Abstract

We have fabricated optical waveguides inside the UV-transparent polymer, CYTOP, by femtosecond laser direct writing for propagating UV light in biochip applications. Femtosecond laser irradiation is estimated to increase the refractive index of CYTOP by 1.7 × 10−3 due to partial bond breaking in CYTOP. The waveguide in CYTOP has propagation losses of 0.49, 0.77, and 0.91 dB/cm at wavelengths of 632.8, 355, and 266 nm, respectively.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-Dimensional Waveguides Fabricated in Poly(methyl methacrylate),” Jpn. J. Appl. Phys. 45(29), L765–L767 (2006).
    [CrossRef]
  2. C. R. Mendonca, L. R. Cerami, T. Shih, R. W. Tilghman, T. Baldacchini, and E. Mazur, “Femtosecond laser waveguide micromachining of PMMA films with azoaromatic chromophores,” Opt. Express 16(1), 200–206 (2008).
    [CrossRef] [PubMed]
  3. S. O. Konorov, A. B. Fedotov, and A. M. Zheltikov, “Three dimensional reversible laser micromachining with subnanojoule femtosecond pulses based on two-photon photochromism,” Appl. Phys. B 76, 707 (2003).
  4. R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
    [CrossRef] [PubMed]
  5. P. Schulze, M. Ludwig, F. Kohler, and D. Belder, “Deep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis,” Anal. Chem. 77(5), 1325–1329 (2005).
    [CrossRef] [PubMed]
  6. H. M. Verkade, T. Teli, L. V. Laursen, J. M. Murray, and M. J. O’Connell, “A homologue of the Rad18 postreplication repair gene is required for DNA damage responses throughout the fission yeast cell cycle,” Mol. Gen. Genet. 265, 993 (2001).
  7. See http://www.agc.co.jp/english/chemicals/shinsei/cytop/cytop.htm
  8. C. Anolick, J. A. Hrivnak, and R. C. Wheland, “Soluble Perfluoropolymers,” Adv. Mater. 10(15), 1211–1214 (1998).
    [CrossRef]
  9. Y. Hanada, K. Sugioka, and K. Midorikawa, “Selective cell culture on UV transparent polymer by F2 laser surface modification,” Appl. Surf. Sci. 255(24), 9885–9888 (2009).
    [CrossRef]
  10. K. Obata, K. Sugioka, N. Shimazawa, and K. Midorikawa, “Fabrication of microchip based on UV transparent polymer for DNA electrophoresis by F2 laser ablation,” Appl. Phys., A Mater. Sci. Process. 84(3), 251–255 (2006).
    [CrossRef]
  11. K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional microcmachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys., A Mater. Sci. Process. 81(1), 1–10 (2005).
    [CrossRef]
  12. Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett. 28(1), 55–57 (2003).
    [CrossRef] [PubMed]
  13. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, “Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses,” Opt. Lett. 24(18), 1311–1313 (1999).
    [CrossRef]
  14. S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006).
    [CrossRef] [PubMed]

2009 (2)

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Y. Hanada, K. Sugioka, and K. Midorikawa, “Selective cell culture on UV transparent polymer by F2 laser surface modification,” Appl. Surf. Sci. 255(24), 9885–9888 (2009).
[CrossRef]

2008 (1)

2006 (3)

W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-Dimensional Waveguides Fabricated in Poly(methyl methacrylate),” Jpn. J. Appl. Phys. 45(29), L765–L767 (2006).
[CrossRef]

S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006).
[CrossRef] [PubMed]

K. Obata, K. Sugioka, N. Shimazawa, and K. Midorikawa, “Fabrication of microchip based on UV transparent polymer for DNA electrophoresis by F2 laser ablation,” Appl. Phys., A Mater. Sci. Process. 84(3), 251–255 (2006).
[CrossRef]

2005 (2)

K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional microcmachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys., A Mater. Sci. Process. 81(1), 1–10 (2005).
[CrossRef]

P. Schulze, M. Ludwig, F. Kohler, and D. Belder, “Deep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis,” Anal. Chem. 77(5), 1325–1329 (2005).
[CrossRef] [PubMed]

2003 (2)

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett. 28(1), 55–57 (2003).
[CrossRef] [PubMed]

S. O. Konorov, A. B. Fedotov, and A. M. Zheltikov, “Three dimensional reversible laser micromachining with subnanojoule femtosecond pulses based on two-photon photochromism,” Appl. Phys. B 76, 707 (2003).

2001 (1)

H. M. Verkade, T. Teli, L. V. Laursen, J. M. Murray, and M. J. O’Connell, “A homologue of the Rad18 postreplication repair gene is required for DNA damage responses throughout the fission yeast cell cycle,” Mol. Gen. Genet. 265, 993 (2001).

1999 (1)

1998 (1)

C. Anolick, J. A. Hrivnak, and R. C. Wheland, “Soluble Perfluoropolymers,” Adv. Mater. 10(15), 1211–1214 (1998).
[CrossRef]

Anolick, C.

C. Anolick, J. A. Hrivnak, and R. C. Wheland, “Soluble Perfluoropolymers,” Adv. Mater. 10(15), 1211–1214 (1998).
[CrossRef]

Baldacchini, T.

Belder, D.

P. Schulze, M. Ludwig, F. Kohler, and D. Belder, “Deep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis,” Anal. Chem. 77(5), 1325–1329 (2005).
[CrossRef] [PubMed]

Borrelli, N. F.

Cerami, L. R.

Cerullo, G.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Cheng, Y.

K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional microcmachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys., A Mater. Sci. Process. 81(1), 1–10 (2005).
[CrossRef]

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett. 28(1), 55–57 (2003).
[CrossRef] [PubMed]

Dongre, C.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Fedotov, A. B.

S. O. Konorov, A. B. Fedotov, and A. M. Zheltikov, “Three dimensional reversible laser micromachining with subnanojoule femtosecond pulses based on two-photon photochromism,” Appl. Phys. B 76, 707 (2003).

Gaeta, A. L.

Hanada, Y.

Y. Hanada, K. Sugioka, and K. Midorikawa, “Selective cell culture on UV transparent polymer by F2 laser surface modification,” Appl. Surf. Sci. 255(24), 9885–9888 (2009).
[CrossRef]

Homoelle, D.

Hrivnak, J. A.

C. Anolick, J. A. Hrivnak, and R. C. Wheland, “Soluble Perfluoropolymers,” Adv. Mater. 10(15), 1211–1214 (1998).
[CrossRef]

Itoh, K.

W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-Dimensional Waveguides Fabricated in Poly(methyl methacrylate),” Jpn. J. Appl. Phys. 45(29), L765–L767 (2006).
[CrossRef]

S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006).
[CrossRef] [PubMed]

Kawachi, M.

Kohler, F.

P. Schulze, M. Ludwig, F. Kohler, and D. Belder, “Deep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis,” Anal. Chem. 77(5), 1325–1329 (2005).
[CrossRef] [PubMed]

Konorov, S. O.

S. O. Konorov, A. B. Fedotov, and A. M. Zheltikov, “Three dimensional reversible laser micromachining with subnanojoule femtosecond pulses based on two-photon photochromism,” Appl. Phys. B 76, 707 (2003).

Laursen, L. V.

H. M. Verkade, T. Teli, L. V. Laursen, J. M. Murray, and M. J. O’Connell, “A homologue of the Rad18 postreplication repair gene is required for DNA damage responses throughout the fission yeast cell cycle,” Mol. Gen. Genet. 265, 993 (2001).

Ludwig, M.

P. Schulze, M. Ludwig, F. Kohler, and D. Belder, “Deep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis,” Anal. Chem. 77(5), 1325–1329 (2005).
[CrossRef] [PubMed]

Masuda, M.

Mazur, E.

Mendonca, C. R.

Midorikawa, K.

Y. Hanada, K. Sugioka, and K. Midorikawa, “Selective cell culture on UV transparent polymer by F2 laser surface modification,” Appl. Surf. Sci. 255(24), 9885–9888 (2009).
[CrossRef]

K. Obata, K. Sugioka, N. Shimazawa, and K. Midorikawa, “Fabrication of microchip based on UV transparent polymer for DNA electrophoresis by F2 laser ablation,” Appl. Phys., A Mater. Sci. Process. 84(3), 251–255 (2006).
[CrossRef]

K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional microcmachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys., A Mater. Sci. Process. 81(1), 1–10 (2005).
[CrossRef]

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett. 28(1), 55–57 (2003).
[CrossRef] [PubMed]

Murray, J. M.

H. M. Verkade, T. Teli, L. V. Laursen, J. M. Murray, and M. J. O’Connell, “A homologue of the Rad18 postreplication repair gene is required for DNA damage responses throughout the fission yeast cell cycle,” Mol. Gen. Genet. 265, 993 (2001).

Nishii, J.

W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-Dimensional Waveguides Fabricated in Poly(methyl methacrylate),” Jpn. J. Appl. Phys. 45(29), L765–L767 (2006).
[CrossRef]

S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006).
[CrossRef] [PubMed]

Nolli, D.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

O’Connell, M. J.

H. M. Verkade, T. Teli, L. V. Laursen, J. M. Murray, and M. J. O’Connell, “A homologue of the Rad18 postreplication repair gene is required for DNA damage responses throughout the fission yeast cell cycle,” Mol. Gen. Genet. 265, 993 (2001).

Obata, K.

K. Obata, K. Sugioka, N. Shimazawa, and K. Midorikawa, “Fabrication of microchip based on UV transparent polymer for DNA electrophoresis by F2 laser ablation,” Appl. Phys., A Mater. Sci. Process. 84(3), 251–255 (2006).
[CrossRef]

Osellame, R.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Pollnau, M.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Ramponi, R.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Schulze, P.

P. Schulze, M. Ludwig, F. Kohler, and D. Belder, “Deep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis,” Anal. Chem. 77(5), 1325–1329 (2005).
[CrossRef] [PubMed]

Shih, T.

Shihoyama, K.

Shimazawa, N.

K. Obata, K. Sugioka, N. Shimazawa, and K. Midorikawa, “Fabrication of microchip based on UV transparent polymer for DNA electrophoresis by F2 laser ablation,” Appl. Phys., A Mater. Sci. Process. 84(3), 251–255 (2006).
[CrossRef]

Smith, C.

Sowa, S.

S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006).
[CrossRef] [PubMed]

W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-Dimensional Waveguides Fabricated in Poly(methyl methacrylate),” Jpn. J. Appl. Phys. 45(29), L765–L767 (2006).
[CrossRef]

Sugioka, K.

Y. Hanada, K. Sugioka, and K. Midorikawa, “Selective cell culture on UV transparent polymer by F2 laser surface modification,” Appl. Surf. Sci. 255(24), 9885–9888 (2009).
[CrossRef]

K. Obata, K. Sugioka, N. Shimazawa, and K. Midorikawa, “Fabrication of microchip based on UV transparent polymer for DNA electrophoresis by F2 laser ablation,” Appl. Phys., A Mater. Sci. Process. 84(3), 251–255 (2006).
[CrossRef]

K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional microcmachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys., A Mater. Sci. Process. 81(1), 1–10 (2005).
[CrossRef]

Y. Cheng, K. Sugioka, K. Midorikawa, M. Masuda, K. Toyoda, M. Kawachi, and K. Shihoyama, “Control of the cross-sectional shape of a hollow microchannel embedded in photostructurable glass by use of a femtosecond laser,” Opt. Lett. 28(1), 55–57 (2003).
[CrossRef] [PubMed]

Tamaki, T.

S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006).
[CrossRef] [PubMed]

W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-Dimensional Waveguides Fabricated in Poly(methyl methacrylate),” Jpn. J. Appl. Phys. 45(29), L765–L767 (2006).
[CrossRef]

Teli, T.

H. M. Verkade, T. Teli, L. V. Laursen, J. M. Murray, and M. J. O’Connell, “A homologue of the Rad18 postreplication repair gene is required for DNA damage responses throughout the fission yeast cell cycle,” Mol. Gen. Genet. 265, 993 (2001).

Tilghman, R. W.

Toyoda, K.

van den Vlekkert, H.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Vazquez, R. M.

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Verkade, H. M.

H. M. Verkade, T. Teli, L. V. Laursen, J. M. Murray, and M. J. O’Connell, “A homologue of the Rad18 postreplication repair gene is required for DNA damage responses throughout the fission yeast cell cycle,” Mol. Gen. Genet. 265, 993 (2001).

Watanabe, W.

W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-Dimensional Waveguides Fabricated in Poly(methyl methacrylate),” Jpn. J. Appl. Phys. 45(29), L765–L767 (2006).
[CrossRef]

S. Sowa, W. Watanabe, T. Tamaki, J. Nishii, and K. Itoh, “Symmetric waveguides in poly(methyl methacrylate) fabricated by femtosecond laser pulses,” Opt. Express 14(1), 291–297 (2006).
[CrossRef] [PubMed]

Wheland, R. C.

C. Anolick, J. A. Hrivnak, and R. C. Wheland, “Soluble Perfluoropolymers,” Adv. Mater. 10(15), 1211–1214 (1998).
[CrossRef]

Wielandy, S.

Zheltikov, A. M.

S. O. Konorov, A. B. Fedotov, and A. M. Zheltikov, “Three dimensional reversible laser micromachining with subnanojoule femtosecond pulses based on two-photon photochromism,” Appl. Phys. B 76, 707 (2003).

Adv. Mater. (1)

C. Anolick, J. A. Hrivnak, and R. C. Wheland, “Soluble Perfluoropolymers,” Adv. Mater. 10(15), 1211–1214 (1998).
[CrossRef]

Anal. Chem. (1)

P. Schulze, M. Ludwig, F. Kohler, and D. Belder, “Deep UV laser-induced fluorescence detection of unlabeled drugs and proteins in microchip electrophoresis,” Anal. Chem. 77(5), 1325–1329 (2005).
[CrossRef] [PubMed]

Appl. Phys. B (1)

S. O. Konorov, A. B. Fedotov, and A. M. Zheltikov, “Three dimensional reversible laser micromachining with subnanojoule femtosecond pulses based on two-photon photochromism,” Appl. Phys. B 76, 707 (2003).

Appl. Phys., A Mater. Sci. Process. (2)

K. Obata, K. Sugioka, N. Shimazawa, and K. Midorikawa, “Fabrication of microchip based on UV transparent polymer for DNA electrophoresis by F2 laser ablation,” Appl. Phys., A Mater. Sci. Process. 84(3), 251–255 (2006).
[CrossRef]

K. Sugioka, Y. Cheng, and K. Midorikawa, “Three-dimensional microcmachining of glass using femtosecond laser for lab-on-a-chip device manufacture,” Appl. Phys., A Mater. Sci. Process. 81(1), 1–10 (2005).
[CrossRef]

Appl. Surf. Sci. (1)

Y. Hanada, K. Sugioka, and K. Midorikawa, “Selective cell culture on UV transparent polymer by F2 laser surface modification,” Appl. Surf. Sci. 255(24), 9885–9888 (2009).
[CrossRef]

Jpn. J. Appl. Phys. (1)

W. Watanabe, S. Sowa, T. Tamaki, K. Itoh, and J. Nishii, “Three-Dimensional Waveguides Fabricated in Poly(methyl methacrylate),” Jpn. J. Appl. Phys. 45(29), L765–L767 (2006).
[CrossRef]

Lab Chip (1)

R. M. Vazquez, R. Osellame, D. Nolli, C. Dongre, H. van den Vlekkert, R. Ramponi, M. Pollnau, and G. Cerullo, “Integration of femtosecond laser written optical waveguides in a lab-on-chip,” Lab Chip 9(1), 91–96 (2009).
[CrossRef] [PubMed]

Mol. Gen. Genet. (1)

H. M. Verkade, T. Teli, L. V. Laursen, J. M. Murray, and M. J. O’Connell, “A homologue of the Rad18 postreplication repair gene is required for DNA damage responses throughout the fission yeast cell cycle,” Mol. Gen. Genet. 265, 993 (2001).

Opt. Express (2)

Opt. Lett. (2)

Other (1)

See http://www.agc.co.jp/english/chemicals/shinsei/cytop/cytop.htm

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Cross-sectional optical microscope images of waveguides written in CYTOP by femtosecond laser irradiation at (a) various laser pulse energies with a laser scanning speed of 1500 µm/s and (b) various laser scanning speeds with a laser pulse energy of 0.9 µJ/pulse.

Fig. 2
Fig. 2

(a) Near-field pattern of He-Ne laser beam transmitted by a waveguide and (b) its intensity distribution.

Fig. 3
Fig. 3

Linear fit of optical loss data for different length waveguides at wavelengths of (a) 632.8, (b) 355, and (c) 266 nm.

Fig. 4
Fig. 4

(a) Chemical bonding structure of unirradiated CYTOP. C1s XPS spectra of (b) unirradiated and (c) irradiated CYTOP.

Metrics