Abstract

A full range spectral domain optical coherence tomography (SD-OCT) technique that relies on the linear phase modulation of one of the interferometer arms has been widely utilized. Although this method is useful, the mirror image elimination is not perfect for samples in which regions with high axial motion exist. In this paper, we introduce a new modulation pattern to overcome this mirror image elimination failure. This new modulation is a parabolic phase modulation in the transverse scanning direction, and is applied to the SD-OCT reference beam by an electro-optic modulator. Flow phantom and in vivo experiments demonstrate that for moving structures with large velocities, this parabolic phase modulation technique presents better mirror image elimination than a standard linear phase modulation method. A direct consequence of this enhanced mirror image removal is an improved velocity range obtained with phase-resolved Doppler imaging. Consequently, applying the proposed technique in retinal blood flow measurements may be useful for ophthalmologic diagnosis.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 117881, (1991).
    [CrossRef]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-8, (1995).
    [CrossRef]
  3. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11(8), 889-894 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-11-8-889.
    [CrossRef] [PubMed]
  4. R. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett. 29(2), 171-173 (2004), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-29-2-171.
    [CrossRef] [PubMed]
  5. B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13(14), 5483-5493 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-14-5483
    [CrossRef] [PubMed]
  6. R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, "Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels," Opt. Lett. 33(24), 2967-2969 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-24-2967.
    [CrossRef] [PubMed]
  7. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography," Opt. Lett. 27(20), 1803-1805 (2002), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-27-20-1803.
    [CrossRef]
  8. E. Götzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express 13(25), 10217-10229 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-25-10217.
    [CrossRef] [PubMed]
  9. M. Pircher, E. Gotzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. K. Hitzenberger, "Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT," Opt. Express 12(24), 5940-5951 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5940.
    [CrossRef] [PubMed]
  10. M. Yamanari, S. Makita, D.V. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-Based Polarization-Sensitive Fourier Domain Optical Coherence Tomography using B-Scan-Oriented Polarization Modulation Method," Opt. Express 14(14), 6502-6515 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-14-6502.
    [CrossRef] [PubMed]
  11. C. Lu, C. Lee, M. Tsai, Y. Wang, and C. C. Yang, "Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography," Opt. Lett. 33(5), 416-418 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-5-416.
    [CrossRef] [PubMed]
  12. A. Bachmann, R. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14(4), 1487-1496 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-4-1487.
    [CrossRef] [PubMed]
  13. B. Vakoc, S. Yun, G. Tearney, and B. Bouma, "Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation," Opt. Lett. 31(3), 362-364 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-3-362.
    [CrossRef] [PubMed]
  14. M. A. Choma, C. Yang, and J. A. Izatt, "Instantaneous quadrature low-coherence interferometry with 3×3 fiber optic couplers," Opt. Lett. 28(22), 2162-2164 (2003), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-28-22-2162.
    [CrossRef] [PubMed]
  15. M. V. Sarunic, B. E. Applegate, and J. A. Izatt, "Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography," Opt. Lett. 31(16), 2426-2428 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-16-2426.
    [CrossRef] [PubMed]
  16. A. Vakhtin, K. Peterson, and D. Kane, "Resolving the complex conjugate ambiguity in Fourier-domain OCT by harmonic lock-in detection of the spectral interferogram," Opt. Lett. 31(9), 1271-1273 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-9-1271.
    [CrossRef] [PubMed]
  17. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27(16), 1415-1417 (2002), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-27-16-1415.
    [CrossRef]
  18. R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, "Phase-shifting algorithm to achieve high speed long-depth-range probing by frequency-domain optical coherence tomography," Opt. Lett. 28(22), 2201-2203 (2003), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-28-22-2201.
    [CrossRef] [PubMed]
  19. Y. K. Tao, M. Zhao, and J. A. Izatt, "High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation," Opt. Lett. 32(20), 2918-2920 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-20-2918.
    [CrossRef] [PubMed]
  20. R. K. Wang, "In vivo full range complex Fourier domain optical coherence tomography," Appl. Phys. Lett. 90(5), 054103 (2007).
    [CrossRef]
  21. E. Götzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, "High speed full range complex spectral domain optical coherence tomography," Opt. Express 13(2), 583-594 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-2-583.
    [CrossRef] [PubMed]
  22. Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, "Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography," Appl. Opt. 45(8), 1861-1865 (2006), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-8-1861.
    [CrossRef] [PubMed]
  23. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, "Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography," Opt. Express 16(9), 6008-6025 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-9-6008.
    [CrossRef] [PubMed]
  24. M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, "Flow velocity estimation by complex ambiguity free joint Spectral and Time domain Optical Coherence Tomography," Opt. Express 17(16), 14281-14297 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-16-14281.
    [CrossRef] [PubMed]
  25. B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15(20), 13375-13387 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-20-13375.
    [CrossRef] [PubMed]
  26. R. A. Leitgeb, R, Michaely, T, Lasser, and S. Chandra Sekhar, "Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning," Opt. Lett. 32(23), 3453-3455 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-23-3453.
    [CrossRef] [PubMed]
  27. S. Makita, T. Fabritius and Y. Yasuno, "Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye," Opt. Express 16(12), 8406-8420, (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-12-8406.
    [CrossRef] [PubMed]
  28. Y. K. Tao, K. M. Kennedy, and J. A. Izatt, "Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography," Opt. Express 17 (5), 4177-4188 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-5-4177.
    [CrossRef] [PubMed]
  29. American National Standard Institute for the Safe Use of Lasers ANSI Z136.1-2000 (American National Standards institute, New York, 2000).

2009 (2)

2008 (4)

2007 (4)

2006 (6)

Y. Yasuno, S. Makita, T. Endo, G. Aoki, M. Itoh, and T. Yatagai, "Simultaneous B-M-mode scanning method for real-time full-range Fourier domain optical coherence tomography," Appl. Opt. 45(8), 1861-1865 (2006), http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-45-8-1861.
[CrossRef] [PubMed]

A. Bachmann, R. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14(4), 1487-1496 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-4-1487.
[CrossRef] [PubMed]

B. Vakoc, S. Yun, G. Tearney, and B. Bouma, "Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation," Opt. Lett. 31(3), 362-364 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-3-362.
[CrossRef] [PubMed]

M. Yamanari, S. Makita, D.V. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-Based Polarization-Sensitive Fourier Domain Optical Coherence Tomography using B-Scan-Oriented Polarization Modulation Method," Opt. Express 14(14), 6502-6515 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-14-6502.
[CrossRef] [PubMed]

M. V. Sarunic, B. E. Applegate, and J. A. Izatt, "Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography," Opt. Lett. 31(16), 2426-2428 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-16-2426.
[CrossRef] [PubMed]

A. Vakhtin, K. Peterson, and D. Kane, "Resolving the complex conjugate ambiguity in Fourier-domain OCT by harmonic lock-in detection of the spectral interferogram," Opt. Lett. 31(9), 1271-1273 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-9-1271.
[CrossRef] [PubMed]

2005 (3)

2004 (2)

2003 (3)

2002 (2)

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-8, (1995).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 117881, (1991).
[CrossRef]

Aoki, G.

Applegate, B. E.

Bachmann, A.

Bajraszewski, T.

Baumann, B.

Berisha, F.

Bouma, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 117881, (1991).
[CrossRef]

Choma, M. A.

de Boer, J.

Dragostinoff, N.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-8, (1995).
[CrossRef]

Endo, T.

Fabritius, T.

Fercher, A.

Fercher, A. F.

Findl, O.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 117881, (1991).
[CrossRef]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 117881, (1991).
[CrossRef]

Gotzinger, E.

Götzinger, E.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 117881, (1991).
[CrossRef]

Grulkowski, I.

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 117881, (1991).
[CrossRef]

Hitzenberger, C. K.

R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, "Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels," Opt. Lett. 33(24), 2967-2969 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-24-2967.
[CrossRef] [PubMed]

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15(20), 13375-13387 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-20-13375.
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, "High speed full range complex spectral domain optical coherence tomography," Opt. Express 13(2), 583-594 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-2-583.
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express 13(25), 10217-10229 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-25-10217.
[CrossRef] [PubMed]

M. Pircher, E. Gotzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. K. Hitzenberger, "Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT," Opt. Express 12(24), 5940-5951 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5940.
[CrossRef] [PubMed]

R. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett. 29(2), 171-173 (2004), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-29-2-171.
[CrossRef] [PubMed]

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11(8), 889-894 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-11-8-889.
[CrossRef] [PubMed]

R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, "Phase-shifting algorithm to achieve high speed long-depth-range probing by frequency-domain optical coherence tomography," Opt. Lett. 28(22), 2201-2203 (2003), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-28-22-2201.
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-8, (1995).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 117881, (1991).
[CrossRef]

Itoh, M.

Izatt, J. A.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-8, (1995).
[CrossRef]

Kane, D.

Kennedy, K. M.

Kowalczyk, A.

Lasser, T.

Lee, C.

Leitgeb, R.

Leitgeb, R. A.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 117881, (1991).
[CrossRef]

Lu, C.

Madjarova, D.V.

Makita, S.

Peterson, K.

Pircher, M.

R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, "Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels," Opt. Lett. 33(24), 2967-2969 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-24-2967.
[CrossRef] [PubMed]

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15(20), 13375-13387 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-20-13375.
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, "High speed full range complex spectral domain optical coherence tomography," Opt. Express 13(2), 583-594 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-2-583.
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express 13(25), 10217-10229 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-25-10217.
[CrossRef] [PubMed]

M. Pircher, E. Gotzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. K. Hitzenberger, "Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT," Opt. Express 12(24), 5940-5951 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5940.
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 117881, (1991).
[CrossRef]

Sarunic, M. V.

Sattmann, H.

Schmetterer, L.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 117881, (1991).
[CrossRef]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 117881, (1991).
[CrossRef]

Sutoh, Y.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 117881, (1991).
[CrossRef]

Szkulmowska, A.

Szkulmowski, M.

Szlag, D.

Tao, Y. K.

Tearney, G.

Tsai, M.

Vakhtin, A.

Vakoc, B.

Wang, R. K.

R. K. Wang, "In vivo full range complex Fourier domain optical coherence tomography," Appl. Phys. Lett. 90(5), 054103 (2007).
[CrossRef]

Wang, Y.

Werkmeister, R. M.

Wojtkowski, M.

Yamanari, M.

Yang, C.

Yang, C. C.

Yasuno, Y.

Yatagai, T.

Yun, S.

Zhao, M.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. K. Wang, "In vivo full range complex Fourier domain optical coherence tomography," Appl. Phys. Lett. 90(5), 054103 (2007).
[CrossRef]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, "Measurement of intraocular distances by backscattering spectral interferometry," Opt. Commun. 117, 43-8, (1995).
[CrossRef]

Opt. Express (12)

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, "Performance of Fourier domain vs. time domain optical coherence tomography," Opt. Express 11(8), 889-894 (2003), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-11-8-889.
[CrossRef] [PubMed]

B. Vakoc, S. Yun, J. de Boer, G. Tearney, and B. Bouma, "Phase-resolved optical frequency domain imaging," Opt. Express 13(14), 5483-5493 (2005), http://www.opticsinfobase.org/abstract.cfm?URI=oe-13-14-5483
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, and C. K. Hitzenberger, "High speed spectral domain polarization sensitive optical coherence tomography of the human retina," Opt. Express 13(25), 10217-10229 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-25-10217.
[CrossRef] [PubMed]

M. Pircher, E. Gotzinger, R. Leitgeb, H. Sattmann, O. Findl, and C. K. Hitzenberger, "Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT," Opt. Express 12(24), 5940-5951 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-24-5940.
[CrossRef] [PubMed]

M. Yamanari, S. Makita, D.V. Madjarova, T. Yatagai, and Y. Yasuno, "Fiber-Based Polarization-Sensitive Fourier Domain Optical Coherence Tomography using B-Scan-Oriented Polarization Modulation Method," Opt. Express 14(14), 6502-6515 (2006), http://www.opticsinfobase.org/abstract.cfm?URI=oe-14-14-6502.
[CrossRef] [PubMed]

A. Bachmann, R. Leitgeb, and T. Lasser, "Heterodyne Fourier domain optical coherence tomography for full range probing with high axial resolution," Opt. Express 14(4), 1487-1496 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-4-1487.
[CrossRef] [PubMed]

E. Götzinger, M. Pircher, R. A. Leitgeb, and C. K. Hitzenberger, "High speed full range complex spectral domain optical coherence tomography," Opt. Express 13(2), 583-594 (2005), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-13-2-583.
[CrossRef] [PubMed]

S. Makita, T. Fabritius and Y. Yasuno, "Full-range, high-speed, high-resolution 1-μm spectral-domain optical coherence tomography using BM-scan for volumetric imaging of the human posterior eye," Opt. Express 16(12), 8406-8420, (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-12-8406.
[CrossRef] [PubMed]

Y. K. Tao, K. M. Kennedy, and J. A. Izatt, "Velocity-resolved 3D retinal microvessel imaging using single-pass flow imaging spectral domain optical coherence tomography," Opt. Express 17 (5), 4177-4188 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-5-4177.
[CrossRef] [PubMed]

M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, and M. Wojtkowski, "Flow velocity estimation using joint Spectral and Time domain Optical Coherence Tomography," Opt. Express 16(9), 6008-6025 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-16-9-6008.
[CrossRef] [PubMed]

M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, and M. Wojtkowski, "Flow velocity estimation by complex ambiguity free joint Spectral and Time domain Optical Coherence Tomography," Opt. Express 17(16), 14281-14297 (2009), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-17-16-14281.
[CrossRef] [PubMed]

B. Baumann, M. Pircher, E. Götzinger, and C. K. Hitzenberger, "Full range complex spectral domain optical coherence tomography without additional phase shifters," Opt. Express 15(20), 13375-13387 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-15-20-13375.
[CrossRef] [PubMed]

Opt. Lett. (12)

R. A. Leitgeb, R, Michaely, T, Lasser, and S. Chandra Sekhar, "Complex ambiguity-free Fourier domain optical coherence tomography through transverse scanning," Opt. Lett. 32(23), 3453-3455 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-23-3453.
[CrossRef] [PubMed]

B. Vakoc, S. Yun, G. Tearney, and B. Bouma, "Elimination of depth degeneracy in optical frequency-domain imaging through polarization-based optical demodulation," Opt. Lett. 31(3), 362-364 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-3-362.
[CrossRef] [PubMed]

M. A. Choma, C. Yang, and J. A. Izatt, "Instantaneous quadrature low-coherence interferometry with 3×3 fiber optic couplers," Opt. Lett. 28(22), 2162-2164 (2003), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-28-22-2162.
[CrossRef] [PubMed]

M. V. Sarunic, B. E. Applegate, and J. A. Izatt, "Real-time quadrature projection complex conjugate resolved Fourier domain optical coherence tomography," Opt. Lett. 31(16), 2426-2428 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-16-2426.
[CrossRef] [PubMed]

A. Vakhtin, K. Peterson, and D. Kane, "Resolving the complex conjugate ambiguity in Fourier-domain OCT by harmonic lock-in detection of the spectral interferogram," Opt. Lett. 31(9), 1271-1273 (2006), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-31-9-1271.
[CrossRef] [PubMed]

M. Wojtkowski, A. Kowalczyk, R. Leitgeb, and A. Fercher, "Full range complex spectral optical coherence tomography technique in eye imaging," Opt. Lett. 27(16), 1415-1417 (2002), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-27-16-1415.
[CrossRef]

R. A. Leitgeb, C. K. Hitzenberger, A. F. Fercher, and T. Bajraszewski, "Phase-shifting algorithm to achieve high speed long-depth-range probing by frequency-domain optical coherence tomography," Opt. Lett. 28(22), 2201-2203 (2003), http://www.opticsinfobase.org/ol/abstract.cfm?uri=ol-28-22-2201.
[CrossRef] [PubMed]

Y. K. Tao, M. Zhao, and J. A. Izatt, "High-speed complex conjugate resolved retinal spectral domain optical coherence tomography using sinusoidal phase modulation," Opt. Lett. 32(20), 2918-2920 (2007), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-32-20-2918.
[CrossRef] [PubMed]

C. Lu, C. Lee, M. Tsai, Y. Wang, and C. C. Yang, "Measurement of the hemoglobin oxygen saturation level with spectroscopic spectral-domain optical coherence tomography," Opt. Lett. 33(5), 416-418 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-5-416.
[CrossRef] [PubMed]

R. M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C. K. Hitzenberger, R. A. Leitgeb, and L. Schmetterer, "Bidirectional Doppler Fourier-domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels," Opt. Lett. 33(24), 2967-2969 (2008), http://www.opticsinfobase.org/abstract.cfm?URI=ol-33-24-2967.
[CrossRef] [PubMed]

Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, and T. Yatagai, "Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography," Opt. Lett. 27(20), 1803-1805 (2002), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-27-20-1803.
[CrossRef]

R. Leitgeb, L. Schmetterer, C. K. Hitzenberger, A. F. Fercher, F. Berisha, M. Wojtkowski, and T. Bajraszewski, "Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography," Opt. Lett. 29(2), 171-173 (2004), http://www.opticsinfobase.org/ol/abstract.cfm?URI=ol-29-2-171.
[CrossRef] [PubMed]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, "Optical coherence tomography," Science 254, 117881, (1991).
[CrossRef]

Other (1)

American National Standard Institute for the Safe Use of Lasers ANSI Z136.1-2000 (American National Standards institute, New York, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Diagram of the standard BM-scan method: (A) starting from the real spectra (wavenumber k, transverse position t = time), a Fourier transform (FT) along the t direction is carried out to (B) filter the shifted (by EOM) mirror signal (f is the reciprocal space of the transverse dimension t). Inverse Fourier transforms along f and FT along k give (C) the final mirror free image (Depth z, transverse position t).

Fig 2.
Fig 2.

Diagram of the parabolic BM-scan technique: (A) Acquired rescaled real spectra displayed as a function of wavenumber k and transverse position t. Discrete Fourier transform (FT) along k is applied to obtain (B) the complex image function of depth z and transverse position t. A new image (C) is computed by replacing the phase term, φm,n , of pixel (m, n) of the image (B) by φm,n -φ m-1, n. (D) A Fourier transform is carried out along the transverse direction, t, to remove the mirror signal in f space, as in the standard BM-scan method [27]. Finally the inverse Fourier transform (IFT) is computed to yield (E) the full range OCT image.

Fig. 3.
Fig. 3.

Experimental SD-OCT set up. (PC): polarization controller, (VND): variable neutral density filter, (P): polarizer, (EOM): electro-optic modulator, (CCD): coupled charge device camera. Three samples are measured: a loudspeaker surface, a flow phantom and a human eye.

Fig. 4.
Fig. 4.

OCT images for a given location of loudspeaker surface as a function of time for linear (a) and parabolic (b) phase modulation methods. The zero delay line is in the center of each image (dash-dotted line). Counter dispersion enlarges the spatial distribution of the imaginary image. (c) Normalized Spectrum as a function of temporal frequency obtained from (a). (d) Normalized Spectrum as a function of temporal frequency obtained from (b). Dashed curve is band pass filter. Spectra are obtained by taking the Fourier transform along horizontal lines, summed together and normalized by the maximum of this sum.

Fig. 5.
Fig. 5.

Extinction ratios (ER) of the loudspeaker surface signal for linear and parabolic phase modulations as a function of time. Dashed curve represents the loudspeaker surface motion for the linear phase modulation.

Fig. 6.
Fig. 6.

Retina intensity OCT images for the linear (a) and parabolic (b) BM-scan techniques. Corresponding phase-resolved Doppler images for linear (c) and parabolic (d) methods. An inverted gray color map was used. The solid arrow indicates the vessel position and the dashed arrow its mirror image. The vessel’s mirror image is not visible in the parabolic case. The dashed line is the zero delay line.

Fig. 7.
Fig. 7.

Measured axial velocity as a function of the expected axial velocity (from the syringe pump settings) for the linear (standard BM-scan) and parabolic phase modulation techniques. The solid line has a slope = 1. The dashed line represents the axial velocity limit due to the band-pass filter bandwidth in the case of the linear phase modulation technique.

Fig. 8.
Fig. 8.

OCT images acquired with (a) standard BM-scan technique and with (b) proposed technique. The flow phantom was made of a static sample (gelatin + milk) in which a glass capillary (inner diameter: 0.78 mm) was embedded. Intralipid (1%) solution flowed through it at a rate of 0.6 ml/min, with the maximal axial velocity ν = 6.1 mm/s. The central line is the zero delay line.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I k t = I 0 ( k ) { m R m + R R + 2 m R R R m cos [ 2 k ( z R z m ( t ) ) ] + m n R m R n cos [ 2 k ( z n ( t ) z m ( t ) ) ] }
z m ( t ) = z 0 + v z t + a z t 2
φ ( t ) = 2 k ( ( z 0 z R ) + ( v z + ε 2 k ) t + a z t 2 ) .
2 k v z + ε ,
φ ( t ) = 2 k [ ( z 0 z R ) + ν z t + ( ε 2 k + a z ) t 2 ] .
Γ m , n = A m , n exp ( i φ m , n ) .
Γ ˜ m , n = A m , n exp ( i ( φ m , n φ m 1 , n ) ) .
Δ φ = 2 k [ ν z + 2 Δ t ( ε 2 k + a z ) t ] ,
2 τ A ( ε + 2 k a z ) .
ν = λ 0 Δ φ 4 π τ A cos θ ,

Metrics