Abstract

Metallic nanoparticles are of significant interest due to their particular optical and biological applications. Gold nanoparticles are proven to be excellent candidate for in vivo micro-manipulation using Optical Tweezers. This manuscript reports on stable 3-D trapping of 9.5–254nm gold nanospheres using substantially decreased laser power. The lower limit is ∼2 times smaller than previous record. 5.4nm gold nanospheres were trapped for only 2–3 seconds. For the first time, our experimental data verify the volume corrected Rayleigh model for particles smaller than 100nm in diameter. Measuring the maximum applicable force for gold nanoparticles, we have shown that a few tens of milli-Watts of laser power can produce pico-Newton range forces.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie "In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags," Nat. Biotechnol. 26,83-90 (2008).
    [CrossRef]
  2. J. D. Gibson, B. P. Khanal, and E. R. Zubarev, "Paclitaxel-Functionalized Gold Nanoparticles," J. Am. Chem. Soc. 129,11653-11661 (2007).
    [CrossRef] [PubMed]
  3. W. L. Leong, P. S. Lee, S. G. Mhaisalkar, T. P. Chen, and A. Dodabalapur, "Charging phenomena in pentacenegold nanoparticle memory device," Appl. Phys. Lett. 90,042906 (2007).
    [CrossRef]
  4. J. Zhang, J. Du, B. Han, Z. Liu, T. Jiang, and Z. Zhang, "Sonochemical formation of single-crystalline gold nanobelts," Angew. Chem. Int. Ed. 45,1116-1119 (2006).
    [CrossRef]
  5. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11288-290 (1986).
    [CrossRef] [PubMed]
  6. A. Ashkin, and J. M. Dzeiedzic, "Optical trapping and manipulation of viruses and bacteria," Science 235,1517-1520 (1987).
    [CrossRef] [PubMed]
  7. C. Bustamante, Z. Bryant, and S. B. Smith, "Ten years of tension: single-molecule DNA mechanics," Nature (London) 421,423-427 (2003).
    [CrossRef]
  8. T. M. Hansen, S. N. S. Reihani, L. B. Oddershede, and M. A. Sørensen, "Correction between mechanical strength of messenger RNA pseudoknots and ribosomal frame-shifting," PNAS 104,5830-5835 (2007).
    [CrossRef] [PubMed]
  9. K. Svoboda and S. M. Block, "Optical trapping of metallic Rayleigh particles," Opt. Lett. 19,930-932 (1994).
    [CrossRef] [PubMed]
  10. Y. Seol, A. E. Carpenter, and T. T. Perkins, "Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating," Opt. Lett. 31,2429-2431 (2006).
    [CrossRef] [PubMed]
  11. H. Furukawa and I. Yamaguchi, "Optical trapping of metallic particles by a fixed Gaussian beam," Opt. Lett. 23,216-218 (1998).
    [CrossRef]
  12. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, "Expanding the optical trapping range of gold nanoparticles," Nano. Lett. 5,1937-1942 (2005).
    [CrossRef] [PubMed]
  13. L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, "Efficient optical trapping and visualization of silver nanoparticles," Nano. Lett. 8,1486-1491 (2008).
    [CrossRef] [PubMed]
  14. C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, "Quantitative Optical Trapping of Single Gold Nanorods," Nano. Lett. 8,2998-3003 (2008).
    [CrossRef] [PubMed]
  15. R. Saija, P. Denti, F. Borghese, O. M. Marago, and M. A. Iati, "Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres," Opt. Express 17,10231-10241 (2009).
    [CrossRef] [PubMed]
  16. K. Berg-Sørensen, H. Flyvbjerg, "Power spectrum analysis for optical tweezers," Rev. Sci. Instrum. 75,594-612 (2004).
    [CrossRef]
  17. S. Inasava, M. Sugiyama, and Y. Yamaguchi, "Laser-Induced shape transformation of gold nanoparticles below the melting point: The effect of surface melting," J. Phys. Chem. B. 109,3104-3111 (2005).
    [CrossRef]
  18. F. Gittes and C. F. Schmidt, "Interference model for back-focal-plane displacement detection in optical tweezers," Opt. Lett. 23,7-9 (1998).
    [CrossRef]
  19. S. N. S. Reihani, M. A. Charsooghi, H. R. Khalesifard, and R. Golestanian, "Efficient in-depth trapping with an oil-immersion objective lens," Opt. Lett. 31,766-768 (2006).
    [CrossRef] [PubMed]
  20. S. N. S. Reihani and L. B. Oddershede, "Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations," Opt. Lett. 32,1998-2000 (2007).
    [CrossRef] [PubMed]
  21. B. Lin, J. Yu, and S. A. Rice, "Direct measurements of constrained Brownian motion of an isolated sphere between two walls," Phys. Rev. E 62,3909-3919 (2000).
    [CrossRef]
  22. A. S. Zelenina, R. Quidant, G. Badenes, and M. Nieto-Vesperinas, "Tunable optical sorting and manipulation of nanoparticles via plasmon excitation," Opt. Lett. 31,2054-2056 (2006).
    [CrossRef] [PubMed]
  23. P. M. Hansen, I. M. Tolić-Nørrelykke, H. Flyvbjerg, and K. B. Sørensen, "tweezercalib 2.0: Faster version of MatLab package for precise calibration of optical tweezers," Comput. Phys. Commun 174,518-520 (2006).
    [CrossRef]
  24. A. Rohrbach, "Stiffness of Optical Traps: Quantitative Agreement between Experiment and Electromagnetic Theory," Phys. Rev. Lett. 95,168102 (2005).
    [CrossRef] [PubMed]
  25. S.N.S. Reihani, H.R. Khalesifard, and R. Golestanian, "Measuring lateral efficiency of optical traps: The effect of tube length," Opt. Commun. 259,204-211 (2006).
    [CrossRef]

2009 (1)

2008 (3)

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, "Efficient optical trapping and visualization of silver nanoparticles," Nano. Lett. 8,1486-1491 (2008).
[CrossRef] [PubMed]

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, "Quantitative Optical Trapping of Single Gold Nanorods," Nano. Lett. 8,2998-3003 (2008).
[CrossRef] [PubMed]

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie "In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags," Nat. Biotechnol. 26,83-90 (2008).
[CrossRef]

2007 (4)

J. D. Gibson, B. P. Khanal, and E. R. Zubarev, "Paclitaxel-Functionalized Gold Nanoparticles," J. Am. Chem. Soc. 129,11653-11661 (2007).
[CrossRef] [PubMed]

W. L. Leong, P. S. Lee, S. G. Mhaisalkar, T. P. Chen, and A. Dodabalapur, "Charging phenomena in pentacenegold nanoparticle memory device," Appl. Phys. Lett. 90,042906 (2007).
[CrossRef]

T. M. Hansen, S. N. S. Reihani, L. B. Oddershede, and M. A. Sørensen, "Correction between mechanical strength of messenger RNA pseudoknots and ribosomal frame-shifting," PNAS 104,5830-5835 (2007).
[CrossRef] [PubMed]

S. N. S. Reihani and L. B. Oddershede, "Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations," Opt. Lett. 32,1998-2000 (2007).
[CrossRef] [PubMed]

2006 (6)

S. N. S. Reihani, M. A. Charsooghi, H. R. Khalesifard, and R. Golestanian, "Efficient in-depth trapping with an oil-immersion objective lens," Opt. Lett. 31,766-768 (2006).
[CrossRef] [PubMed]

A. S. Zelenina, R. Quidant, G. Badenes, and M. Nieto-Vesperinas, "Tunable optical sorting and manipulation of nanoparticles via plasmon excitation," Opt. Lett. 31,2054-2056 (2006).
[CrossRef] [PubMed]

P. M. Hansen, I. M. Tolić-Nørrelykke, H. Flyvbjerg, and K. B. Sørensen, "tweezercalib 2.0: Faster version of MatLab package for precise calibration of optical tweezers," Comput. Phys. Commun 174,518-520 (2006).
[CrossRef]

S.N.S. Reihani, H.R. Khalesifard, and R. Golestanian, "Measuring lateral efficiency of optical traps: The effect of tube length," Opt. Commun. 259,204-211 (2006).
[CrossRef]

J. Zhang, J. Du, B. Han, Z. Liu, T. Jiang, and Z. Zhang, "Sonochemical formation of single-crystalline gold nanobelts," Angew. Chem. Int. Ed. 45,1116-1119 (2006).
[CrossRef]

Y. Seol, A. E. Carpenter, and T. T. Perkins, "Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating," Opt. Lett. 31,2429-2431 (2006).
[CrossRef] [PubMed]

2005 (3)

S. Inasava, M. Sugiyama, and Y. Yamaguchi, "Laser-Induced shape transformation of gold nanoparticles below the melting point: The effect of surface melting," J. Phys. Chem. B. 109,3104-3111 (2005).
[CrossRef]

A. Rohrbach, "Stiffness of Optical Traps: Quantitative Agreement between Experiment and Electromagnetic Theory," Phys. Rev. Lett. 95,168102 (2005).
[CrossRef] [PubMed]

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, "Expanding the optical trapping range of gold nanoparticles," Nano. Lett. 5,1937-1942 (2005).
[CrossRef] [PubMed]

2004 (1)

K. Berg-Sørensen, H. Flyvbjerg, "Power spectrum analysis for optical tweezers," Rev. Sci. Instrum. 75,594-612 (2004).
[CrossRef]

2003 (1)

C. Bustamante, Z. Bryant, and S. B. Smith, "Ten years of tension: single-molecule DNA mechanics," Nature (London) 421,423-427 (2003).
[CrossRef]

2000 (1)

B. Lin, J. Yu, and S. A. Rice, "Direct measurements of constrained Brownian motion of an isolated sphere between two walls," Phys. Rev. E 62,3909-3919 (2000).
[CrossRef]

1998 (2)

1994 (1)

1987 (1)

A. Ashkin, and J. M. Dzeiedzic, "Optical trapping and manipulation of viruses and bacteria," Science 235,1517-1520 (1987).
[CrossRef] [PubMed]

1986 (1)

Aabo, T.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, "Efficient optical trapping and visualization of silver nanoparticles," Nano. Lett. 8,1486-1491 (2008).
[CrossRef] [PubMed]

Ansari, D. O.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie "In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags," Nat. Biotechnol. 26,83-90 (2008).
[CrossRef]

Ashkin, A.

Badenes, G.

Bendix, P. M.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, "Efficient optical trapping and visualization of silver nanoparticles," Nano. Lett. 8,1486-1491 (2008).
[CrossRef] [PubMed]

Berg-Sørensen, K.

K. Berg-Sørensen, H. Flyvbjerg, "Power spectrum analysis for optical tweezers," Rev. Sci. Instrum. 75,594-612 (2004).
[CrossRef]

Bhatia, V. K.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, "Expanding the optical trapping range of gold nanoparticles," Nano. Lett. 5,1937-1942 (2005).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Block, S. M.

Borghese, F.

Bosanac, L.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, "Efficient optical trapping and visualization of silver nanoparticles," Nano. Lett. 8,1486-1491 (2008).
[CrossRef] [PubMed]

Bryant, Z.

C. Bustamante, Z. Bryant, and S. B. Smith, "Ten years of tension: single-molecule DNA mechanics," Nature (London) 421,423-427 (2003).
[CrossRef]

Bustamante, C.

C. Bustamante, Z. Bryant, and S. B. Smith, "Ten years of tension: single-molecule DNA mechanics," Nature (London) 421,423-427 (2003).
[CrossRef]

Carpenter, A. E.

Charsooghi, M. A.

Chen, G. Z.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie "In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags," Nat. Biotechnol. 26,83-90 (2008).
[CrossRef]

Chen, T. P.

W. L. Leong, P. S. Lee, S. G. Mhaisalkar, T. P. Chen, and A. Dodabalapur, "Charging phenomena in pentacenegold nanoparticle memory device," Appl. Phys. Lett. 90,042906 (2007).
[CrossRef]

Chu, S.

Denti, P.

Dodabalapur, A.

W. L. Leong, P. S. Lee, S. G. Mhaisalkar, T. P. Chen, and A. Dodabalapur, "Charging phenomena in pentacenegold nanoparticle memory device," Appl. Phys. Lett. 90,042906 (2007).
[CrossRef]

Du, J.

J. Zhang, J. Du, B. Han, Z. Liu, T. Jiang, and Z. Zhang, "Sonochemical formation of single-crystalline gold nanobelts," Angew. Chem. Int. Ed. 45,1116-1119 (2006).
[CrossRef]

Dzeiedzic, J. M.

A. Ashkin, and J. M. Dzeiedzic, "Optical trapping and manipulation of viruses and bacteria," Science 235,1517-1520 (1987).
[CrossRef] [PubMed]

Dziedzic, J. M.

Flyvbjerg, H.

P. M. Hansen, I. M. Tolić-Nørrelykke, H. Flyvbjerg, and K. B. Sørensen, "tweezercalib 2.0: Faster version of MatLab package for precise calibration of optical tweezers," Comput. Phys. Commun 174,518-520 (2006).
[CrossRef]

K. Berg-Sørensen, H. Flyvbjerg, "Power spectrum analysis for optical tweezers," Rev. Sci. Instrum. 75,594-612 (2004).
[CrossRef]

Furukawa, H.

Gibson, J. D.

J. D. Gibson, B. P. Khanal, and E. R. Zubarev, "Paclitaxel-Functionalized Gold Nanoparticles," J. Am. Chem. Soc. 129,11653-11661 (2007).
[CrossRef] [PubMed]

Gittes, F.

Golestanian, R.

S. N. S. Reihani, M. A. Charsooghi, H. R. Khalesifard, and R. Golestanian, "Efficient in-depth trapping with an oil-immersion objective lens," Opt. Lett. 31,766-768 (2006).
[CrossRef] [PubMed]

S.N.S. Reihani, H.R. Khalesifard, and R. Golestanian, "Measuring lateral efficiency of optical traps: The effect of tube length," Opt. Commun. 259,204-211 (2006).
[CrossRef]

Han, B.

J. Zhang, J. Du, B. Han, Z. Liu, T. Jiang, and Z. Zhang, "Sonochemical formation of single-crystalline gold nanobelts," Angew. Chem. Int. Ed. 45,1116-1119 (2006).
[CrossRef]

Hansen, P. M.

P. M. Hansen, I. M. Tolić-Nørrelykke, H. Flyvbjerg, and K. B. Sørensen, "tweezercalib 2.0: Faster version of MatLab package for precise calibration of optical tweezers," Comput. Phys. Commun 174,518-520 (2006).
[CrossRef]

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, "Expanding the optical trapping range of gold nanoparticles," Nano. Lett. 5,1937-1942 (2005).
[CrossRef] [PubMed]

Hansen, T. M.

T. M. Hansen, S. N. S. Reihani, L. B. Oddershede, and M. A. Sørensen, "Correction between mechanical strength of messenger RNA pseudoknots and ribosomal frame-shifting," PNAS 104,5830-5835 (2007).
[CrossRef] [PubMed]

Harrit, N.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, "Expanding the optical trapping range of gold nanoparticles," Nano. Lett. 5,1937-1942 (2005).
[CrossRef] [PubMed]

Iati, M. A.

Inasava, S.

S. Inasava, M. Sugiyama, and Y. Yamaguchi, "Laser-Induced shape transformation of gold nanoparticles below the melting point: The effect of surface melting," J. Phys. Chem. B. 109,3104-3111 (2005).
[CrossRef]

Jiang, T.

J. Zhang, J. Du, B. Han, Z. Liu, T. Jiang, and Z. Zhang, "Sonochemical formation of single-crystalline gold nanobelts," Angew. Chem. Int. Ed. 45,1116-1119 (2006).
[CrossRef]

Khalesifard, H. R.

Khalesifard, H.R.

S.N.S. Reihani, H.R. Khalesifard, and R. Golestanian, "Measuring lateral efficiency of optical traps: The effect of tube length," Opt. Commun. 259,204-211 (2006).
[CrossRef]

Khanal, B. P.

J. D. Gibson, B. P. Khanal, and E. R. Zubarev, "Paclitaxel-Functionalized Gold Nanoparticles," J. Am. Chem. Soc. 129,11653-11661 (2007).
[CrossRef] [PubMed]

Lee, P. S.

W. L. Leong, P. S. Lee, S. G. Mhaisalkar, T. P. Chen, and A. Dodabalapur, "Charging phenomena in pentacenegold nanoparticle memory device," Appl. Phys. Lett. 90,042906 (2007).
[CrossRef]

Leong, W. L.

W. L. Leong, P. S. Lee, S. G. Mhaisalkar, T. P. Chen, and A. Dodabalapur, "Charging phenomena in pentacenegold nanoparticle memory device," Appl. Phys. Lett. 90,042906 (2007).
[CrossRef]

Lin, B.

B. Lin, J. Yu, and S. A. Rice, "Direct measurements of constrained Brownian motion of an isolated sphere between two walls," Phys. Rev. E 62,3909-3919 (2000).
[CrossRef]

Liu, Z.

J. Zhang, J. Du, B. Han, Z. Liu, T. Jiang, and Z. Zhang, "Sonochemical formation of single-crystalline gold nanobelts," Angew. Chem. Int. Ed. 45,1116-1119 (2006).
[CrossRef]

Marago, O. M.

Mhaisalkar, S. G.

W. L. Leong, P. S. Lee, S. G. Mhaisalkar, T. P. Chen, and A. Dodabalapur, "Charging phenomena in pentacenegold nanoparticle memory device," Appl. Phys. Lett. 90,042906 (2007).
[CrossRef]

Nie, S.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie "In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags," Nat. Biotechnol. 26,83-90 (2008).
[CrossRef]

Nieto-Vesperinas, M.

Oddershede, L.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, "Expanding the optical trapping range of gold nanoparticles," Nano. Lett. 5,1937-1942 (2005).
[CrossRef] [PubMed]

Oddershede, L. B.

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, "Efficient optical trapping and visualization of silver nanoparticles," Nano. Lett. 8,1486-1491 (2008).
[CrossRef] [PubMed]

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, "Quantitative Optical Trapping of Single Gold Nanorods," Nano. Lett. 8,2998-3003 (2008).
[CrossRef] [PubMed]

T. M. Hansen, S. N. S. Reihani, L. B. Oddershede, and M. A. Sørensen, "Correction between mechanical strength of messenger RNA pseudoknots and ribosomal frame-shifting," PNAS 104,5830-5835 (2007).
[CrossRef] [PubMed]

S. N. S. Reihani and L. B. Oddershede, "Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations," Opt. Lett. 32,1998-2000 (2007).
[CrossRef] [PubMed]

Peng, X. H.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie "In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags," Nat. Biotechnol. 26,83-90 (2008).
[CrossRef]

Perkins, T. T.

Qian, X.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie "In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags," Nat. Biotechnol. 26,83-90 (2008).
[CrossRef]

Quidant, R.

Reihani, S. N. S.

Reihani, S.N.S.

S.N.S. Reihani, H.R. Khalesifard, and R. Golestanian, "Measuring lateral efficiency of optical traps: The effect of tube length," Opt. Commun. 259,204-211 (2006).
[CrossRef]

Rice, S. A.

B. Lin, J. Yu, and S. A. Rice, "Direct measurements of constrained Brownian motion of an isolated sphere between two walls," Phys. Rev. E 62,3909-3919 (2000).
[CrossRef]

Rohrbach, A.

A. Rohrbach, "Stiffness of Optical Traps: Quantitative Agreement between Experiment and Electromagnetic Theory," Phys. Rev. Lett. 95,168102 (2005).
[CrossRef] [PubMed]

Saija, R.

Schmidt, C. F.

Schubert, O.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, "Quantitative Optical Trapping of Single Gold Nanorods," Nano. Lett. 8,2998-3003 (2008).
[CrossRef] [PubMed]

Selhuber-Unkel, C.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, "Quantitative Optical Trapping of Single Gold Nanorods," Nano. Lett. 8,2998-3003 (2008).
[CrossRef] [PubMed]

Seol, Y.

Shin, D. M.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie "In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags," Nat. Biotechnol. 26,83-90 (2008).
[CrossRef]

Smith, S. B.

C. Bustamante, Z. Bryant, and S. B. Smith, "Ten years of tension: single-molecule DNA mechanics," Nature (London) 421,423-427 (2003).
[CrossRef]

Sönnichsen, C.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, "Quantitative Optical Trapping of Single Gold Nanorods," Nano. Lett. 8,2998-3003 (2008).
[CrossRef] [PubMed]

Sørensen, K. B.

P. M. Hansen, I. M. Tolić-Nørrelykke, H. Flyvbjerg, and K. B. Sørensen, "tweezercalib 2.0: Faster version of MatLab package for precise calibration of optical tweezers," Comput. Phys. Commun 174,518-520 (2006).
[CrossRef]

Sørensen, M. A.

T. M. Hansen, S. N. S. Reihani, L. B. Oddershede, and M. A. Sørensen, "Correction between mechanical strength of messenger RNA pseudoknots and ribosomal frame-shifting," PNAS 104,5830-5835 (2007).
[CrossRef] [PubMed]

Sugiyama, M.

S. Inasava, M. Sugiyama, and Y. Yamaguchi, "Laser-Induced shape transformation of gold nanoparticles below the melting point: The effect of surface melting," J. Phys. Chem. B. 109,3104-3111 (2005).
[CrossRef]

Svoboda, K.

Tolic-Nørrelykke, I. M.

P. M. Hansen, I. M. Tolić-Nørrelykke, H. Flyvbjerg, and K. B. Sørensen, "tweezercalib 2.0: Faster version of MatLab package for precise calibration of optical tweezers," Comput. Phys. Commun 174,518-520 (2006).
[CrossRef]

Wang, M. D.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie "In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags," Nat. Biotechnol. 26,83-90 (2008).
[CrossRef]

Yamaguchi, I.

Yamaguchi, Y.

S. Inasava, M. Sugiyama, and Y. Yamaguchi, "Laser-Induced shape transformation of gold nanoparticles below the melting point: The effect of surface melting," J. Phys. Chem. B. 109,3104-3111 (2005).
[CrossRef]

Yang, L.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie "In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags," Nat. Biotechnol. 26,83-90 (2008).
[CrossRef]

Yin-Goen, Q.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie "In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags," Nat. Biotechnol. 26,83-90 (2008).
[CrossRef]

Young, A. N.

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie "In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags," Nat. Biotechnol. 26,83-90 (2008).
[CrossRef]

Yu, J.

B. Lin, J. Yu, and S. A. Rice, "Direct measurements of constrained Brownian motion of an isolated sphere between two walls," Phys. Rev. E 62,3909-3919 (2000).
[CrossRef]

Zelenina, A. S.

Zhang, J.

J. Zhang, J. Du, B. Han, Z. Liu, T. Jiang, and Z. Zhang, "Sonochemical formation of single-crystalline gold nanobelts," Angew. Chem. Int. Ed. 45,1116-1119 (2006).
[CrossRef]

Zhang, Z.

J. Zhang, J. Du, B. Han, Z. Liu, T. Jiang, and Z. Zhang, "Sonochemical formation of single-crystalline gold nanobelts," Angew. Chem. Int. Ed. 45,1116-1119 (2006).
[CrossRef]

Zins, I.

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, "Quantitative Optical Trapping of Single Gold Nanorods," Nano. Lett. 8,2998-3003 (2008).
[CrossRef] [PubMed]

Zubarev, E. R.

J. D. Gibson, B. P. Khanal, and E. R. Zubarev, "Paclitaxel-Functionalized Gold Nanoparticles," J. Am. Chem. Soc. 129,11653-11661 (2007).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. (1)

J. Zhang, J. Du, B. Han, Z. Liu, T. Jiang, and Z. Zhang, "Sonochemical formation of single-crystalline gold nanobelts," Angew. Chem. Int. Ed. 45,1116-1119 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

W. L. Leong, P. S. Lee, S. G. Mhaisalkar, T. P. Chen, and A. Dodabalapur, "Charging phenomena in pentacenegold nanoparticle memory device," Appl. Phys. Lett. 90,042906 (2007).
[CrossRef]

Comput. Phys. Commun (1)

P. M. Hansen, I. M. Tolić-Nørrelykke, H. Flyvbjerg, and K. B. Sørensen, "tweezercalib 2.0: Faster version of MatLab package for precise calibration of optical tweezers," Comput. Phys. Commun 174,518-520 (2006).
[CrossRef]

J. Am. Chem. Soc. (1)

J. D. Gibson, B. P. Khanal, and E. R. Zubarev, "Paclitaxel-Functionalized Gold Nanoparticles," J. Am. Chem. Soc. 129,11653-11661 (2007).
[CrossRef] [PubMed]

J. Phys. Chem. B. (1)

S. Inasava, M. Sugiyama, and Y. Yamaguchi, "Laser-Induced shape transformation of gold nanoparticles below the melting point: The effect of surface melting," J. Phys. Chem. B. 109,3104-3111 (2005).
[CrossRef]

Nano. Lett. (3)

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, "Expanding the optical trapping range of gold nanoparticles," Nano. Lett. 5,1937-1942 (2005).
[CrossRef] [PubMed]

L. Bosanac, T. Aabo, P. M. Bendix, and L. B. Oddershede, "Efficient optical trapping and visualization of silver nanoparticles," Nano. Lett. 8,1486-1491 (2008).
[CrossRef] [PubMed]

C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sönnichsen, and L. B. Oddershede, "Quantitative Optical Trapping of Single Gold Nanorods," Nano. Lett. 8,2998-3003 (2008).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

X. Qian, X. H. Peng, D. O. Ansari, Q. Yin-Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie "In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags," Nat. Biotechnol. 26,83-90 (2008).
[CrossRef]

Nature (London) (1)

C. Bustamante, Z. Bryant, and S. B. Smith, "Ten years of tension: single-molecule DNA mechanics," Nature (London) 421,423-427 (2003).
[CrossRef]

Opt. Commun. (1)

S.N.S. Reihani, H.R. Khalesifard, and R. Golestanian, "Measuring lateral efficiency of optical traps: The effect of tube length," Opt. Commun. 259,204-211 (2006).
[CrossRef]

Opt. Express (1)

Opt. Lett. (8)

Phys. Rev. E (1)

B. Lin, J. Yu, and S. A. Rice, "Direct measurements of constrained Brownian motion of an isolated sphere between two walls," Phys. Rev. E 62,3909-3919 (2000).
[CrossRef]

Phys. Rev. Lett. (1)

A. Rohrbach, "Stiffness of Optical Traps: Quantitative Agreement between Experiment and Electromagnetic Theory," Phys. Rev. Lett. 95,168102 (2005).
[CrossRef] [PubMed]

PNAS (1)

T. M. Hansen, S. N. S. Reihani, L. B. Oddershede, and M. A. Sørensen, "Correction between mechanical strength of messenger RNA pseudoknots and ribosomal frame-shifting," PNAS 104,5830-5835 (2007).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

K. Berg-Sørensen, H. Flyvbjerg, "Power spectrum analysis for optical tweezers," Rev. Sci. Instrum. 75,594-612 (2004).
[CrossRef]

Science (1)

A. Ashkin, and J. M. Dzeiedzic, "Optical trapping and manipulation of viruses and bacteria," Science 235,1517-1520 (1987).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1. a)
Fig. 1. a)

Typical power spectrum and histogram (inset) for 97nm (Green circles), 194.4nm (Blue squares), and 254nm (Red triangles) gold nanoparticles. b) Power spectrum of single (blue squares) and double (red triangles) 149.4nm trapped gold particles, as well as an empty trap (Green circles). Inset: typical change in the standard deviation of the signal when the first, second, third and forth 100nm gold sphere defuses into the trap. The laser power was (a)30mW and (b)50mW at the sample.

Fig. 2.
Fig. 2.

Normalized spring constant (κ/power at the sample) in the lateral directions as a function of the radius of the gold spheres. The vertical error bars show the standard deviations of the measured values while the horizontal error bars show the size standard deviations, according to the company’s report. The red dashed (blue dotted) lines show power-law fit (aα ) to the data points with radii smaller (bigger) than 50nm with results of α=2.68±0.08 and α=2.68±0.07 (α=1.92±0.07 and α=2.13±0.11) for X and Y directions. The inset-a shows that the trap was weaker in the polarization direction for all particle sizes. The black solid and red dashed lines in inset-b show fit to Rayleigh corrected volume (equation 2).

Fig. 3.
Fig. 3.

Optical potential well in x (polarization) direction obtained by Boltzmann statistics. The laser power was 415mW, 370mW, and 210mW at the sample for 9.5nm, 15.6nm and 31.4nm gold particles, respectively. The full lines represent harmonic fit to the data points.

Fig. 4. a)
Fig. 4. a)

A typical power spectrum graph of a 194.4nm trapped gold sphere. Solid Green line represents the modified Lorentzian fit. b)A typical histogram of the positional signal for a 194.4nm GNP while moving the stage in a periodic triangular manner. The solid line shows fit to double-Gaussian function. c)The optical potential well obtained by drag force method for a typical 253nm (red squares) and a 194.4nm (blue circles) gold particles. Red dash line (blue solid line) represents parabolic fit to the data giving rise to κdf =18.0±0.2 fN/nm (κdf =13.9±0.4 fN/nm). The laser power was 35 mW (50 mW) at sample. d) Force-Displacement graph for same gold particles. Linear fit to data with results of κdf =17.7±0.7 fN/nm (κdf =13.8±0.1 fN/nm) for 253nm (194.4nm) GNPs.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

p ( f ) = k B T 2 π 2 γ ( f 2 + f c 2 ) = D SI 2 π 2 ( f 2 + f c 2 ) ,
F grad = 3 2 ε ̂ ε m ε ̂ + 2 ε m < E 2 > V ' = A { a 2 2 + 2 δ 2 [ 1 exp ( a / δ ) ] } ,

Metrics