Abstract

Impedance matched and low loss transmission lines are essential for optimal energy delivery through an integrated optical or plasmonic nanocircuit. A novel method for the measurement of the attenuation and propagation constants of an antenna-coupled coplanar strip (CPS) transmission line is demonstrated at 28.3 THz using scattering-type scanning near-field optical microscopy. Reflection of the propagating optical wave upon an open-circuit or short-circuit load at the terminal of the CPS provides a standing voltage wave, which is mapped through the associated surface-normal E z electric near-field component at the metal-air interface. By fitting the analytical standing wave expression to the near-field data, the transmission line properties are determined. Full-wave models and measured results are presented and are in excellent agreement.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104(21), 213902 (2010).
    [CrossRef] [PubMed]
  2. J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9(5), 1897–1902 (2009).
    [CrossRef] [PubMed]
  3. C. T. Middlebrook, P. M. Krenz, B. A. Lail, and G. D. Boreman;, “Infrared phased-array antenna,” Microw. Opt. Technol. Lett. 50(3), 719–723 (2008).
    [CrossRef]
  4. J. A. Hutchison, S. P. Centeno, H. Odaka, H. Fukumura, J. Hofkens, and H. Uji-I, “Subdiffraction limited, remote excitation of surface enhanced Raman scattering,” Nano Lett. 9(3), 995–1001 (2009).
    [CrossRef] [PubMed]
  5. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
    [CrossRef] [PubMed]
  6. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, New York, 1997).
  7. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett. 22(7), 475–477 (1997).
    [CrossRef] [PubMed]
  8. A. Alù and N. Engheta, “Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes,” J. Opt. Soc. Am. B 23(3), 571–583 (2006).
    [CrossRef]
  9. T. A. Mandviwala, B. A. Lail, and G. D. Boreman, “Characterization of microstrip transmission lines at IR frequencies - Modeling, fabrication and measurements,” Microw. Opt. Technol. Lett. 50(5), 1232–1237 (2008).
    [CrossRef]
  10. J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9(5), 1897–1902 (2009).
    [CrossRef] [PubMed]
  11. T. A. Mandviwala, B. A. Lail, and G. D. Boreman, “Infrared-frequency coplanar striplines: design, fabrication, and measurements,” Microw. Opt. Technol. Lett. 47(1), 17–20 (2005).
    [CrossRef]
  12. J. Wen, S. Romanov, and U. Peschel, “Excitation of plasmonic gap waveguides by nanoantennas,” Opt. Express 17(8), 5925–5932 (2009).
    [CrossRef] [PubMed]
  13. A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009).
    [CrossRef] [PubMed]
  14. L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
    [CrossRef] [PubMed]
  15. R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16(25), 20295–20305 (2008).
    [CrossRef] [PubMed]
  16. D. M. Pozar, Microwave Engineering, 3rd ed., (J. Wiley, Hoboken, NJ, 2005).
  17. M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
    [CrossRef] [PubMed]
  18. R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
    [CrossRef] [PubMed]
  19. A. Bek, R. Vogelgesang, and K. Kern, “Scanning near-field optical microscope with sub 10-nm resolution,” Rev. Sci. Instrum. 77(4), 043703 (2006).
    [CrossRef]
  20. F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Transact. A Math. Phys. Eng. Sci. 362(1817), 787–805 (2004).
    [CrossRef] [PubMed]
  21. B. C. Wadell, Transmission Line Design Handbook (Artech House, Boston, 1991).
  22. R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric field, magnetic field, and electric current distributions of infrared optical antennas: A nano-optical vector network analyzer,” Phys. Rev. Lett. (to be published).
    [PubMed]
  23. S.-N. Lee, J. I. Lee,, W. B. Kim, J. G. Yook, Y.-J. Kim, and S. J. Lee, “Conductor-loss reduction for high-frequency transmission lines based on the magnetorheological-fluid polishing method,” Microw. Opt. Technol. Lett. 42(5), 405–407 (2004).
    [CrossRef]
  24. J. E. Chan, K. Sivaprasad, and K. A. Chamberlin, “High-frequency modeling of frequency-dependent dielectric and conductor losses in transmission lines,” IEEE Trans. Compon. Packag. Tech. 30(1), 86–91 (2007).
    [CrossRef]

2010 (1)

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104(21), 213902 (2010).
[CrossRef] [PubMed]

2009 (5)

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9(5), 1897–1902 (2009).
[CrossRef] [PubMed]

J. A. Hutchison, S. P. Centeno, H. Odaka, H. Fukumura, J. Hofkens, and H. Uji-I, “Subdiffraction limited, remote excitation of surface enhanced Raman scattering,” Nano Lett. 9(3), 995–1001 (2009).
[CrossRef] [PubMed]

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9(5), 1897–1902 (2009).
[CrossRef] [PubMed]

J. Wen, S. Romanov, and U. Peschel, “Excitation of plasmonic gap waveguides by nanoantennas,” Opt. Express 17(8), 5925–5932 (2009).
[CrossRef] [PubMed]

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009).
[CrossRef] [PubMed]

2008 (5)

R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16(25), 20295–20305 (2008).
[CrossRef] [PubMed]

M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[CrossRef] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[CrossRef] [PubMed]

T. A. Mandviwala, B. A. Lail, and G. D. Boreman, “Characterization of microstrip transmission lines at IR frequencies - Modeling, fabrication and measurements,” Microw. Opt. Technol. Lett. 50(5), 1232–1237 (2008).
[CrossRef]

C. T. Middlebrook, P. M. Krenz, B. A. Lail, and G. D. Boreman;, “Infrared phased-array antenna,” Microw. Opt. Technol. Lett. 50(3), 719–723 (2008).
[CrossRef]

2007 (3)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

J. E. Chan, K. Sivaprasad, and K. A. Chamberlin, “High-frequency modeling of frequency-dependent dielectric and conductor losses in transmission lines,” IEEE Trans. Compon. Packag. Tech. 30(1), 86–91 (2007).
[CrossRef]

2006 (2)

A. Bek, R. Vogelgesang, and K. Kern, “Scanning near-field optical microscope with sub 10-nm resolution,” Rev. Sci. Instrum. 77(4), 043703 (2006).
[CrossRef]

A. Alù and N. Engheta, “Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes,” J. Opt. Soc. Am. B 23(3), 571–583 (2006).
[CrossRef]

2005 (1)

T. A. Mandviwala, B. A. Lail, and G. D. Boreman, “Infrared-frequency coplanar striplines: design, fabrication, and measurements,” Microw. Opt. Technol. Lett. 47(1), 17–20 (2005).
[CrossRef]

2004 (2)

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Transact. A Math. Phys. Eng. Sci. 362(1817), 787–805 (2004).
[CrossRef] [PubMed]

S.-N. Lee, J. I. Lee,, W. B. Kim, J. G. Yook, Y.-J. Kim, and S. J. Lee, “Conductor-loss reduction for high-frequency transmission lines based on the magnetorheological-fluid polishing method,” Microw. Opt. Technol. Lett. 42(5), 405–407 (2004).
[CrossRef]

1997 (1)

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Alù, A.

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104(21), 213902 (2010).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes,” J. Opt. Soc. Am. B 23(3), 571–583 (2006).
[CrossRef]

Bek, A.

A. Bek, R. Vogelgesang, and K. Kern, “Scanning near-field optical microscope with sub 10-nm resolution,” Rev. Sci. Instrum. 77(4), 043703 (2006).
[CrossRef]

Biagioni, P.

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9(5), 1897–1902 (2009).
[CrossRef] [PubMed]

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9(5), 1897–1902 (2009).
[CrossRef] [PubMed]

Boreman, G. D.

C. T. Middlebrook, P. M. Krenz, B. A. Lail, and G. D. Boreman;, “Infrared phased-array antenna,” Microw. Opt. Technol. Lett. 50(3), 719–723 (2008).
[CrossRef]

T. A. Mandviwala, B. A. Lail, and G. D. Boreman, “Characterization of microstrip transmission lines at IR frequencies - Modeling, fabrication and measurements,” Microw. Opt. Technol. Lett. 50(5), 1232–1237 (2008).
[CrossRef]

R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16(25), 20295–20305 (2008).
[CrossRef] [PubMed]

T. A. Mandviwala, B. A. Lail, and G. D. Boreman, “Infrared-frequency coplanar striplines: design, fabrication, and measurements,” Microw. Opt. Technol. Lett. 47(1), 17–20 (2005).
[CrossRef]

R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric field, magnetic field, and electric current distributions of infrared optical antennas: A nano-optical vector network analyzer,” Phys. Rev. Lett. (to be published).
[PubMed]

Centeno, S. P.

J. A. Hutchison, S. P. Centeno, H. Odaka, H. Fukumura, J. Hofkens, and H. Uji-I, “Subdiffraction limited, remote excitation of surface enhanced Raman scattering,” Nano Lett. 9(3), 995–1001 (2009).
[CrossRef] [PubMed]

Chamberlin, K. A.

J. E. Chan, K. Sivaprasad, and K. A. Chamberlin, “High-frequency modeling of frequency-dependent dielectric and conductor losses in transmission lines,” IEEE Trans. Compon. Packag. Tech. 30(1), 86–91 (2007).
[CrossRef]

Chan, J. E.

J. E. Chan, K. Sivaprasad, and K. A. Chamberlin, “High-frequency modeling of frequency-dependent dielectric and conductor losses in transmission lines,” IEEE Trans. Compon. Packag. Tech. 30(1), 86–91 (2007).
[CrossRef]

Chang, D. E.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Dmitriev, A.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[CrossRef] [PubMed]

Dorfmüller, J.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[CrossRef] [PubMed]

Engheta, N.

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104(21), 213902 (2010).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Optical nanotransmission lines: synthesis of planar left-handed metamaterials in the infrared and visible regimes,” J. Opt. Soc. Am. B 23(3), 571–583 (2006).
[CrossRef]

Esteban, R.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[CrossRef] [PubMed]

Etrich, C.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[CrossRef] [PubMed]

Feichtner, T.

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9(5), 1897–1902 (2009).
[CrossRef] [PubMed]

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9(5), 1897–1902 (2009).
[CrossRef] [PubMed]

Fukumura, H.

J. A. Hutchison, S. P. Centeno, H. Odaka, H. Fukumura, J. Hofkens, and H. Uji-I, “Subdiffraction limited, remote excitation of surface enhanced Raman scattering,” Nano Lett. 9(3), 995–1001 (2009).
[CrossRef] [PubMed]

Hecht, B.

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9(5), 1897–1902 (2009).
[CrossRef] [PubMed]

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9(5), 1897–1902 (2009).
[CrossRef] [PubMed]

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Hillenbrand, R.

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Transact. A Math. Phys. Eng. Sci. 362(1817), 787–805 (2004).
[CrossRef] [PubMed]

Hofkens, J.

J. A. Hutchison, S. P. Centeno, H. Odaka, H. Fukumura, J. Hofkens, and H. Uji-I, “Subdiffraction limited, remote excitation of surface enhanced Raman scattering,” Nano Lett. 9(3), 995–1001 (2009).
[CrossRef] [PubMed]

Huang, J.-S.

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9(5), 1897–1902 (2009).
[CrossRef] [PubMed]

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9(5), 1897–1902 (2009).
[CrossRef] [PubMed]

Hutchison, J. A.

J. A. Hutchison, S. P. Centeno, H. Odaka, H. Fukumura, J. Hofkens, and H. Uji-I, “Subdiffraction limited, remote excitation of surface enhanced Raman scattering,” Nano Lett. 9(3), 995–1001 (2009).
[CrossRef] [PubMed]

Jones, A. C.

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009).
[CrossRef] [PubMed]

R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16(25), 20295–20305 (2008).
[CrossRef] [PubMed]

M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[CrossRef] [PubMed]

Keilmann, F.

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Transact. A Math. Phys. Eng. Sci. 362(1817), 787–805 (2004).
[CrossRef] [PubMed]

Kern, K.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[CrossRef] [PubMed]

A. Bek, R. Vogelgesang, and K. Kern, “Scanning near-field optical microscope with sub 10-nm resolution,” Rev. Sci. Instrum. 77(4), 043703 (2006).
[CrossRef]

Kim, W. B.

S.-N. Lee, J. I. Lee,, W. B. Kim, J. G. Yook, Y.-J. Kim, and S. J. Lee, “Conductor-loss reduction for high-frequency transmission lines based on the magnetorheological-fluid polishing method,” Microw. Opt. Technol. Lett. 42(5), 405–407 (2004).
[CrossRef]

Kim, Y.-J.

S.-N. Lee, J. I. Lee,, W. B. Kim, J. G. Yook, Y.-J. Kim, and S. J. Lee, “Conductor-loss reduction for high-frequency transmission lines based on the magnetorheological-fluid polishing method,” Microw. Opt. Technol. Lett. 42(5), 405–407 (2004).
[CrossRef]

Kobayashi, T.

Krenz, P. M.

C. T. Middlebrook, P. M. Krenz, B. A. Lail, and G. D. Boreman;, “Infrared phased-array antenna,” Microw. Opt. Technol. Lett. 50(3), 719–723 (2008).
[CrossRef]

R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16(25), 20295–20305 (2008).
[CrossRef] [PubMed]

R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric field, magnetic field, and electric current distributions of infrared optical antennas: A nano-optical vector network analyzer,” Phys. Rev. Lett. (to be published).
[PubMed]

Lail, B. A.

C. T. Middlebrook, P. M. Krenz, B. A. Lail, and G. D. Boreman;, “Infrared phased-array antenna,” Microw. Opt. Technol. Lett. 50(3), 719–723 (2008).
[CrossRef]

T. A. Mandviwala, B. A. Lail, and G. D. Boreman, “Characterization of microstrip transmission lines at IR frequencies - Modeling, fabrication and measurements,” Microw. Opt. Technol. Lett. 50(5), 1232–1237 (2008).
[CrossRef]

T. A. Mandviwala, B. A. Lail, and G. D. Boreman, “Infrared-frequency coplanar striplines: design, fabrication, and measurements,” Microw. Opt. Technol. Lett. 47(1), 17–20 (2005).
[CrossRef]

R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric field, magnetic field, and electric current distributions of infrared optical antennas: A nano-optical vector network analyzer,” Phys. Rev. Lett. (to be published).
[PubMed]

Lee, S. J.

S.-N. Lee, J. I. Lee,, W. B. Kim, J. G. Yook, Y.-J. Kim, and S. J. Lee, “Conductor-loss reduction for high-frequency transmission lines based on the magnetorheological-fluid polishing method,” Microw. Opt. Technol. Lett. 42(5), 405–407 (2004).
[CrossRef]

Lee, S.-N.

S.-N. Lee, J. I. Lee,, W. B. Kim, J. G. Yook, Y.-J. Kim, and S. J. Lee, “Conductor-loss reduction for high-frequency transmission lines based on the magnetorheological-fluid polishing method,” Microw. Opt. Technol. Lett. 42(5), 405–407 (2004).
[CrossRef]

Lee,, J. I.

S.-N. Lee, J. I. Lee,, W. B. Kim, J. G. Yook, Y.-J. Kim, and S. J. Lee, “Conductor-loss reduction for high-frequency transmission lines based on the magnetorheological-fluid polishing method,” Microw. Opt. Technol. Lett. 42(5), 405–407 (2004).
[CrossRef]

Li, Z.-Y.

M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[CrossRef] [PubMed]

Lukin, M. D.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Mandviwala, T. A.

T. A. Mandviwala, B. A. Lail, and G. D. Boreman, “Characterization of microstrip transmission lines at IR frequencies - Modeling, fabrication and measurements,” Microw. Opt. Technol. Lett. 50(5), 1232–1237 (2008).
[CrossRef]

T. A. Mandviwala, B. A. Lail, and G. D. Boreman, “Infrared-frequency coplanar striplines: design, fabrication, and measurements,” Microw. Opt. Technol. Lett. 47(1), 17–20 (2005).
[CrossRef]

Middlebrook, C. T.

C. T. Middlebrook, P. M. Krenz, B. A. Lail, and G. D. Boreman;, “Infrared phased-array antenna,” Microw. Opt. Technol. Lett. 50(3), 719–723 (2008).
[CrossRef]

Morimoto, A.

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

Odaka, H.

J. A. Hutchison, S. P. Centeno, H. Odaka, H. Fukumura, J. Hofkens, and H. Uji-I, “Subdiffraction limited, remote excitation of surface enhanced Raman scattering,” Nano Lett. 9(3), 995–1001 (2009).
[CrossRef] [PubMed]

Olmon, R. L.

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009).
[CrossRef] [PubMed]

R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16(25), 20295–20305 (2008).
[CrossRef] [PubMed]

R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric field, magnetic field, and electric current distributions of infrared optical antennas: A nano-optical vector network analyzer,” Phys. Rev. Lett. (to be published).
[PubMed]

Park, H.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Peschel, U.

Rang, M.

M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[CrossRef] [PubMed]

R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric field, magnetic field, and electric current distributions of infrared optical antennas: A nano-optical vector network analyzer,” Phys. Rev. Lett. (to be published).
[PubMed]

Raschke, M. B.

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009).
[CrossRef] [PubMed]

R. L. Olmon, P. M. Krenz, A. C. Jones, G. D. Boreman, and M. B. Raschke, “Near-field imaging of optical antenna modes in the mid-infrared,” Opt. Express 16(25), 20295–20305 (2008).
[CrossRef] [PubMed]

M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[CrossRef] [PubMed]

R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric field, magnetic field, and electric current distributions of infrared optical antennas: A nano-optical vector network analyzer,” Phys. Rev. Lett. (to be published).
[PubMed]

Rockstuhl, C.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[CrossRef] [PubMed]

Romanov, S.

Saraf, L. V.

R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric field, magnetic field, and electric current distributions of infrared optical antennas: A nano-optical vector network analyzer,” Phys. Rev. Lett. (to be published).
[PubMed]

Sivaprasad, K.

J. E. Chan, K. Sivaprasad, and K. A. Chamberlin, “High-frequency modeling of frequency-dependent dielectric and conductor losses in transmission lines,” IEEE Trans. Compon. Packag. Tech. 30(1), 86–91 (2007).
[CrossRef]

Skrabalak, S. E.

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009).
[CrossRef] [PubMed]

Takahara, J.

Taki, H.

Uji-I, H.

J. A. Hutchison, S. P. Centeno, H. Odaka, H. Fukumura, J. Hofkens, and H. Uji-I, “Subdiffraction limited, remote excitation of surface enhanced Raman scattering,” Nano Lett. 9(3), 995–1001 (2009).
[CrossRef] [PubMed]

Vogelgesang, R.

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[CrossRef] [PubMed]

A. Bek, R. Vogelgesang, and K. Kern, “Scanning near-field optical microscope with sub 10-nm resolution,” Rev. Sci. Instrum. 77(4), 043703 (2006).
[CrossRef]

Wen, J.

Wiley, B. J.

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009).
[CrossRef] [PubMed]

M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[CrossRef] [PubMed]

Xia, Y.

M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[CrossRef] [PubMed]

Xia, Y. N. N.

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009).
[CrossRef] [PubMed]

Yamagishi, S.

Yook, J. G.

S.-N. Lee, J. I. Lee,, W. B. Kim, J. G. Yook, Y.-J. Kim, and S. J. Lee, “Conductor-loss reduction for high-frequency transmission lines based on the magnetorheological-fluid polishing method,” Microw. Opt. Technol. Lett. 42(5), 405–407 (2004).
[CrossRef]

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Zhou, F.

M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[CrossRef] [PubMed]

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

IEEE Trans. Compon. Packag. Tech. (1)

J. E. Chan, K. Sivaprasad, and K. A. Chamberlin, “High-frequency modeling of frequency-dependent dielectric and conductor losses in transmission lines,” IEEE Trans. Compon. Packag. Tech. 30(1), 86–91 (2007).
[CrossRef]

J. Opt. Soc. Am. B (1)

Microw. Opt. Technol. Lett. (4)

T. A. Mandviwala, B. A. Lail, and G. D. Boreman, “Characterization of microstrip transmission lines at IR frequencies - Modeling, fabrication and measurements,” Microw. Opt. Technol. Lett. 50(5), 1232–1237 (2008).
[CrossRef]

C. T. Middlebrook, P. M. Krenz, B. A. Lail, and G. D. Boreman;, “Infrared phased-array antenna,” Microw. Opt. Technol. Lett. 50(3), 719–723 (2008).
[CrossRef]

T. A. Mandviwala, B. A. Lail, and G. D. Boreman, “Infrared-frequency coplanar striplines: design, fabrication, and measurements,” Microw. Opt. Technol. Lett. 47(1), 17–20 (2005).
[CrossRef]

S.-N. Lee, J. I. Lee,, W. B. Kim, J. G. Yook, Y.-J. Kim, and S. J. Lee, “Conductor-loss reduction for high-frequency transmission lines based on the magnetorheological-fluid polishing method,” Microw. Opt. Technol. Lett. 42(5), 405–407 (2004).
[CrossRef]

Nano Lett. (6)

A. C. Jones, R. L. Olmon, S. E. Skrabalak, B. J. Wiley, Y. N. N. Xia, and M. B. Raschke, “Mid-IR plasmonics: near-field imaging of coherent plasmon modes of silver nanowires,” Nano Lett. 9(7), 2553–2558 (2009).
[CrossRef] [PubMed]

M. Rang, A. C. Jones, F. Zhou, Z.-Y. Li, B. J. Wiley, Y. Xia, and M. B. Raschke, “Optical near-field mapping of plasmonic nanoprisms,” Nano Lett. 8(10), 3357–3363 (2008).
[CrossRef] [PubMed]

R. Esteban, R. Vogelgesang, J. Dorfmüller, A. Dmitriev, C. Rockstuhl, C. Etrich, and K. Kern, “Direct near-field optical imaging of higher order plasmonic resonances,” Nano Lett. 8(10), 3155–3159 (2008).
[CrossRef] [PubMed]

J. A. Hutchison, S. P. Centeno, H. Odaka, H. Fukumura, J. Hofkens, and H. Uji-I, “Subdiffraction limited, remote excitation of surface enhanced Raman scattering,” Nano Lett. 9(3), 995–1001 (2009).
[CrossRef] [PubMed]

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9(5), 1897–1902 (2009).
[CrossRef] [PubMed]

J.-S. Huang, T. Feichtner, P. Biagioni, and B. Hecht, “Impedance matching and emission properties of nanoantennas in an optical nanocircuit,” Nano Lett. 9(5), 1897–1902 (2009).
[CrossRef] [PubMed]

Nature (1)

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature 450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Philos. Transact. A Math. Phys. Eng. Sci. (1)

F. Keilmann and R. Hillenbrand, “Near-field microscopy by elastic light scattering from a tip,” Philos. Transact. A Math. Phys. Eng. Sci. 362(1817), 787–805 (2004).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

R. L. Olmon, M. Rang, P. M. Krenz, B. A. Lail, L. V. Saraf, G. D. Boreman, and M. B. Raschke, “Determination of electric field, magnetic field, and electric current distributions of infrared optical antennas: A nano-optical vector network analyzer,” Phys. Rev. Lett. (to be published).
[PubMed]

L. Novotny, “Effective wavelength scaling for optical antennas,” Phys. Rev. Lett. 98(26), 266802 (2007).
[CrossRef] [PubMed]

A. Alù and N. Engheta, “Wireless at the nanoscale: optical interconnects using matched nanoantennas,” Phys. Rev. Lett. 104(21), 213902 (2010).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. Bek, R. Vogelgesang, and K. Kern, “Scanning near-field optical microscope with sub 10-nm resolution,” Rev. Sci. Instrum. 77(4), 043703 (2006).
[CrossRef]

Other (3)

D. M. Pozar, Microwave Engineering, 3rd ed., (J. Wiley, Hoboken, NJ, 2005).

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford University Press, New York, 1997).

B. C. Wadell, Transmission Line Design Handbook (Artech House, Boston, 1991).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 3
Fig. 3

Measured s-SNOM signal (top) and AFM topography (bottom) of fabricated CPSs without antennas, terminated in open-circuit (a) and short-circuit (b) load. Corresponding measurements for antenna-coupled CPSs terminated in open-circuit (c) and short-circuit (d) load. Dashed red lines in (c) and (d) indicate that standing waves on adjacent conductors are 180° out of phase.

Fig. 1
Fig. 1

s-SNOM measurement setup using interferometric homodyne amplification to determine amplitude and phase of the scattered near-field (a). Magnified view of incident beam illuminating antenna-coupled CPS and AFM tip scattering the near-field distribution (b).

Fig. 2
Fig. 2

Cross-section of CPS showing a typical electric field distribution. E z components located on top of the conductors are equal in magnitude and 180° out of phase and are measured with s-SNOM.

Fig. 4
Fig. 4

Measured s-SNOM signal along dipole-coupled CPS with open-circuit (a) and short-circuit (b) load. Analytical expression of s-SNOM signal is fitted to measurement to determine attenuation and propagation constants of the transmission line. Dashed red lines, corresponding to Figs. 3(c) and 3(d), indicate 180° phase shift between adjacent conductors and 90° phase shift between open-circuit and short-circuit case.

Fig. 5
Fig. 5

Simulated magnitude of E z on antenna-coupled and non-antenna-coupled CPSs that are terminated in open-circuit (a) and short-circuit (b) loads. Fitted standing wave is also shown. The dipole is located at x = −5 µm and the load is located at x = 0 µm.

Tables (1)

Tables Icon

Table 1 Median attenuation (α) and propagation (β) constant of measured and simulated antenna-coupled CPSs

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E nf ( x ) = E d [ e ( α + j β ) x + Γ e ( α + j β ) x ] ,
I cond .1 ( x ) = 2 E ref E nf ( x ) A 2 cos ( Φ ref Φ nf ( x ) ) + 2 E nf ( x ) 2 A 0 A 2 + E nf ( x ) 2 A 1 2 2 + I DC
I cond .2 ( x ) = 2 E ref E nf ( x ) A 2 cos ( Φ ref Φ nf ( x ) + π ) + 2 E nf ( x ) 2 A 0 A 2 + E nf ( x ) 2 A 1 2 2 + I DC .
A 0 = 1 a + d d 0 + 2 d 2 + 4 a d + 3 a 2 4 d 0 2 ,
A 1 = a d 0 + a ( a + d ) d 0 2 ,
A 2 = a 2 4 d 0 2 .
E nf ( x ) = E d [ e ( α + j β ) x + Γ s e ( α + j β ) x ] + E s [ e ( α + j β ) ( 5 μm x ) + Γ d e ( α + j β ) ( 5 μm x ) ]

Metrics