Abstract

This paper presents a new method to reduce the topographical artifacts in scanning near-field optical microscopy (SNOM) images. The method uses the harmonics caused intrinsically by the nonlinearity in the oscillation of the SNOM probe even when the probe is working in a normal condition without extra excitation. Using these intrinsic harmonics, the gradient of the received SNOM signal with respect to the probe motion is obtained. Then, taking advantage of a SNOM capable of simultaneously obtaining both the topographical and optical signals, topographical artifacts are calculated from the product of the gradient and the topographical signal, and then removed from the received SNOM signal. The effectiveness of the proposed method is demonstrated experimentally.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution ? /20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
    [CrossRef]
  2. B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81(6), 2492–2498 (1997).
    [CrossRef]
  3. S. I. Bozhevolnyi, “Topographical artifacts and optical resolution in near-field optical microscopy,” J. Opt. Soc. Am. B 14(9), 2254–2259 (1997).
    [CrossRef]
  4. J.-J Greffet and R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56(3), 133–137 (1997).
    [CrossRef]
  5. R. Carminati, A. Madrazo, M. Nieto-Vesperinas, and J.-J Greffet, “Optical content and resolution of near-field optical images: Influence of the operating mode,” J. Appl. Phys. 82(2), 501–509 (1997).
    [CrossRef]
  6. P. J. Valle, J.-J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illuminationmode scanning near-field optical microscopy,” J. Appl. Phys. 86(1), 648–656 (1999).
    [CrossRef]
  7. P. G. Gucciardi and M. Colocci, “Different contrast mechanisms induced by topography artifacts in near-field optical microscopy,” Appl. Phys. Lett. 79(10), 1543–1545 (2001).
    [CrossRef]
  8. A. Bek, R. Vogelgesang, and K. Kern, “Optical nonlinearity versus mechanical anharmonicity contrast in dynamic mode apertureless scanning near-field optical microscopy,” Appl. Phys. Lett. 87(16), 163115 (2005).
    [CrossRef]
  9. L. Billot, M. L. de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, “Error signal artifact in apertureless scanning near-field optical microscopy,” Appl. Phys. Lett. 89(2), 023105 (2006).
    [CrossRef]
  10. P. G. Gucciardi, G. Bachelier, M. Allegrini, J. Ahn, M. Hong, S. Chang, W. Jhe, S.-C. Hong, and S. H. Baek, “Artifacts identification in apertureless near-field optical microscopy,” J. Appl. Phys. 101(6), 064303 (2007).
    [CrossRef]
  11. B. Hecht, H. Bielefeldt, D. W. Pohl, L. Novotny, and H. Heinzelmann, “Influence of detection conditions on near-field optical imaging,” J. Appl. Phys. 84(11), 5873–5882 (1998).
    [CrossRef]
  12. C. E. Jordan, S. J. Stranick, L. J. Richter, and R. R. Cavanagh, “Removing optical artifacts in near-field scanning optical microscopy by using a three-dimensional scanning mode,” J. Appl. Phys. 86(5), 2785–2789 (1999).
    [CrossRef]
  13. J-H Park, M. R. Kim, and W. Jhe, “Resolution enhancement in a reflection mode near-field optical microscope by second-harmonic modulation signals,” Opt. Lett. 25(9), 628–630 (2000).
    [CrossRef]
  14. K. Karrai and R. D. Grober, “Piezo-electric tuning fork tip-sample distance control for near field optical microscopes,” Ultramicroscopy 61(1-4), 197–205 (1995).
    [CrossRef]
  15. M. R. Spiegel and J. Liu, Mathematical handbook of formulas and table (2nd Edition, McGraw-Hill, New York, 1999).
  16. B. P. Ng, Y. Zhang, S.W. Kok, and Y. C. Soh, “Improve performance of scanning probe microscopy by balancing tuning fork prongs,” Ultramicroscopy 109(4), 291–295 (2009).
    [CrossRef] [PubMed]
  17. Z. Liu, Y. Zhang, S. W. Kok, B. P. Ng, and Y. C. Soh, “Near-field ellipsometry for thin film characterization,” Opt. Express 18(4), 3298–3310 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-4-3298.
    [CrossRef] [PubMed]
  18. J. Prikulis, H. Xu, L. Gunnarsson, M. Kall, and H. Olin, “Phase-sensitive near-field imaging of metal nanoparticles,” J. Appl. Phys. 92(10), 6211–6214 (2002).
    [CrossRef]
  19. R. Carminati and J.-J. Greffet, “Influence of dielectric contrast and topography on the near field scattered by an inhomogeneous surface,” J. Opt. Soc. Am. A 12(12), 2716–2725 (1995).
    [CrossRef]
  20. P. S. Carney, R. A. Frazin, S. I. Bozhevolnyi, V. S. Volkov, A. Boltasseva, and J. C. Schotland, “Computational lens for the near field,” Phys. Rev. Lett. 92(16), 163903 (2004).
    [CrossRef] [PubMed]
  21. L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University Press, Cambridge, 2006).
  22. P. B. Johnson and R.W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
    [CrossRef]
  23. P. Albertos and A. Sala, Multivariable control systems: an engineering approach (Springer Press, London, 2004).

2010

2009

B. P. Ng, Y. Zhang, S.W. Kok, and Y. C. Soh, “Improve performance of scanning probe microscopy by balancing tuning fork prongs,” Ultramicroscopy 109(4), 291–295 (2009).
[CrossRef] [PubMed]

2007

P. G. Gucciardi, G. Bachelier, M. Allegrini, J. Ahn, M. Hong, S. Chang, W. Jhe, S.-C. Hong, and S. H. Baek, “Artifacts identification in apertureless near-field optical microscopy,” J. Appl. Phys. 101(6), 064303 (2007).
[CrossRef]

2006

L. Billot, M. L. de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, “Error signal artifact in apertureless scanning near-field optical microscopy,” Appl. Phys. Lett. 89(2), 023105 (2006).
[CrossRef]

2005

A. Bek, R. Vogelgesang, and K. Kern, “Optical nonlinearity versus mechanical anharmonicity contrast in dynamic mode apertureless scanning near-field optical microscopy,” Appl. Phys. Lett. 87(16), 163115 (2005).
[CrossRef]

2004

P. S. Carney, R. A. Frazin, S. I. Bozhevolnyi, V. S. Volkov, A. Boltasseva, and J. C. Schotland, “Computational lens for the near field,” Phys. Rev. Lett. 92(16), 163903 (2004).
[CrossRef] [PubMed]

2002

J. Prikulis, H. Xu, L. Gunnarsson, M. Kall, and H. Olin, “Phase-sensitive near-field imaging of metal nanoparticles,” J. Appl. Phys. 92(10), 6211–6214 (2002).
[CrossRef]

2001

P. G. Gucciardi and M. Colocci, “Different contrast mechanisms induced by topography artifacts in near-field optical microscopy,” Appl. Phys. Lett. 79(10), 1543–1545 (2001).
[CrossRef]

2000

1999

C. E. Jordan, S. J. Stranick, L. J. Richter, and R. R. Cavanagh, “Removing optical artifacts in near-field scanning optical microscopy by using a three-dimensional scanning mode,” J. Appl. Phys. 86(5), 2785–2789 (1999).
[CrossRef]

P. J. Valle, J.-J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illuminationmode scanning near-field optical microscopy,” J. Appl. Phys. 86(1), 648–656 (1999).
[CrossRef]

1998

B. Hecht, H. Bielefeldt, D. W. Pohl, L. Novotny, and H. Heinzelmann, “Influence of detection conditions on near-field optical imaging,” J. Appl. Phys. 84(11), 5873–5882 (1998).
[CrossRef]

1997

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81(6), 2492–2498 (1997).
[CrossRef]

S. I. Bozhevolnyi, “Topographical artifacts and optical resolution in near-field optical microscopy,” J. Opt. Soc. Am. B 14(9), 2254–2259 (1997).
[CrossRef]

J.-J Greffet and R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56(3), 133–137 (1997).
[CrossRef]

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, and J.-J Greffet, “Optical content and resolution of near-field optical images: Influence of the operating mode,” J. Appl. Phys. 82(2), 501–509 (1997).
[CrossRef]

1995

K. Karrai and R. D. Grober, “Piezo-electric tuning fork tip-sample distance control for near field optical microscopes,” Ultramicroscopy 61(1-4), 197–205 (1995).
[CrossRef]

R. Carminati and J.-J. Greffet, “Influence of dielectric contrast and topography on the near field scattered by an inhomogeneous surface,” J. Opt. Soc. Am. A 12(12), 2716–2725 (1995).
[CrossRef]

1984

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution ? /20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[CrossRef]

1974

P. B. Johnson and R.W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[CrossRef]

Adam, P.-M.

L. Billot, M. L. de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, “Error signal artifact in apertureless scanning near-field optical microscopy,” Appl. Phys. Lett. 89(2), 023105 (2006).
[CrossRef]

Ahn, J.

P. G. Gucciardi, G. Bachelier, M. Allegrini, J. Ahn, M. Hong, S. Chang, W. Jhe, S.-C. Hong, and S. H. Baek, “Artifacts identification in apertureless near-field optical microscopy,” J. Appl. Phys. 101(6), 064303 (2007).
[CrossRef]

Allegrini, M.

P. G. Gucciardi, G. Bachelier, M. Allegrini, J. Ahn, M. Hong, S. Chang, W. Jhe, S.-C. Hong, and S. H. Baek, “Artifacts identification in apertureless near-field optical microscopy,” J. Appl. Phys. 101(6), 064303 (2007).
[CrossRef]

Bachelier, G.

P. G. Gucciardi, G. Bachelier, M. Allegrini, J. Ahn, M. Hong, S. Chang, W. Jhe, S.-C. Hong, and S. H. Baek, “Artifacts identification in apertureless near-field optical microscopy,” J. Appl. Phys. 101(6), 064303 (2007).
[CrossRef]

Bachelot, R.

L. Billot, M. L. de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, “Error signal artifact in apertureless scanning near-field optical microscopy,” Appl. Phys. Lett. 89(2), 023105 (2006).
[CrossRef]

Baek, S. H.

P. G. Gucciardi, G. Bachelier, M. Allegrini, J. Ahn, M. Hong, S. Chang, W. Jhe, S.-C. Hong, and S. H. Baek, “Artifacts identification in apertureless near-field optical microscopy,” J. Appl. Phys. 101(6), 064303 (2007).
[CrossRef]

Barchiesi, D.

L. Billot, M. L. de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, “Error signal artifact in apertureless scanning near-field optical microscopy,” Appl. Phys. Lett. 89(2), 023105 (2006).
[CrossRef]

Bek, A.

A. Bek, R. Vogelgesang, and K. Kern, “Optical nonlinearity versus mechanical anharmonicity contrast in dynamic mode apertureless scanning near-field optical microscopy,” Appl. Phys. Lett. 87(16), 163115 (2005).
[CrossRef]

Bielefeldt, H.

B. Hecht, H. Bielefeldt, D. W. Pohl, L. Novotny, and H. Heinzelmann, “Influence of detection conditions on near-field optical imaging,” J. Appl. Phys. 84(11), 5873–5882 (1998).
[CrossRef]

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81(6), 2492–2498 (1997).
[CrossRef]

Bijeon, J.-L.

L. Billot, M. L. de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, “Error signal artifact in apertureless scanning near-field optical microscopy,” Appl. Phys. Lett. 89(2), 023105 (2006).
[CrossRef]

Billot, L.

L. Billot, M. L. de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, “Error signal artifact in apertureless scanning near-field optical microscopy,” Appl. Phys. Lett. 89(2), 023105 (2006).
[CrossRef]

Boltasseva, A.

P. S. Carney, R. A. Frazin, S. I. Bozhevolnyi, V. S. Volkov, A. Boltasseva, and J. C. Schotland, “Computational lens for the near field,” Phys. Rev. Lett. 92(16), 163903 (2004).
[CrossRef] [PubMed]

Bouhelier, A.

L. Billot, M. L. de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, “Error signal artifact in apertureless scanning near-field optical microscopy,” Appl. Phys. Lett. 89(2), 023105 (2006).
[CrossRef]

Bozhevolnyi, S. I.

P. S. Carney, R. A. Frazin, S. I. Bozhevolnyi, V. S. Volkov, A. Boltasseva, and J. C. Schotland, “Computational lens for the near field,” Phys. Rev. Lett. 92(16), 163903 (2004).
[CrossRef] [PubMed]

S. I. Bozhevolnyi, “Topographical artifacts and optical resolution in near-field optical microscopy,” J. Opt. Soc. Am. B 14(9), 2254–2259 (1997).
[CrossRef]

Carminati, R.

P. J. Valle, J.-J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illuminationmode scanning near-field optical microscopy,” J. Appl. Phys. 86(1), 648–656 (1999).
[CrossRef]

J.-J Greffet and R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56(3), 133–137 (1997).
[CrossRef]

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, and J.-J Greffet, “Optical content and resolution of near-field optical images: Influence of the operating mode,” J. Appl. Phys. 82(2), 501–509 (1997).
[CrossRef]

R. Carminati and J.-J. Greffet, “Influence of dielectric contrast and topography on the near field scattered by an inhomogeneous surface,” J. Opt. Soc. Am. A 12(12), 2716–2725 (1995).
[CrossRef]

Carney, P. S.

P. S. Carney, R. A. Frazin, S. I. Bozhevolnyi, V. S. Volkov, A. Boltasseva, and J. C. Schotland, “Computational lens for the near field,” Phys. Rev. Lett. 92(16), 163903 (2004).
[CrossRef] [PubMed]

Cavanagh, R. R.

C. E. Jordan, S. J. Stranick, L. J. Richter, and R. R. Cavanagh, “Removing optical artifacts in near-field scanning optical microscopy by using a three-dimensional scanning mode,” J. Appl. Phys. 86(5), 2785–2789 (1999).
[CrossRef]

Chang, S.

P. G. Gucciardi, G. Bachelier, M. Allegrini, J. Ahn, M. Hong, S. Chang, W. Jhe, S.-C. Hong, and S. H. Baek, “Artifacts identification in apertureless near-field optical microscopy,” J. Appl. Phys. 101(6), 064303 (2007).
[CrossRef]

Chang, S.-H.

L. Billot, M. L. de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, “Error signal artifact in apertureless scanning near-field optical microscopy,” Appl. Phys. Lett. 89(2), 023105 (2006).
[CrossRef]

Christy, R.W.

P. B. Johnson and R.W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[CrossRef]

Colocci, M.

P. G. Gucciardi and M. Colocci, “Different contrast mechanisms induced by topography artifacts in near-field optical microscopy,” Appl. Phys. Lett. 79(10), 1543–1545 (2001).
[CrossRef]

de la Chapelle, M. L.

L. Billot, M. L. de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, “Error signal artifact in apertureless scanning near-field optical microscopy,” Appl. Phys. Lett. 89(2), 023105 (2006).
[CrossRef]

Denk, W.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution ? /20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[CrossRef]

Frazin, R. A.

P. S. Carney, R. A. Frazin, S. I. Bozhevolnyi, V. S. Volkov, A. Boltasseva, and J. C. Schotland, “Computational lens for the near field,” Phys. Rev. Lett. 92(16), 163903 (2004).
[CrossRef] [PubMed]

Gray, S. K.

L. Billot, M. L. de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, “Error signal artifact in apertureless scanning near-field optical microscopy,” Appl. Phys. Lett. 89(2), 023105 (2006).
[CrossRef]

Greffet, J.-J

J.-J Greffet and R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56(3), 133–137 (1997).
[CrossRef]

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, and J.-J Greffet, “Optical content and resolution of near-field optical images: Influence of the operating mode,” J. Appl. Phys. 82(2), 501–509 (1997).
[CrossRef]

Greffet, J.-J.

P. J. Valle, J.-J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illuminationmode scanning near-field optical microscopy,” J. Appl. Phys. 86(1), 648–656 (1999).
[CrossRef]

R. Carminati and J.-J. Greffet, “Influence of dielectric contrast and topography on the near field scattered by an inhomogeneous surface,” J. Opt. Soc. Am. A 12(12), 2716–2725 (1995).
[CrossRef]

Grober, R. D.

K. Karrai and R. D. Grober, “Piezo-electric tuning fork tip-sample distance control for near field optical microscopes,” Ultramicroscopy 61(1-4), 197–205 (1995).
[CrossRef]

Gucciardi, P. G.

P. G. Gucciardi, G. Bachelier, M. Allegrini, J. Ahn, M. Hong, S. Chang, W. Jhe, S.-C. Hong, and S. H. Baek, “Artifacts identification in apertureless near-field optical microscopy,” J. Appl. Phys. 101(6), 064303 (2007).
[CrossRef]

P. G. Gucciardi and M. Colocci, “Different contrast mechanisms induced by topography artifacts in near-field optical microscopy,” Appl. Phys. Lett. 79(10), 1543–1545 (2001).
[CrossRef]

Gunnarsson, L.

J. Prikulis, H. Xu, L. Gunnarsson, M. Kall, and H. Olin, “Phase-sensitive near-field imaging of metal nanoparticles,” J. Appl. Phys. 92(10), 6211–6214 (2002).
[CrossRef]

Hecht, B.

B. Hecht, H. Bielefeldt, D. W. Pohl, L. Novotny, and H. Heinzelmann, “Influence of detection conditions on near-field optical imaging,” J. Appl. Phys. 84(11), 5873–5882 (1998).
[CrossRef]

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81(6), 2492–2498 (1997).
[CrossRef]

Heinzelmann, H.

B. Hecht, H. Bielefeldt, D. W. Pohl, L. Novotny, and H. Heinzelmann, “Influence of detection conditions on near-field optical imaging,” J. Appl. Phys. 84(11), 5873–5882 (1998).
[CrossRef]

Hong, M.

P. G. Gucciardi, G. Bachelier, M. Allegrini, J. Ahn, M. Hong, S. Chang, W. Jhe, S.-C. Hong, and S. H. Baek, “Artifacts identification in apertureless near-field optical microscopy,” J. Appl. Phys. 101(6), 064303 (2007).
[CrossRef]

Hong, S.-C.

P. G. Gucciardi, G. Bachelier, M. Allegrini, J. Ahn, M. Hong, S. Chang, W. Jhe, S.-C. Hong, and S. H. Baek, “Artifacts identification in apertureless near-field optical microscopy,” J. Appl. Phys. 101(6), 064303 (2007).
[CrossRef]

Inouye, Y.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81(6), 2492–2498 (1997).
[CrossRef]

Jhe, W.

P. G. Gucciardi, G. Bachelier, M. Allegrini, J. Ahn, M. Hong, S. Chang, W. Jhe, S.-C. Hong, and S. H. Baek, “Artifacts identification in apertureless near-field optical microscopy,” J. Appl. Phys. 101(6), 064303 (2007).
[CrossRef]

J-H Park, M. R. Kim, and W. Jhe, “Resolution enhancement in a reflection mode near-field optical microscope by second-harmonic modulation signals,” Opt. Lett. 25(9), 628–630 (2000).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R.W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[CrossRef]

Jordan, C. E.

C. E. Jordan, S. J. Stranick, L. J. Richter, and R. R. Cavanagh, “Removing optical artifacts in near-field scanning optical microscopy by using a three-dimensional scanning mode,” J. Appl. Phys. 86(5), 2785–2789 (1999).
[CrossRef]

Kall, M.

J. Prikulis, H. Xu, L. Gunnarsson, M. Kall, and H. Olin, “Phase-sensitive near-field imaging of metal nanoparticles,” J. Appl. Phys. 92(10), 6211–6214 (2002).
[CrossRef]

Karrai, K.

K. Karrai and R. D. Grober, “Piezo-electric tuning fork tip-sample distance control for near field optical microscopes,” Ultramicroscopy 61(1-4), 197–205 (1995).
[CrossRef]

Kern, K.

A. Bek, R. Vogelgesang, and K. Kern, “Optical nonlinearity versus mechanical anharmonicity contrast in dynamic mode apertureless scanning near-field optical microscopy,” Appl. Phys. Lett. 87(16), 163115 (2005).
[CrossRef]

Kim, M. R.

Kok, S. W.

Kok, S.W.

B. P. Ng, Y. Zhang, S.W. Kok, and Y. C. Soh, “Improve performance of scanning probe microscopy by balancing tuning fork prongs,” Ultramicroscopy 109(4), 291–295 (2009).
[CrossRef] [PubMed]

Lanz, M.

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution ? /20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[CrossRef]

Liu, Z.

Madrazo, A.

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, and J.-J Greffet, “Optical content and resolution of near-field optical images: Influence of the operating mode,” J. Appl. Phys. 82(2), 501–509 (1997).
[CrossRef]

Ng, B. P.

Z. Liu, Y. Zhang, S. W. Kok, B. P. Ng, and Y. C. Soh, “Near-field ellipsometry for thin film characterization,” Opt. Express 18(4), 3298–3310 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-4-3298.
[CrossRef] [PubMed]

B. P. Ng, Y. Zhang, S.W. Kok, and Y. C. Soh, “Improve performance of scanning probe microscopy by balancing tuning fork prongs,” Ultramicroscopy 109(4), 291–295 (2009).
[CrossRef] [PubMed]

Nieto-Vesperinas, M.

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, and J.-J Greffet, “Optical content and resolution of near-field optical images: Influence of the operating mode,” J. Appl. Phys. 82(2), 501–509 (1997).
[CrossRef]

Novotny, L.

B. Hecht, H. Bielefeldt, D. W. Pohl, L. Novotny, and H. Heinzelmann, “Influence of detection conditions on near-field optical imaging,” J. Appl. Phys. 84(11), 5873–5882 (1998).
[CrossRef]

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81(6), 2492–2498 (1997).
[CrossRef]

Olin, H.

J. Prikulis, H. Xu, L. Gunnarsson, M. Kall, and H. Olin, “Phase-sensitive near-field imaging of metal nanoparticles,” J. Appl. Phys. 92(10), 6211–6214 (2002).
[CrossRef]

Park, J-H

Pohl, D. W.

B. Hecht, H. Bielefeldt, D. W. Pohl, L. Novotny, and H. Heinzelmann, “Influence of detection conditions on near-field optical imaging,” J. Appl. Phys. 84(11), 5873–5882 (1998).
[CrossRef]

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81(6), 2492–2498 (1997).
[CrossRef]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution ? /20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[CrossRef]

Prikulis, J.

J. Prikulis, H. Xu, L. Gunnarsson, M. Kall, and H. Olin, “Phase-sensitive near-field imaging of metal nanoparticles,” J. Appl. Phys. 92(10), 6211–6214 (2002).
[CrossRef]

Richter, L. J.

C. E. Jordan, S. J. Stranick, L. J. Richter, and R. R. Cavanagh, “Removing optical artifacts in near-field scanning optical microscopy by using a three-dimensional scanning mode,” J. Appl. Phys. 86(5), 2785–2789 (1999).
[CrossRef]

Rogers, J. A.

L. Billot, M. L. de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, “Error signal artifact in apertureless scanning near-field optical microscopy,” Appl. Phys. Lett. 89(2), 023105 (2006).
[CrossRef]

Royer, P.

L. Billot, M. L. de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, “Error signal artifact in apertureless scanning near-field optical microscopy,” Appl. Phys. Lett. 89(2), 023105 (2006).
[CrossRef]

Schotland, J. C.

P. S. Carney, R. A. Frazin, S. I. Bozhevolnyi, V. S. Volkov, A. Boltasseva, and J. C. Schotland, “Computational lens for the near field,” Phys. Rev. Lett. 92(16), 163903 (2004).
[CrossRef] [PubMed]

Soh, Y. C.

Z. Liu, Y. Zhang, S. W. Kok, B. P. Ng, and Y. C. Soh, “Near-field ellipsometry for thin film characterization,” Opt. Express 18(4), 3298–3310 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-4-3298.
[CrossRef] [PubMed]

B. P. Ng, Y. Zhang, S.W. Kok, and Y. C. Soh, “Improve performance of scanning probe microscopy by balancing tuning fork prongs,” Ultramicroscopy 109(4), 291–295 (2009).
[CrossRef] [PubMed]

Stranick, S. J.

C. E. Jordan, S. J. Stranick, L. J. Richter, and R. R. Cavanagh, “Removing optical artifacts in near-field scanning optical microscopy by using a three-dimensional scanning mode,” J. Appl. Phys. 86(5), 2785–2789 (1999).
[CrossRef]

Valle, P. J.

P. J. Valle, J.-J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illuminationmode scanning near-field optical microscopy,” J. Appl. Phys. 86(1), 648–656 (1999).
[CrossRef]

Vogelgesang, R.

A. Bek, R. Vogelgesang, and K. Kern, “Optical nonlinearity versus mechanical anharmonicity contrast in dynamic mode apertureless scanning near-field optical microscopy,” Appl. Phys. Lett. 87(16), 163115 (2005).
[CrossRef]

Volkov, V. S.

P. S. Carney, R. A. Frazin, S. I. Bozhevolnyi, V. S. Volkov, A. Boltasseva, and J. C. Schotland, “Computational lens for the near field,” Phys. Rev. Lett. 92(16), 163903 (2004).
[CrossRef] [PubMed]

Wiederrecht, G. P.

L. Billot, M. L. de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, “Error signal artifact in apertureless scanning near-field optical microscopy,” Appl. Phys. Lett. 89(2), 023105 (2006).
[CrossRef]

Xu, H.

J. Prikulis, H. Xu, L. Gunnarsson, M. Kall, and H. Olin, “Phase-sensitive near-field imaging of metal nanoparticles,” J. Appl. Phys. 92(10), 6211–6214 (2002).
[CrossRef]

Zhang, Y.

Z. Liu, Y. Zhang, S. W. Kok, B. P. Ng, and Y. C. Soh, “Near-field ellipsometry for thin film characterization,” Opt. Express 18(4), 3298–3310 (2010), http://www.opticsinfobase.org/abstract.cfm?URI=oe-18-4-3298.
[CrossRef] [PubMed]

B. P. Ng, Y. Zhang, S.W. Kok, and Y. C. Soh, “Improve performance of scanning probe microscopy by balancing tuning fork prongs,” Ultramicroscopy 109(4), 291–295 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett.

P. G. Gucciardi and M. Colocci, “Different contrast mechanisms induced by topography artifacts in near-field optical microscopy,” Appl. Phys. Lett. 79(10), 1543–1545 (2001).
[CrossRef]

A. Bek, R. Vogelgesang, and K. Kern, “Optical nonlinearity versus mechanical anharmonicity contrast in dynamic mode apertureless scanning near-field optical microscopy,” Appl. Phys. Lett. 87(16), 163115 (2005).
[CrossRef]

L. Billot, M. L. de la Chapelle, D. Barchiesi, S.-H. Chang, S. K. Gray, J. A. Rogers, A. Bouhelier, P.-M. Adam, J.-L. Bijeon, G. P. Wiederrecht, R. Bachelot, and P. Royer, “Error signal artifact in apertureless scanning near-field optical microscopy,” Appl. Phys. Lett. 89(2), 023105 (2006).
[CrossRef]

D. W. Pohl, W. Denk, and M. Lanz, “Optical stethoscopy: image recording with resolution ? /20,” Appl. Phys. Lett. 44(7), 651–653 (1984).
[CrossRef]

J. Appl. Phys.

B. Hecht, H. Bielefeldt, Y. Inouye, D. W. Pohl, and L. Novotny, “Facts and artifacts in near-field optical microscopy,” J. Appl. Phys. 81(6), 2492–2498 (1997).
[CrossRef]

R. Carminati, A. Madrazo, M. Nieto-Vesperinas, and J.-J Greffet, “Optical content and resolution of near-field optical images: Influence of the operating mode,” J. Appl. Phys. 82(2), 501–509 (1997).
[CrossRef]

P. J. Valle, J.-J. Greffet, and R. Carminati, “Optical contrast, topographic contrast and artifacts in illuminationmode scanning near-field optical microscopy,” J. Appl. Phys. 86(1), 648–656 (1999).
[CrossRef]

P. G. Gucciardi, G. Bachelier, M. Allegrini, J. Ahn, M. Hong, S. Chang, W. Jhe, S.-C. Hong, and S. H. Baek, “Artifacts identification in apertureless near-field optical microscopy,” J. Appl. Phys. 101(6), 064303 (2007).
[CrossRef]

B. Hecht, H. Bielefeldt, D. W. Pohl, L. Novotny, and H. Heinzelmann, “Influence of detection conditions on near-field optical imaging,” J. Appl. Phys. 84(11), 5873–5882 (1998).
[CrossRef]

C. E. Jordan, S. J. Stranick, L. J. Richter, and R. R. Cavanagh, “Removing optical artifacts in near-field scanning optical microscopy by using a three-dimensional scanning mode,” J. Appl. Phys. 86(5), 2785–2789 (1999).
[CrossRef]

J. Prikulis, H. Xu, L. Gunnarsson, M. Kall, and H. Olin, “Phase-sensitive near-field imaging of metal nanoparticles,” J. Appl. Phys. 92(10), 6211–6214 (2002).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. B

Opt. Express

Opt. Lett.

Phys. Rev. B

P. B. Johnson and R.W. Christy, “Optical constants of transition metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd,” Phys. Rev. B 9(12), 5056–5070 (1974).
[CrossRef]

Phys. Rev. Lett.

P. S. Carney, R. A. Frazin, S. I. Bozhevolnyi, V. S. Volkov, A. Boltasseva, and J. C. Schotland, “Computational lens for the near field,” Phys. Rev. Lett. 92(16), 163903 (2004).
[CrossRef] [PubMed]

Prog. Surf. Sci.

J.-J Greffet and R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56(3), 133–137 (1997).
[CrossRef]

Ultramicroscopy

B. P. Ng, Y. Zhang, S.W. Kok, and Y. C. Soh, “Improve performance of scanning probe microscopy by balancing tuning fork prongs,” Ultramicroscopy 109(4), 291–295 (2009).
[CrossRef] [PubMed]

K. Karrai and R. D. Grober, “Piezo-electric tuning fork tip-sample distance control for near field optical microscopes,” Ultramicroscopy 61(1-4), 197–205 (1995).
[CrossRef]

Other

M. R. Spiegel and J. Liu, Mathematical handbook of formulas and table (2nd Edition, McGraw-Hill, New York, 1999).

L. Novotny and B. Hecht, Principles of nano-optics (Cambridge University Press, Cambridge, 2006).

P. Albertos and A. Sala, Multivariable control systems: an engineering approach (Springer Press, London, 2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic of oscillation of a tuning fork probe.

Fig. 2
Fig. 2

Experimental setup.

Fig. 3
Fig. 3

Image of the rhombus vanadium grating sample using a UV microscopy.

Fig. 4
Fig. 4

(a) Topography image of rhombus grating, (b) One line-scan profile of topography.

Fig. 5
Fig. 5

(a) DC SNOM image of rhombus grating, (b) One line-scan profile of DC SNOM signal.

Fig. 6
Fig. 6

(a) DC SNOM image of rhombus grating obtained in the reverse scanning direction, (b) One line-scan profile of DC SNOM signal obtained in the reverse scanning direction.

Fig. 7
Fig. 7

(a) Second harmonic SNOM image of rhombus grating, (b) One line-scan profile of the second harmonic SNOM signal.

Fig. 8
Fig. 8

Topographical artifacts reduction in the DC SNOM image: (a) Artifact correction for one line scan, (b) Artifact correction for the whole image.

Fig. 9
Fig. 9

(a) First harmonic SNOM image of rhombus grating, (b) One line-scan profile of the first harmonic SNOM signal.

Fig. 10
Fig. 10

(a) Third harmonic SNOM image of rhombus grating, (b) One line-scan profile of the third harmonic SNOM signal.

Fig. 11
Fig. 11

Topographical artifact reduction in the first harmonic SNOM image: (a) Artifacts and correction in a line scan, (b) Artifact corrected first harmonic SNOM image.

Fig. 12
Fig. 12

Comparison of (a) Numerical derivative of the corrected DC SNOM signal along x direction, (b) Corrected first harmonic SNOM signal.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

z o s c ( t ) = R R c o s ( θ ( t ) ) ,
θ ( t ) = s i n 1 [ x A R c o s ( Ω t ) ] x A R c o s ( Ω t ) ,
z o s c ( t ) = R R [ J 0 ( x A R ) + 2 k = 1 ( 1 ) k J 2 k ( x A R ) c o s ( 2 k Ω t ) ] .
x ( t ) = x c + x A c o s ( Ω t ) ,
h ( x ( t ) ) = h ( x c ) + x A 2 4 R [ 1 + c o s ( 2 Ω t ) ] .
I [ x , h ( x ) ] = I 0 ( z 0 ) + I 0 ( z ) z | z = z 0 [ h ( x ) z 0 ] + I 1 ( x , z 0 ) + I 1 ( x , z ) z | z = z 0 [ h ( x ) z 0 ] ,
I 0 ( z ) z | z = z 0 [ h ( x ( t ) ) z 0 ] = I 0 ( z ) z | z = z 0 [ h ( x c ) + x A 2 4 R ( 1 + c o s ( 2 Ω t ) ) z 0 ] ,
I 1 [ x ( t ) , z 0 ] = I 1 ( x c , z 0 ) + I 1 ( x , z ) x | x = x c , z = z 0 x A c o s ( Ω t ) ,
I 1 [ x ( t ) , z ] z | z = z 0 [ h ( x ( t ) ) z 0 ] = I 1 ( x , z ) z | x = x c , z = z 0 [ h ( x c ) + x A 2 4 R ( 1 + c o s ( 2 Ω t ) ) z 0 ] + 2 I 1 ( x , z ) x z | x = x c , z = z 0 × x A c o s ( Ω t ) [ h ( x c ) + x A 2 4 R ( 1 + c o s ( 2 Ω t ) ) z 0 ] .
I D C ( x c ) = I 0 ( z 0 ) + I 0 ( z ) z | z = z 0 [ h ( x c ) + x A 2 4 R z 0 ] + I 1 ( x c , z 0 ) + I 1 ( x , z ) z | x = x c , z = z 0 [ h ( x c ) + x A 2 4 R z 0 ] ,
I Ω ( x c ) = I 1 ( x , z ) x | x = x c , z = z 0 x A + 2 I 1 ( x , z ) x z | x = x c , z = z 0 [ h ( x c ) + 3 x A 2 8 R z 0 ] x A ,
I 2 Ω ( x c ) = I 0 ( z ) z | z = z 0 x A 2 4 R + I 1 ( x , z ) z | x = x c , z = z 0 x A 2 4 R ,
I 3 Ω ( x c ) = 2 I 1 ( x , z ) x z | x = x c , z = z 0 x A 3 8 R .
I a r t i f a c t , D C ( x c ) = C 0 I 2 Ω ( x c ) [ h ( x c ) z 0 ] ,
I a r t i f a c t , Ω ( x c ) = C 1 I 3 Ω ( x c ) [ h ( x c ) z 0 ] .
ξ D C ( C 0 ) = i = 1 N | I D C ( x i ) I ^ D C C 0 I 2 Ω ( x i ) [ h ( x i ) z 0 ] | 2 ,
ξ Ω ( C 1 ) = i = 1 N | I Ω ( x i ) I ^ Ω C 1 I 3 Ω ( x i ) [ h ( x i ) z 0 ] | 2 ,

Metrics