Abstract

Peripheral vision and off-axis aberrations not only play an important role in daily visual tasks but may also influence eye growth and refractive development. Thus it is important to measure off-axis wavefront aberrations of human eyes objectively. To achieve efficient measurement, we incorporated a double-pass scanning system with a Shack Hartmann wavefront sensor (SHWS) to develop a scanning Shack Hartmann aberrometer (SSHA). The prototype SSHA successfully measured the off-axis wavefront aberrations over +/− 15 degree visual field within 7 seconds. In two validation experiments with a wide angle model eye, it measured change in defocus aberration accurately (<0.02μm, 4mm pupil) and precisely (<0.03μm, 4mm pupil). A preliminary experiment with a human subject suggests its feasibility in clinical applications.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. M. Cheong, D. R. Geruschat, and N. Congdon, “Traffic gap judgment in people with significant peripheral field loss,” Optom. Vis. Sci. 85(1), 26–36 (2008).
    [CrossRef] [PubMed]
  2. B. Lachenmayr, “[Visual field and road traffic. How does peripheral vision function?],” Ophthalmologe 103(5), 373–381 (2006).
    [CrossRef]
  3. K. A. Lemmink, B. Dijkstra, and C. Visscher, “Effects of limited peripheral vision on shuttle sprint performance of soccer players,” Percept. Mot. Skills 100(1), 167–175 (2005).
    [CrossRef] [PubMed]
  4. L. N. Thibos, F. E. Cheney, and D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4(8), 1524–1529 (1987).
    [CrossRef] [PubMed]
  5. L. N. Thibos, D. J. Walsh, and F. E. Cheney, “Vision beyond the resolution limit: aliasing in the periphery,” Vision Res. 27(12), 2193–2197 (1987).
    [CrossRef] [PubMed]
  6. Y. Z. Wang, L. N. Thibos, N. Lopez, T. Salmon, and A. Bradley, “Subjective refraction of the peripheral field using contrast detection acuity,” J. Am. Optom. Assoc. 67(10), 584–589 (1996).
    [PubMed]
  7. Y. Z. Wang, L. N. Thibos, and A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Vis. Sci. 38(10), 2134–2143 (1997).
    [PubMed]
  8. W. Hodos and J. T. Erichsen, “Lower-field myopia in birds: an adaptation that keeps the ground in focus,” Vision Res. 30(5), 653–657 (1990).
    [CrossRef] [PubMed]
  9. S. Diether and F. Schaeffel, “Local changes in eye growth induced by imposed local refractive error despite active accommodation,” Vision Res. 37(6), 659–668 (1997).
    [CrossRef] [PubMed]
  10. J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43(4), 447–468 (2004).
    [CrossRef] [PubMed]
  11. E. L. Smith, C. S. Kee, R. Ramamirtham, Y. Qiao-Grider, and L. F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46(11), 3965–3972 (2005).
    [CrossRef] [PubMed]
  12. E. L. Smith, J. Huang, L. F. Hung, T. L. Blasdel, T. L. Humbird, and K. H. Bockhorst, “Hemi-Retinal Form Deprivation: Evidence for Local Control of Eye Growth and Refractive Development in Infant Monkeys,” Invest. Ophthalmol. Vis. Sci. (2009).
  13. JJ. Liang*, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11(7), 1949 (1994).
    [CrossRef]
  14. D. A. Atchison, D. H. Scott, and W. N. Charman, “Measuring ocular aberrations in the peripheral visual field using Hartmann-Shack aberrometry,” J. Opt. Soc. Am. A 24(9), 2963–2973 (2007).
    [CrossRef]
  15. D. A. Atchison, D. H. Scott, and W. N. Charman, “Hartmann-Shack technique and refraction across the horizontal visual field,” J. Opt. Soc. Am. A 20(6), 965–973 (2003).
    [CrossRef]
  16. L. Lundström, P. Unsbo, and J. Gustafsson, “Off-axis wave front measurements for optical correction in eccentric viewing,” J. Biomed. Opt. 10(3), 034002 (2005).
    [CrossRef] [PubMed]
  17. X. Wei and L. Thibos, “Modeling the eye’s optical system by ocular wavefront tomography,” Opt. Express 16(25), 20490–20502 (2008).
    [CrossRef] [PubMed]
  18. X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Test-retest reliability of clinical Shack-Hartmann measurements,” Invest. Ophthalmol. Vis. Sci. 45(1), 351–360 (2004).
    [CrossRef]
  19. T. O. Salmon, L. N. Thibos, and A. Bradley, “Comparison of the eye's wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15(9), 2457–2465 (1998).
    [CrossRef]
  20. F. Zhou, X. Hong, D. T. Miller, L. N. Thibos, and A. Bradley, “Validation of a combined corneal topographer and aberrometer based on Shack-Hartmann wave-front sensing,” J. Opt. Soc. Am. A 21(5), 683–696 (2004).
    [CrossRef]
  21. P. Kollbaum, M. Jansen, L. Thibos, and A. Bradley, “Validation of an off-eye contact lens Shack-Hartmann wavefront aberrometer,” Optom. Vis. Sci. 85(9), E817–E828 (2008).
    [CrossRef] [PubMed]
  22. X. Wei, and L. N. Thibos, “Scanning Hartmann Shack wavefront sensor to measure off-axis wavefront aberrations,” US Patent Application No. 61/092,096 (Aug 2008).
  23. Zemax User Guide (Zemax Development Corporation, 2006).
  24. I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16(8), 1881–1891 (1999).
    [CrossRef]
  25. D. A. Atchison and D. H. Scott, “Monochromatic aberrations of human eyes in the horizontal visual field,” J. Opt. Soc. Am. A 19(11), 2180–2184 (2002).
    [CrossRef]
  26. X. Wei and L. N. Thibos, “Modal estimation of wavefront aberrations over elliptical pupils from wavefront gradients”. Optom. Vis. Sci., Submitted for publication.
  27. D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal Optometer,” Optom. Vis. Sci. 72(4), 279–284 (1995).
    [CrossRef] [PubMed]
  28. X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
    [CrossRef] [PubMed]
  29. ANSI, “American National Standard for Safe Use of Lasers,” in ANSI Z136.1, A. N. S. Institute, ed. (2007).
  30. F. Zhou, “Combined Corneal Lenticular Tomporapher and Aberrometer Based on Shack-Hartmann Wavefront Sensing Technology,” in School of Optometry(Indiana University, Bloomington, 2004), pp. 103 - 104. http://bert.lib.indiana.edu:2072/dissertations/fullcit/3162275
  31. R. Montés-Micó, J. L. Alió, G. Muñoz, and W. N. Charman, “Temporal changes in optical quality of air-tear film interface at anterior cornea after blink,” Invest. Ophthalmol. Vis. Sci. 45(6), 1752–1757 (2004).
    [CrossRef] [PubMed]
  32. R. Montés-Micó, J. L. Alió, and W. N. Charman, “Dynamic changes in the tear film in dry eyes,” Invest. Ophthalmol. Vis. Sci. 46(5), 1615–1619 (2005).
    [CrossRef] [PubMed]
  33. R. Navarro and E. Moreno-Barriuso, “Laser ray-tracing method for optical testing,” Opt. Lett. 24(14), 951–953 (1999).
    [CrossRef]
  34. A. Guirao and P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vision Res. 39(26), 207–217 (1999).
    [CrossRef] [PubMed]
  35. X. Wei, T. Van Heugten, and L. Thibos, “Validation of a Hartmann-Moiré wavefront sensor with large dynamic range,” Opt. Express 17(16), 14180–14185 (2009).
    [CrossRef] [PubMed]

2009

2008

P. Kollbaum, M. Jansen, L. Thibos, and A. Bradley, “Validation of an off-eye contact lens Shack-Hartmann wavefront aberrometer,” Optom. Vis. Sci. 85(9), E817–E828 (2008).
[CrossRef] [PubMed]

A. M. Cheong, D. R. Geruschat, and N. Congdon, “Traffic gap judgment in people with significant peripheral field loss,” Optom. Vis. Sci. 85(1), 26–36 (2008).
[CrossRef] [PubMed]

X. Wei and L. Thibos, “Modeling the eye’s optical system by ocular wavefront tomography,” Opt. Express 16(25), 20490–20502 (2008).
[CrossRef] [PubMed]

2007

2006

B. Lachenmayr, “[Visual field and road traffic. How does peripheral vision function?],” Ophthalmologe 103(5), 373–381 (2006).
[CrossRef]

2005

K. A. Lemmink, B. Dijkstra, and C. Visscher, “Effects of limited peripheral vision on shuttle sprint performance of soccer players,” Percept. Mot. Skills 100(1), 167–175 (2005).
[CrossRef] [PubMed]

E. L. Smith, C. S. Kee, R. Ramamirtham, Y. Qiao-Grider, and L. F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46(11), 3965–3972 (2005).
[CrossRef] [PubMed]

L. Lundström, P. Unsbo, and J. Gustafsson, “Off-axis wave front measurements for optical correction in eccentric viewing,” J. Biomed. Opt. 10(3), 034002 (2005).
[CrossRef] [PubMed]

R. Montés-Micó, J. L. Alió, and W. N. Charman, “Dynamic changes in the tear film in dry eyes,” Invest. Ophthalmol. Vis. Sci. 46(5), 1615–1619 (2005).
[CrossRef] [PubMed]

2004

F. Zhou, X. Hong, D. T. Miller, L. N. Thibos, and A. Bradley, “Validation of a combined corneal topographer and aberrometer based on Shack-Hartmann wave-front sensing,” J. Opt. Soc. Am. A 21(5), 683–696 (2004).
[CrossRef]

R. Montés-Micó, J. L. Alió, G. Muñoz, and W. N. Charman, “Temporal changes in optical quality of air-tear film interface at anterior cornea after blink,” Invest. Ophthalmol. Vis. Sci. 45(6), 1752–1757 (2004).
[CrossRef] [PubMed]

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43(4), 447–468 (2004).
[CrossRef] [PubMed]

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Test-retest reliability of clinical Shack-Hartmann measurements,” Invest. Ophthalmol. Vis. Sci. 45(1), 351–360 (2004).
[CrossRef]

2003

D. A. Atchison, D. H. Scott, and W. N. Charman, “Hartmann-Shack technique and refraction across the horizontal visual field,” J. Opt. Soc. Am. A 20(6), 965–973 (2003).
[CrossRef]

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

2002

1999

1998

1997

Y. Z. Wang, L. N. Thibos, and A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Vis. Sci. 38(10), 2134–2143 (1997).
[PubMed]

S. Diether and F. Schaeffel, “Local changes in eye growth induced by imposed local refractive error despite active accommodation,” Vision Res. 37(6), 659–668 (1997).
[CrossRef] [PubMed]

1996

Y. Z. Wang, L. N. Thibos, N. Lopez, T. Salmon, and A. Bradley, “Subjective refraction of the peripheral field using contrast detection acuity,” J. Am. Optom. Assoc. 67(10), 584–589 (1996).
[PubMed]

1995

D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal Optometer,” Optom. Vis. Sci. 72(4), 279–284 (1995).
[CrossRef] [PubMed]

1994

1990

W. Hodos and J. T. Erichsen, “Lower-field myopia in birds: an adaptation that keeps the ground in focus,” Vision Res. 30(5), 653–657 (1990).
[CrossRef] [PubMed]

1987

L. N. Thibos, F. E. Cheney, and D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4(8), 1524–1529 (1987).
[CrossRef] [PubMed]

L. N. Thibos, D. J. Walsh, and F. E. Cheney, “Vision beyond the resolution limit: aliasing in the periphery,” Vision Res. 27(12), 2193–2197 (1987).
[CrossRef] [PubMed]

Alió, J. L.

R. Montés-Micó, J. L. Alió, and W. N. Charman, “Dynamic changes in the tear film in dry eyes,” Invest. Ophthalmol. Vis. Sci. 46(5), 1615–1619 (2005).
[CrossRef] [PubMed]

R. Montés-Micó, J. L. Alió, G. Muñoz, and W. N. Charman, “Temporal changes in optical quality of air-tear film interface at anterior cornea after blink,” Invest. Ophthalmol. Vis. Sci. 45(6), 1752–1757 (2004).
[CrossRef] [PubMed]

Artal, P.

A. Guirao and P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vision Res. 39(26), 207–217 (1999).
[CrossRef] [PubMed]

Atchison, D. A.

Bille, J. F.

Bradley, A.

P. Kollbaum, M. Jansen, L. Thibos, and A. Bradley, “Validation of an off-eye contact lens Shack-Hartmann wavefront aberrometer,” Optom. Vis. Sci. 85(9), E817–E828 (2008).
[CrossRef] [PubMed]

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Test-retest reliability of clinical Shack-Hartmann measurements,” Invest. Ophthalmol. Vis. Sci. 45(1), 351–360 (2004).
[CrossRef]

F. Zhou, X. Hong, D. T. Miller, L. N. Thibos, and A. Bradley, “Validation of a combined corneal topographer and aberrometer based on Shack-Hartmann wave-front sensing,” J. Opt. Soc. Am. A 21(5), 683–696 (2004).
[CrossRef]

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

T. O. Salmon, L. N. Thibos, and A. Bradley, “Comparison of the eye's wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15(9), 2457–2465 (1998).
[CrossRef]

Y. Z. Wang, L. N. Thibos, and A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Vis. Sci. 38(10), 2134–2143 (1997).
[PubMed]

Y. Z. Wang, L. N. Thibos, N. Lopez, T. Salmon, and A. Bradley, “Subjective refraction of the peripheral field using contrast detection acuity,” J. Am. Optom. Assoc. 67(10), 584–589 (1996).
[PubMed]

D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal Optometer,” Optom. Vis. Sci. 72(4), 279–284 (1995).
[CrossRef] [PubMed]

Charman, W. N.

D. A. Atchison, D. H. Scott, and W. N. Charman, “Measuring ocular aberrations in the peripheral visual field using Hartmann-Shack aberrometry,” J. Opt. Soc. Am. A 24(9), 2963–2973 (2007).
[CrossRef]

R. Montés-Micó, J. L. Alió, and W. N. Charman, “Dynamic changes in the tear film in dry eyes,” Invest. Ophthalmol. Vis. Sci. 46(5), 1615–1619 (2005).
[CrossRef] [PubMed]

R. Montés-Micó, J. L. Alió, G. Muñoz, and W. N. Charman, “Temporal changes in optical quality of air-tear film interface at anterior cornea after blink,” Invest. Ophthalmol. Vis. Sci. 45(6), 1752–1757 (2004).
[CrossRef] [PubMed]

D. A. Atchison, D. H. Scott, and W. N. Charman, “Hartmann-Shack technique and refraction across the horizontal visual field,” J. Opt. Soc. Am. A 20(6), 965–973 (2003).
[CrossRef]

Cheney, F. E.

L. N. Thibos, F. E. Cheney, and D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4(8), 1524–1529 (1987).
[CrossRef] [PubMed]

L. N. Thibos, D. J. Walsh, and F. E. Cheney, “Vision beyond the resolution limit: aliasing in the periphery,” Vision Res. 27(12), 2193–2197 (1987).
[CrossRef] [PubMed]

Cheng, X.

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Test-retest reliability of clinical Shack-Hartmann measurements,” Invest. Ophthalmol. Vis. Sci. 45(1), 351–360 (2004).
[CrossRef]

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

Cheong, A. M.

A. M. Cheong, D. R. Geruschat, and N. Congdon, “Traffic gap judgment in people with significant peripheral field loss,” Optom. Vis. Sci. 85(1), 26–36 (2008).
[CrossRef] [PubMed]

Congdon, N.

A. M. Cheong, D. R. Geruschat, and N. Congdon, “Traffic gap judgment in people with significant peripheral field loss,” Optom. Vis. Sci. 85(1), 26–36 (2008).
[CrossRef] [PubMed]

Diether, S.

S. Diether and F. Schaeffel, “Local changes in eye growth induced by imposed local refractive error despite active accommodation,” Vision Res. 37(6), 659–668 (1997).
[CrossRef] [PubMed]

Dijkstra, B.

K. A. Lemmink, B. Dijkstra, and C. Visscher, “Effects of limited peripheral vision on shuttle sprint performance of soccer players,” Percept. Mot. Skills 100(1), 167–175 (2005).
[CrossRef] [PubMed]

Erichsen, J. T.

W. Hodos and J. T. Erichsen, “Lower-field myopia in birds: an adaptation that keeps the ground in focus,” Vision Res. 30(5), 653–657 (1990).
[CrossRef] [PubMed]

Escudero-Sanz, I.

Geruschat, D. R.

A. M. Cheong, D. R. Geruschat, and N. Congdon, “Traffic gap judgment in people with significant peripheral field loss,” Optom. Vis. Sci. 85(1), 26–36 (2008).
[CrossRef] [PubMed]

Goelz, S.

Grimm, B.

Guirao, A.

A. Guirao and P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vision Res. 39(26), 207–217 (1999).
[CrossRef] [PubMed]

Gustafsson, J.

L. Lundström, P. Unsbo, and J. Gustafsson, “Off-axis wave front measurements for optical correction in eccentric viewing,” J. Biomed. Opt. 10(3), 034002 (2005).
[CrossRef] [PubMed]

Himebaugh, N. L.

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Test-retest reliability of clinical Shack-Hartmann measurements,” Invest. Ophthalmol. Vis. Sci. 45(1), 351–360 (2004).
[CrossRef]

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

Hodos, W.

W. Hodos and J. T. Erichsen, “Lower-field myopia in birds: an adaptation that keeps the ground in focus,” Vision Res. 30(5), 653–657 (1990).
[CrossRef] [PubMed]

Hong, X.

Hung, L. F.

E. L. Smith, C. S. Kee, R. Ramamirtham, Y. Qiao-Grider, and L. F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46(11), 3965–3972 (2005).
[CrossRef] [PubMed]

Jansen, M.

P. Kollbaum, M. Jansen, L. Thibos, and A. Bradley, “Validation of an off-eye contact lens Shack-Hartmann wavefront aberrometer,” Optom. Vis. Sci. 85(9), E817–E828 (2008).
[CrossRef] [PubMed]

Kee, C. S.

E. L. Smith, C. S. Kee, R. Ramamirtham, Y. Qiao-Grider, and L. F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46(11), 3965–3972 (2005).
[CrossRef] [PubMed]

Kollbaum, P.

P. Kollbaum, M. Jansen, L. Thibos, and A. Bradley, “Validation of an off-eye contact lens Shack-Hartmann wavefront aberrometer,” Optom. Vis. Sci. 85(9), E817–E828 (2008).
[CrossRef] [PubMed]

Kollbaum, P. S.

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Test-retest reliability of clinical Shack-Hartmann measurements,” Invest. Ophthalmol. Vis. Sci. 45(1), 351–360 (2004).
[CrossRef]

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

Lachenmayr, B.

B. Lachenmayr, “[Visual field and road traffic. How does peripheral vision function?],” Ophthalmologe 103(5), 373–381 (2006).
[CrossRef]

Lemmink, K. A.

K. A. Lemmink, B. Dijkstra, and C. Visscher, “Effects of limited peripheral vision on shuttle sprint performance of soccer players,” Percept. Mot. Skills 100(1), 167–175 (2005).
[CrossRef] [PubMed]

Liang*, JJ.

Lopez, N.

Y. Z. Wang, L. N. Thibos, N. Lopez, T. Salmon, and A. Bradley, “Subjective refraction of the peripheral field using contrast detection acuity,” J. Am. Optom. Assoc. 67(10), 584–589 (1996).
[PubMed]

Lundström, L.

L. Lundström, P. Unsbo, and J. Gustafsson, “Off-axis wave front measurements for optical correction in eccentric viewing,” J. Biomed. Opt. 10(3), 034002 (2005).
[CrossRef] [PubMed]

Miller, D. T.

Montés-Micó, R.

R. Montés-Micó, J. L. Alió, and W. N. Charman, “Dynamic changes in the tear film in dry eyes,” Invest. Ophthalmol. Vis. Sci. 46(5), 1615–1619 (2005).
[CrossRef] [PubMed]

R. Montés-Micó, J. L. Alió, G. Muñoz, and W. N. Charman, “Temporal changes in optical quality of air-tear film interface at anterior cornea after blink,” Invest. Ophthalmol. Vis. Sci. 45(6), 1752–1757 (2004).
[CrossRef] [PubMed]

Moreno-Barriuso, E.

Muñoz, G.

R. Montés-Micó, J. L. Alió, G. Muñoz, and W. N. Charman, “Temporal changes in optical quality of air-tear film interface at anterior cornea after blink,” Invest. Ophthalmol. Vis. Sci. 45(6), 1752–1757 (2004).
[CrossRef] [PubMed]

Navarro, R.

Qiao-Grider, Y.

E. L. Smith, C. S. Kee, R. Ramamirtham, Y. Qiao-Grider, and L. F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46(11), 3965–3972 (2005).
[CrossRef] [PubMed]

Ramamirtham, R.

E. L. Smith, C. S. Kee, R. Ramamirtham, Y. Qiao-Grider, and L. F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46(11), 3965–3972 (2005).
[CrossRef] [PubMed]

Salmon, T.

Y. Z. Wang, L. N. Thibos, N. Lopez, T. Salmon, and A. Bradley, “Subjective refraction of the peripheral field using contrast detection acuity,” J. Am. Optom. Assoc. 67(10), 584–589 (1996).
[PubMed]

Salmon, T. O.

Schaeffel, F.

S. Diether and F. Schaeffel, “Local changes in eye growth induced by imposed local refractive error despite active accommodation,” Vision Res. 37(6), 659–668 (1997).
[CrossRef] [PubMed]

Scott, D. H.

Smith, E. L.

E. L. Smith, C. S. Kee, R. Ramamirtham, Y. Qiao-Grider, and L. F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46(11), 3965–3972 (2005).
[CrossRef] [PubMed]

Smith, G.

D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal Optometer,” Optom. Vis. Sci. 72(4), 279–284 (1995).
[CrossRef] [PubMed]

Thibos, L.

Thibos, L. N.

F. Zhou, X. Hong, D. T. Miller, L. N. Thibos, and A. Bradley, “Validation of a combined corneal topographer and aberrometer based on Shack-Hartmann wave-front sensing,” J. Opt. Soc. Am. A 21(5), 683–696 (2004).
[CrossRef]

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Test-retest reliability of clinical Shack-Hartmann measurements,” Invest. Ophthalmol. Vis. Sci. 45(1), 351–360 (2004).
[CrossRef]

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

T. O. Salmon, L. N. Thibos, and A. Bradley, “Comparison of the eye's wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15(9), 2457–2465 (1998).
[CrossRef]

Y. Z. Wang, L. N. Thibos, and A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Vis. Sci. 38(10), 2134–2143 (1997).
[PubMed]

Y. Z. Wang, L. N. Thibos, N. Lopez, T. Salmon, and A. Bradley, “Subjective refraction of the peripheral field using contrast detection acuity,” J. Am. Optom. Assoc. 67(10), 584–589 (1996).
[PubMed]

D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal Optometer,” Optom. Vis. Sci. 72(4), 279–284 (1995).
[CrossRef] [PubMed]

L. N. Thibos, F. E. Cheney, and D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4(8), 1524–1529 (1987).
[CrossRef] [PubMed]

L. N. Thibos, D. J. Walsh, and F. E. Cheney, “Vision beyond the resolution limit: aliasing in the periphery,” Vision Res. 27(12), 2193–2197 (1987).
[CrossRef] [PubMed]

Unsbo, P.

L. Lundström, P. Unsbo, and J. Gustafsson, “Off-axis wave front measurements for optical correction in eccentric viewing,” J. Biomed. Opt. 10(3), 034002 (2005).
[CrossRef] [PubMed]

Van Heugten, T.

Visscher, C.

K. A. Lemmink, B. Dijkstra, and C. Visscher, “Effects of limited peripheral vision on shuttle sprint performance of soccer players,” Percept. Mot. Skills 100(1), 167–175 (2005).
[CrossRef] [PubMed]

Wallman, J.

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43(4), 447–468 (2004).
[CrossRef] [PubMed]

Walsh, D. J.

L. N. Thibos, F. E. Cheney, and D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4(8), 1524–1529 (1987).
[CrossRef] [PubMed]

L. N. Thibos, D. J. Walsh, and F. E. Cheney, “Vision beyond the resolution limit: aliasing in the periphery,” Vision Res. 27(12), 2193–2197 (1987).
[CrossRef] [PubMed]

Wang, Y. Z.

Y. Z. Wang, L. N. Thibos, and A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Vis. Sci. 38(10), 2134–2143 (1997).
[PubMed]

Y. Z. Wang, L. N. Thibos, N. Lopez, T. Salmon, and A. Bradley, “Subjective refraction of the peripheral field using contrast detection acuity,” J. Am. Optom. Assoc. 67(10), 584–589 (1996).
[PubMed]

Wei, X.

Winawer, J.

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43(4), 447–468 (2004).
[CrossRef] [PubMed]

Zhou, F.

Invest. Ophthalmol. Vis. Sci.

Y. Z. Wang, L. N. Thibos, and A. Bradley, “Effects of refractive error on detection acuity and resolution acuity in peripheral vision,” Invest. Ophthalmol. Vis. Sci. 38(10), 2134–2143 (1997).
[PubMed]

E. L. Smith, C. S. Kee, R. Ramamirtham, Y. Qiao-Grider, and L. F. Hung, “Peripheral vision can influence eye growth and refractive development in infant monkeys,” Invest. Ophthalmol. Vis. Sci. 46(11), 3965–3972 (2005).
[CrossRef] [PubMed]

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Test-retest reliability of clinical Shack-Hartmann measurements,” Invest. Ophthalmol. Vis. Sci. 45(1), 351–360 (2004).
[CrossRef]

R. Montés-Micó, J. L. Alió, G. Muñoz, and W. N. Charman, “Temporal changes in optical quality of air-tear film interface at anterior cornea after blink,” Invest. Ophthalmol. Vis. Sci. 45(6), 1752–1757 (2004).
[CrossRef] [PubMed]

R. Montés-Micó, J. L. Alió, and W. N. Charman, “Dynamic changes in the tear film in dry eyes,” Invest. Ophthalmol. Vis. Sci. 46(5), 1615–1619 (2005).
[CrossRef] [PubMed]

J. Am. Optom. Assoc.

Y. Z. Wang, L. N. Thibos, N. Lopez, T. Salmon, and A. Bradley, “Subjective refraction of the peripheral field using contrast detection acuity,” J. Am. Optom. Assoc. 67(10), 584–589 (1996).
[PubMed]

J. Biomed. Opt.

L. Lundström, P. Unsbo, and J. Gustafsson, “Off-axis wave front measurements for optical correction in eccentric viewing,” J. Biomed. Opt. 10(3), 034002 (2005).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide-angle schematic eye model,” J. Opt. Soc. Am. A 16(8), 1881–1891 (1999).
[CrossRef]

D. A. Atchison and D. H. Scott, “Monochromatic aberrations of human eyes in the horizontal visual field,” J. Opt. Soc. Am. A 19(11), 2180–2184 (2002).
[CrossRef]

L. N. Thibos, F. E. Cheney, and D. J. Walsh, “Retinal limits to the detection and resolution of gratings,” J. Opt. Soc. Am. A 4(8), 1524–1529 (1987).
[CrossRef] [PubMed]

T. O. Salmon, L. N. Thibos, and A. Bradley, “Comparison of the eye's wave-front aberration measured psychophysically and with the Shack-Hartmann wave-front sensor,” J. Opt. Soc. Am. A 15(9), 2457–2465 (1998).
[CrossRef]

F. Zhou, X. Hong, D. T. Miller, L. N. Thibos, and A. Bradley, “Validation of a combined corneal topographer and aberrometer based on Shack-Hartmann wave-front sensing,” J. Opt. Soc. Am. A 21(5), 683–696 (2004).
[CrossRef]

JJ. Liang*, B. Grimm, S. Goelz, and J. F. Bille, “Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor,” J. Opt. Soc. Am. A 11(7), 1949 (1994).
[CrossRef]

D. A. Atchison, D. H. Scott, and W. N. Charman, “Measuring ocular aberrations in the peripheral visual field using Hartmann-Shack aberrometry,” J. Opt. Soc. Am. A 24(9), 2963–2973 (2007).
[CrossRef]

D. A. Atchison, D. H. Scott, and W. N. Charman, “Hartmann-Shack technique and refraction across the horizontal visual field,” J. Opt. Soc. Am. A 20(6), 965–973 (2003).
[CrossRef]

Neuron

J. Wallman and J. Winawer, “Homeostasis of eye growth and the question of myopia,” Neuron 43(4), 447–468 (2004).
[CrossRef] [PubMed]

Ophthalmologe

B. Lachenmayr, “[Visual field and road traffic. How does peripheral vision function?],” Ophthalmologe 103(5), 373–381 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Optom. Vis. Sci.

D. A. Atchison, A. Bradley, L. N. Thibos, and G. Smith, “Useful variations of the Badal Optometer,” Optom. Vis. Sci. 72(4), 279–284 (1995).
[CrossRef] [PubMed]

X. Cheng, N. L. Himebaugh, P. S. Kollbaum, L. N. Thibos, and A. Bradley, “Validation of a clinical Shack-Hartmann aberrometer,” Optom. Vis. Sci. 80(8), 587–595 (2003).
[CrossRef] [PubMed]

A. M. Cheong, D. R. Geruschat, and N. Congdon, “Traffic gap judgment in people with significant peripheral field loss,” Optom. Vis. Sci. 85(1), 26–36 (2008).
[CrossRef] [PubMed]

P. Kollbaum, M. Jansen, L. Thibos, and A. Bradley, “Validation of an off-eye contact lens Shack-Hartmann wavefront aberrometer,” Optom. Vis. Sci. 85(9), E817–E828 (2008).
[CrossRef] [PubMed]

Percept. Mot. Skills

K. A. Lemmink, B. Dijkstra, and C. Visscher, “Effects of limited peripheral vision on shuttle sprint performance of soccer players,” Percept. Mot. Skills 100(1), 167–175 (2005).
[CrossRef] [PubMed]

Vision Res.

L. N. Thibos, D. J. Walsh, and F. E. Cheney, “Vision beyond the resolution limit: aliasing in the periphery,” Vision Res. 27(12), 2193–2197 (1987).
[CrossRef] [PubMed]

W. Hodos and J. T. Erichsen, “Lower-field myopia in birds: an adaptation that keeps the ground in focus,” Vision Res. 30(5), 653–657 (1990).
[CrossRef] [PubMed]

S. Diether and F. Schaeffel, “Local changes in eye growth induced by imposed local refractive error despite active accommodation,” Vision Res. 37(6), 659–668 (1997).
[CrossRef] [PubMed]

A. Guirao and P. Artal, “Off-axis monochromatic aberrations estimated from double pass measurements in the human eye,” Vision Res. 39(26), 207–217 (1999).
[CrossRef] [PubMed]

Other

ANSI, “American National Standard for Safe Use of Lasers,” in ANSI Z136.1, A. N. S. Institute, ed. (2007).

F. Zhou, “Combined Corneal Lenticular Tomporapher and Aberrometer Based on Shack-Hartmann Wavefront Sensing Technology,” in School of Optometry(Indiana University, Bloomington, 2004), pp. 103 - 104. http://bert.lib.indiana.edu:2072/dissertations/fullcit/3162275

X. Wei and L. N. Thibos, “Modal estimation of wavefront aberrations over elliptical pupils from wavefront gradients”. Optom. Vis. Sci., Submitted for publication.

X. Wei, and L. N. Thibos, “Scanning Hartmann Shack wavefront sensor to measure off-axis wavefront aberrations,” US Patent Application No. 61/092,096 (Aug 2008).

Zemax User Guide (Zemax Development Corporation, 2006).

E. L. Smith, J. Huang, L. F. Hung, T. L. Blasdel, T. L. Humbird, and K. H. Bockhorst, “Hemi-Retinal Form Deprivation: Evidence for Local Control of Eye Growth and Refractive Development in Infant Monkeys,” Invest. Ophthalmol. Vis. Sci. (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Scanning Shack Hartmann aberrometer (SSHA) apparatus. BS1-3, beam splitters; DPS1-4, Double pass scanning lenses; L5-9, Lenses; SHWS, Shack Hartmann Wavefront sensor; Aperture A1, limiting aperture.

Fig. 2
Fig. 2

Scanning pattern of SSHA apparatus. As the scanning mirrors rotate, the mirrors direct the beam along different LoS in sequence. Each data point in the figure indicates a particular LoS in test eyes’ object space. The associated numbers represent the sequential order. It took 8 seconds for SSHA to scan the whole visual field.

Fig. 3
Fig. 3

The relay scanning pair. (a) Incoming direction, the scanning relay pair DPS 1-2 focus the incoming narrow laser beams to the center of entrance pupil (EP) from the scanning center; (b) In the outgoing direction, the DPS design minimizes and balance the instrumental aberration along different paths.

Fig. 4
Fig. 4

Defocus measurements of SSHA along all LoS at various field angles. Horizontal axis indicates the scanning sequence of LoS; vertical axis indicates the magnitude of defocus terms (Z2 0) over 4 mm pupil. (a) Comparison of the defocus measurements (black dot) with the defocus introduced by the Badal lens (horizontal dash line) along multiple LoS. The masked LoS are those suffered from backward scattering. (b) Comparison of the defocus measurements (black dot) with the defocus introduced by retinal translation (horizontal dashed line) along multiple LoS. The masked LoS are those suffered from backward scattering.

Fig. 5
Fig. 5

The mean wavefront maps of the five SSHA measurements of a human subject (OS) over +/− 15 degree 2-dimensional visual field (5mm on-axis EP). The missing wavefront maps indicate the failure of SSHA measurements along the corresponding LoS due to strong backward reflection form the system and cornea. The number above the mean wavefront maps represents RMSDev across the five measurements.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R M S D e v = 1 5 i = 1 5 ( 1 N k = 1 N ( W i ( x k , y k ) W m e a n ( x k , y k ) ) 2 )

Metrics