduced structural relaxation in chalcogenide glasses,” J. Non-Cryst. Sol. 332, 35–42 (2003).

2002

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[CrossRef]

J. Nadeau, V. Ilchenko, D. Kossokovski, G. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).

2001

2000

T. Ikegami, “Differential Temperature Controller for Stable Temperature Control of a Nonlinear Optical Crystal at Approximately 200 °C,” Jpn. J. Appl. Phys. 39(Part 1, No. 8), 4814–4815 (2000).
[CrossRef]

1999

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

1994

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of Low-Loss IR-Transmitting Ge30As10Se30Te30 Glass Fibers,” J. Lightwave Technol. 12(5), 737–741 (1994).
[CrossRef]

1992

1991

H. A. Schuessler, S. H. Chen, Z. C. Tang, and Z. Rong, “Cavity-enhanced photothermal spectroscopy and detection,” Appl. Surf. Sci. 48-49, 254–256 (1991).
[CrossRef]

1981

C. C. Davis and S. J. Petuchowski, “Phase fluctuation optical heterodyne spectroscopy of gases,” Appl. Opt. 20(14), 2539–2554 (1981).
[CrossRef] [PubMed]

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, and T. Manabe, “Prediction of loss minima in infrared optical fibers,” Electron. Lett. 17(21), 775 (1981).
[CrossRef]

1979

N. Dovichi and J. Harris, “Laser Induced Thermal Lens Effect for Calorimetric Trace Analysis,” Anal. Chem. 51(6), 728–731 (1979).
[CrossRef]

Agarwal, A.

Aggarwal, I. D.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of Low-Loss IR-Transmitting Ge30As10Se30Te30 Glass Fibers,” J. Lightwave Technol. 12(5), 737–741 (1994).
[CrossRef]

Antoszewski, J.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[CrossRef]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Arnold, S.

S. Arnold, S. I. Shopova, and S. Holler, “Whispering gallery mode bio-sensor for label-free detection of single molecules: thermo-optic vs. reactive mechanism,” Opt. Express 18(1), 281–287 (2010).
[CrossRef] [PubMed]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[CrossRef]

Baets, R.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[CrossRef]

Bearman, G.

J. Nadeau, V. Ilchenko, D. Kossokovski, G. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).

Benck, E. C.

Bienstman, P.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[CrossRef]

Boyd, R. W.

Braun, D.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[CrossRef]

Carlie, N.

Cheben, P.

Chen, L.

Chen, S. H.

H. A. Schuessler, S. H. Chen, Z. Rong, Z. C. Tang, and E. C. Benck, “Cavity-enhanced photothermal spectroscopy: dynamics, sensitivity, and spatial resolution,” Appl. Opt. 31(15), 2669–2677 (1992).
[CrossRef] [PubMed]

H. A. Schuessler, S. H. Chen, Z. C. Tang, and Z. Rong, “Cavity-enhanced photothermal spectroscopy and detection,” Appl. Surf. Sci. 48-49, 254–256 (1991).
[CrossRef]

Claes, T.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[CrossRef]

Crozier, K.

J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of nanoparticles in resonant cavities,” Phys. Rev. A (submitted to).

Davis, C. C.

De Koninck, Y.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[CrossRef]

De Vos, K.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[CrossRef]

Delâge, A.

Densmore, A.

Doraiswamy, A.

P. Lucas, A. Doraiswamy, and E. King, ““Photoinduced structural relaxation in chalcogenide glasses,” J. Non-Cryst. Sol. 332, 35–42 (2003).

Dovichi, N.

N. Dovichi and J. Harris, “Laser Induced Thermal Lens Effect for Calorimetric Trace Analysis,” Anal. Chem. 51(6), 728–731 (1979).
[CrossRef]

Elliott, G. R.

Elsasser, W.

T. Gensty and W. Elsasser, “Semiclassical model for the relative intensity noise of intersubband quantum cascade lasers,” Opt. Commun. 256(1-3), 171–183 (2005).
[CrossRef]

Faraone, L.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[CrossRef]

Farca, G.

Feng, N. N.

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Gauglitz, G.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Gensty, T.

T. Gensty and W. Elsasser, “Semiclassical model for the relative intensity noise of intersubband quantum cascade lasers,” Opt. Commun. 256(1-3), 171–183 (2005).
[CrossRef]

Girones, J.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[CrossRef]

Harris, J.

N. Dovichi and J. Harris, “Laser Induced Thermal Lens Effect for Calorimetric Trace Analysis,” Anal. Chem. 51(6), 728–731 (1979).
[CrossRef]

Heebner, J. E.

Hewak, D. W.

Holler, S.

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Horiguchi, M.

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, and T. Manabe, “Prediction of loss minima in infrared optical fibers,” Electron. Lett. 17(21), 775 (1981).
[CrossRef]

Hu, J.

Ikegami, T.

T. Ikegami, “Differential Temperature Controller for Stable Temperature Control of a Nonlinear Optical Crystal at Approximately 200 °C,” Jpn. J. Appl. Phys. 39(Part 1, No. 8), 4814–4815 (2000).
[CrossRef]

Ilchenko, V.

J. Nadeau, V. Ilchenko, D. Kossokovski, G. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).

Janz, S.

Jinguji, K.

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, and T. Manabe, “Prediction of loss minima in infrared optical fibers,” Electron. Lett. 17(21), 775 (1981).
[CrossRef]

Kanamori, T.

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, and T. Manabe, “Prediction of loss minima in infrared optical fibers,” Electron. Lett. 17(21), 775 (1981).
[CrossRef]

Khoshsima, M.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[CrossRef]

Kimerling, L. C.

King, E.

P. Lucas, A. Doraiswamy, and E. King, ““Photoinduced structural relaxation in chalcogenide glasses,” J. Non-Cryst. Sol. 332, 35–42 (2003).

Koch, B.

B. Koch, Y. Yi, J. Zhang, S. Znameroski, and T. Smith, “Reflection-mode sensing using optical microresonators,” Appl. Phys. Lett. 95(20), 201111 (2009).
[CrossRef]

Kossokovski, D.

J. Nadeau, V. Ilchenko, D. Kossokovski, G. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Kung, F. H.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of Low-Loss IR-Transmitting Ge30As10Se30Te30 Glass Fibers,” J. Lightwave Technol. 12(5), 737–741 (1994).
[CrossRef]

Kyotoku, B. B.

Lapointe, J.

Lee, J.

A. Sedlacek and J. Lee, “Photothermal interferometric aerosol absorption spectrometry,” Aerosol Sci. Technol. 41(12), 1089–1101 (2007).
[CrossRef]

Li, Y.-H.

Libchaber, A.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[CrossRef]

Lin, S.

J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of nanoparticles in resonant cavities,” Phys. Rev. A (submitted to).

Lipson, M.

Liu, Q. Y.

Lopinski, G.

Lucas, P.

P. Lucas, A. Doraiswamy, and E. King, ““Photoinduced structural relaxation in chalcogenide glasses,” J. Non-Cryst. Sol. 332, 35–42 (2003).

Luebbert, C. C.

Ma, R.

Maleki, L.

J. Nadeau, V. Ilchenko, D. Kossokovski, G. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).

Manabe, T.

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, and T. Manabe, “Prediction of loss minima in infrared optical fibers,” Electron. Lett. 17(21), 775 (1981).
[CrossRef]

Miklos, R.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of Low-Loss IR-Transmitting Ge30As10Se30Te30 Glass Fibers,” J. Lightwave Technol. 12(5), 737–741 (1994).
[CrossRef]

Mitachi, S.

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, and T. Manabe, “Prediction of loss minima in infrared optical fibers,” Electron. Lett. 17(21), 775 (1981).
[CrossRef]

Murugan, G. S.

Nadeau, J.

J. Nadeau, V. Ilchenko, D. Kossokovski, G. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).

Nguyen, V. Q.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of Low-Loss IR-Transmitting Ge30As10Se30Te30 Glass Fibers,” J. Lightwave Technol. 12(5), 737–741 (1994).
[CrossRef]

Nitkowski, A.

Petit, L.

Petuchowski, S. J.

Popelka, S.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[CrossRef]

Pureza, P. C.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of Low-Loss IR-Transmitting Ge30As10Se30Te30 Glass Fibers,” J. Lightwave Technol. 12(5), 737–741 (1994).
[CrossRef]

Richardson, K.

Rogalski, A.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[CrossRef]

Rong, Z.

H. A. Schuessler, S. H. Chen, Z. Rong, Z. C. Tang, and E. C. Benck, “Cavity-enhanced photothermal spectroscopy: dynamics, sensitivity, and spatial resolution,” Appl. Opt. 31(15), 2669–2677 (1992).
[CrossRef] [PubMed]

H. A. Schuessler, S. H. Chen, Z. C. Tang, and Z. Rong, “Cavity-enhanced photothermal spectroscopy and detection,” Appl. Surf. Sci. 48-49, 254–256 (1991).
[CrossRef]

Rosenberger, A. T.

Sanghera, J. S.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of Low-Loss IR-Transmitting Ge30As10Se30Te30 Glass Fibers,” J. Lightwave Technol. 12(5), 737–741 (1994).
[CrossRef]

Schacht, E.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[CrossRef]

Schmid, J. H.

Schuessler, H. A.

H. A. Schuessler, S. H. Chen, Z. Rong, Z. C. Tang, and E. C. Benck, “Cavity-enhanced photothermal spectroscopy: dynamics, sensitivity, and spatial resolution,” Appl. Opt. 31(15), 2669–2677 (1992).
[CrossRef] [PubMed]

H. A. Schuessler, S. H. Chen, Z. C. Tang, and Z. Rong, “Cavity-enhanced photothermal spectroscopy and detection,” Appl. Surf. Sci. 48-49, 254–256 (1991).
[CrossRef]

Sedlacek, A.

A. Sedlacek and J. Lee, “Photothermal interferometric aerosol absorption spectrometry,” Aerosol Sci. Technol. 41(12), 1089–1101 (2007).
[CrossRef]

Shibata, S.

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, and T. Manabe, “Prediction of loss minima in infrared optical fibers,” Electron. Lett. 17(21), 775 (1981).
[CrossRef]

Shopova, S. I.

Smith, T.

B. Koch, Y. Yi, J. Zhang, S. Znameroski, and T. Smith, “Reflection-mode sensing using optical microresonators,” Appl. Phys. Lett. 95(20), 201111 (2009).
[CrossRef]

Sun, X.

Tang, Z. C.

H. A. Schuessler, S. H. Chen, Z. Rong, Z. C. Tang, and E. C. Benck, “Cavity-enhanced photothermal spectroscopy: dynamics, sensitivity, and spatial resolution,” Appl. Opt. 31(15), 2669–2677 (1992).
[CrossRef] [PubMed]

H. A. Schuessler, S. H. Chen, Z. C. Tang, and Z. Rong, “Cavity-enhanced photothermal spectroscopy and detection,” Appl. Surf. Sci. 48-49, 254–256 (1991).
[CrossRef]

Teraoka, I.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[CrossRef]

Vachon, M.

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Vollmer, F.

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[CrossRef]

Wilkinson, J. S.

Xu, D.-X.

Yee, S.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Yi, Y.

B. Koch, Y. Yi, J. Zhang, S. Znameroski, and T. Smith, “Reflection-mode sensing using optical microresonators,” Appl. Phys. Lett. 95(20), 201111 (2009).
[CrossRef]

Zhang, J.

B. Koch, Y. Yi, J. Zhang, S. Znameroski, and T. Smith, “Reflection-mode sensing using optical microresonators,” Appl. Phys. Lett. 95(20), 201111 (2009).
[CrossRef]

Znameroski, S.

B. Koch, Y. Yi, J. Zhang, S. Znameroski, and T. Smith, “Reflection-mode sensing using optical microresonators,” Appl. Phys. Lett. 95(20), 201111 (2009).
[CrossRef]

Aerosol Sci. Technol.

A. Sedlacek and J. Lee, “Photothermal interferometric aerosol absorption spectrometry,” Aerosol Sci. Technol. 41(12), 1089–1101 (2007).
[CrossRef]

Anal. Chem.

N. Dovichi and J. Harris, “Laser Induced Thermal Lens Effect for Calorimetric Trace Analysis,” Anal. Chem. 51(6), 728–731 (1979).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

B. Koch, Y. Yi, J. Zhang, S. Znameroski, and T. Smith, “Reflection-mode sensing using optical microresonators,” Appl. Phys. Lett. 95(20), 201111 (2009).
[CrossRef]

F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, “Protein detection by optical shift of a resonant microcavity,” Appl. Phys. Lett. 80(21), 4057–4059 (2002).
[CrossRef]

Appl. Surf. Sci.

H. A. Schuessler, S. H. Chen, Z. C. Tang, and Z. Rong, “Cavity-enhanced photothermal spectroscopy and detection,” Appl. Surf. Sci. 48-49, 254–256 (1991).
[CrossRef]

Chem. Rev.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev. 108(2), 462–493 (2008).
[CrossRef] [PubMed]

Electron. Lett.

S. Shibata, M. Horiguchi, K. Jinguji, S. Mitachi, T. Kanamori, and T. Manabe, “Prediction of loss minima in infrared optical fibers,” Electron. Lett. 17(21), 775 (1981).
[CrossRef]

IEEE Photonics J.

K. De Vos, J. Girones, T. Claes, Y. De Koninck, S. Popelka, E. Schacht, R. Baets, and P. Bienstman, “Multiplexed antibody detection with an array of silicon-on-insulator microring resonators,” IEEE Photonics J. 1(4), 225–235 (2009).
[CrossRef]

J. Appl. Phys.

A. Rogalski, J. Antoszewski, and L. Faraone, “Third-generation infrared photodetector arrays,” J. Appl. Phys. 105(9), 091101 (2009).
[CrossRef]

J. Lightwave Technol.

J. S. Sanghera, V. Q. Nguyen, P. C. Pureza, F. H. Kung, R. Miklos, and I. D. Aggarwal, “Fabrication of Low-Loss IR-Transmitting Ge30As10Se30Te30 Glass Fibers,” J. Lightwave Technol. 12(5), 737–741 (1994).
[CrossRef]

J. Hu, N. Carlie, L. Petit, A. Agarwal, K. Richardson, and L. C. Kimerling, “Cavity-enhanced infrared absorption in planar chalcogenide glass resonators: experiment & analysis,” J. Lightwave Technol. 27(23), 5240–5245 (2009).
[CrossRef]

J. Non-Cryst. Sol.

P. Lucas, A. Doraiswamy, and E. King, ““Photoinduced structural relaxation in chalcogenide glasses,” J. Non-Cryst. Sol. 332, 35–42 (2003).

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

T. Ikegami, “Differential Temperature Controller for Stable Temperature Control of a Nonlinear Optical Crystal at Approximately 200 °C,” Jpn. J. Appl. Phys. 39(Part 1, No. 8), 4814–4815 (2000).
[CrossRef]

Opt. Commun.

T. Gensty and W. Elsasser, “Semiclassical model for the relative intensity noise of intersubband quantum cascade lasers,” Opt. Commun. 256(1-3), 171–183 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

J. Hu, S. Lin, L. C. Kimerling, and K. Crozier, “Optical trapping of nanoparticles in resonant cavities,” Phys. Rev. A (submitted to).

Proc. SPIE

J. Nadeau, V. Ilchenko, D. Kossokovski, G. Bearman, and L. Maleki, “High-Q whispering-gallery mode sensor in liquids,” Proc. SPIE 4629, 172–180 (2002).

Science

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-free, single-molecule detection with optical microcavities,” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Sens. Actuators B Chem.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem. 54(1-2), 3–15 (1999).
[CrossRef]

Other

J. Hu, “Planar Chalcogenide Glass Materials and Devices,” Massachusetts Institute of Technology Ph.D Thesis (2009).

Encyclopedia of Optical Engineering, R. G. Driggers and C. Hoffman, ed. (CRC Press 2003).

A. Rogalski, “Comparison of photon and thermal detector performance,” In Handbook of Infra-red Detection Technologies, M. Henini and M. Razeghi, ed. (Elsevier Science 2002).

S. C. H. O. T. T. North America, Inc., “Infrared Chalcogenide Glass IG3,” http://www.us.schott.com/advanced_optics/english/download/ir_grade_ig3_dec09.pdf

S. E. Bialkowski, “Photothermal Spectroscopy Methods for Chemical Analysis,” in Chemical Analysis: A Series of Monographs on Analytical Chemistry and Its Applications, J. D. Winefordner, ed. (John Wiley & Sons 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Illustration of the generic configuration of a micro-cavity device for MC-PTS.

Fig. 2
Fig. 2

Flow of the micro-cavity photothermal detection process

Fig. 3
Fig. 3

(a) Schematic tilted view of an on-chip pedestal micro-disk cavity made of chalcogenide glass for MC-PTS applications; (b) cross-section of the pedestal micro-disk cavity (not to scale).

Tables (1)

Tables Icon

Table 1 Key thermal and optical properties of IG3 infrared chalcogenide glass [27]

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

d λ p = κ d T
W = ε 0 2 c ε c | E 0 | 2 d V = Q P 2 ω c ε c | E N | 2 d V
t d = 2 c 0 n α c ε c | E N | 2 d V e | E N | 2 d V
P c = W t d = Q P λ n α 8 π e | E N | 2 d V
d T = P c G = Q P λ n α 8 π G e | E N | 2 d V
d I p = 3 3 4 λ p Q d λ p = 3 3 32 λ n α κ λ p π G e | E N | 2 d V P Q 2
d I ~ α λ n c π Q
E = 3 3 32 n c n κ λ p G e | E N | 2 d V P Q = 3 3 32 Γ n c n κ λ p G P Q
E ( f ) = E ( 0 ) 1 + 4 π 2 f 2 τ 2 = 3 3 32 Γ n c n κ λ p G 1 + 4 π 2 f 2 τ 2 P Q
δ T = δ T T F 2 + δ T A F 2 + δ T H S 2 + δ T R O 2 + δ T 1 / f 2
δ T T F = k B T 0 2 C
δ T T F ( f ) = 2 T 0 k B B G ( 1 + 4 π 2 f 2 τ 2 )
δ T A F ( f ) = Q λ 8 π G ( n Γ α b g + n c α c ) δ P ( f )
δ T H S ( f ) = δ T 0 ( f ) 1 + 4 π 2 f 2 τ 2
δ λ p ( f ) = 4 3 λ p 9 Q δ P p ( f ) / P p
δ T R O ( f ) = 4 3 λ p 9 Q κ δ P p ( f ) / P p
G = G d i s k + G a i r
d T = P c G = Γ α λ π n g G P Q
E ( 0 ) = 3 3 4 Γ κ λ p G P Q = P Q 0.48 ( W 1 )
δ T T F ( f ) B = 2 T 0 k B G ( 1 + 4 π 2 f 2 τ 2 ) = 2.6 × 10 7 K H z 1 2
δ T A F ( f ) B = Q λ n c α c 8 π G δ P ( f ) B = 2.3 × 10 7 K H z 1 2
δ T R O ( f ) B = 4 3 λ p 9 Q κ δ P p ( f ) P p B = 3.3 × 10 9 K H z 1 2
δ T 0 2 = 0 | δ T 0 ( f ) | 2 d f
δ T 0 ( f ) = δ T 0 f ¯
δ T H S ( f ) B = δ T 0 B f ¯ ( 1 + 4 π 2 f 2 τ 2 ) = 8.8 × 10 6 K H z 1 2

Metrics