Abstract

A white-light source operated polymer-based micromachined Fabry-Perot biochemical sensor is reported. As a refractive-index sensitive optical sensor, its transducing signal varies upon the changes of the effective refractive index in the Fabry-Perot cavity. This sensor is fabricated from PDMS and glass. More specifically, this sensor is a micromachined Fabry-Perot interferometer (µFPI) and is fabricated by bonding a glass substrate and the soft-lithographically patterned PDMS. Several biochemicals have been detected with the µFPI biochemical sensors. Measurements show that rabbit IgG at a concentration of as low as 5 to 50 ng/ml can be detected even without any performance optimization of the devices.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. D. Popovic, R. A. Sprague, and G. A. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27(7), 1281–1284 (1988).
    [CrossRef] [PubMed]
  2. C. H. Lee, H. Yoshida, Y. Miura, A. Fujii, and M. Ozaki, ““Fabrication of micro-grating structures by direct laser writing based on two photon process and their liquid crystal alignment abilities,” IEICE Transactions on Electronics,” E 91-C(10), 1581–1586 (2008).
  3. L. Hornbeck, “Deformable-mirror spatial light modulators,” Proc. SPIE, Spatial Light Modulators and Applications III, v.1150, 86–102 (1990)
  4. Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924–929 (2007).
    [CrossRef] [PubMed]
  5. C. Wang, B. Wherrett, and T. Harvey, “Fabrication and characterization of a 4×4 array of asymmetric Fabry-Perot reflection modulators,” Electron. Lett. 30(15), 1219–1220 (1994).
    [CrossRef]
  6. N. Hall and F. Degertekin, “Integrated optical interferometric detection method for micromachined capacitive acoustic transducers,” Appl. Phys. Lett. 80(20), 3859–3861 (2002).
    [CrossRef]
  7. J. Han, “Fabry-Perot cavity chemical sensors by silicon micromachining techniques,” Appl. Phys. Lett. 74(3), 445–447 (1999).
    [CrossRef]
  8. L. Que, “Two-dimensional tunable filter array for a matrix of integrated fiber optic input-output light channels”, US Patent 6,449,410 (2002)
  9. M. Blomberg, O. Rusanen, and K. Keranen, “A silicon microsystem-miniaturized infrared spectrometer,” Proc. 9th Int. Conf. On Solid-state Sensors, Actuators and Microsystems, 1257–1258 (1997)
  10. N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” Proceedings of the SPIE, v. 6466, 646606–12 (2007)
  11. L. Que, A. Zribi, A. Banerjee, and D. Hays, “Raman system on a chip,” US Patent 7,505,128 (2009)
  12. T. Dohi, K. Matsumoto, and I. Shimoyama, “The optical blood test device with the micro Fabry-Perot interferometer”, Proceedings of IEEE MEMS, 403–406 (2004)
  13. T. Dohi, K. Matsumoto, and I. Shimoyama, “The micro Fabry-Perot interferometer for the spectral endoscope”, Proceedings of IEEE MEMS, 830–833 (2005)
  14. K. M. van Delft, J. C. Eijkel, D. Mijatovic, T. S. Druzhinina, H. Rathgen, N. R. Tas, A. van den Berg, and F. Mugele, “Micromachined Fabry-Pérot interferometer with embedded nanochannels for nanoscale fluid dynamics,” Nano Lett. 7(2), 345–350 (2007).
    [CrossRef] [PubMed]
  15. Y. Zhang, H. Shibru, K. L. Cooper, and A. Wang, “Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor,” Opt. Lett. 30(9), 1021–1023 (2005).
    [CrossRef] [PubMed]
  16. J. Liu, Y. Sun, and X. Fan, “Highly versatile fiber-based optical Fabry-Pérot gas sensor,” Opt. Express 17(4), 2731–2738 (2009).
    [CrossRef] [PubMed]
  17. M. Born, and E. Wolf, Principal of Optics (John Wiley & Sons, Inc., 2000)
  18. S. Jiang, B. Zeng, Y. Liang, and B. Li, “Optical fiber sensor for tensile and compressive strain measurement by white-light Faby-Perot interferometry,” Opt. Eng. 46(3), 034402 (2007).
    [CrossRef]
  19. T. Zhang, Z. Gong, and L. Que, “A white-light source operated polymer-based micromachined Fabry-Perot chemo/biosensor,” Proc. of IEEE Intl. Conf. on NEMS, 177–180 (2009)
  20. S. Zangooi, R. Bjorklund, and H. Arwin, “Protein adsorption in thermally oxidized porous silicon layers,” Thin Solid Films 313–314(1-2), 825–830 (1998).
    [CrossRef]
  21. T. Zhang, Z. Gong, R. Giorno, and L. Que, “Signal sensitivity and intensity enhancement for a polymer-based Fabry-Perot interferometer with embedded nanostructures in its cavity,” Proceeding of 15th International Conference on Solid-State Sensors, Actuators & Microsystems (Transducers'09), 2310–2313 (2009)
  22. J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond) 1(2), 219–228 (2006).
    [CrossRef]

2009

2008

C. H. Lee, H. Yoshida, Y. Miura, A. Fujii, and M. Ozaki, ““Fabrication of micro-grating structures by direct laser writing based on two photon process and their liquid crystal alignment abilities,” IEICE Transactions on Electronics,” E 91-C(10), 1581–1586 (2008).

2007

S. Jiang, B. Zeng, Y. Liang, and B. Li, “Optical fiber sensor for tensile and compressive strain measurement by white-light Faby-Perot interferometry,” Opt. Eng. 46(3), 034402 (2007).
[CrossRef]

K. M. van Delft, J. C. Eijkel, D. Mijatovic, T. S. Druzhinina, H. Rathgen, N. R. Tas, A. van den Berg, and F. Mugele, “Micromachined Fabry-Pérot interferometer with embedded nanochannels for nanoscale fluid dynamics,” Nano Lett. 7(2), 345–350 (2007).
[CrossRef] [PubMed]

Q. Xu and M. Lipson, “All-optical logic based on silicon micro-ring resonators,” Opt. Express 15(3), 924–929 (2007).
[CrossRef] [PubMed]

2006

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond) 1(2), 219–228 (2006).
[CrossRef]

2005

2002

N. Hall and F. Degertekin, “Integrated optical interferometric detection method for micromachined capacitive acoustic transducers,” Appl. Phys. Lett. 80(20), 3859–3861 (2002).
[CrossRef]

1999

J. Han, “Fabry-Perot cavity chemical sensors by silicon micromachining techniques,” Appl. Phys. Lett. 74(3), 445–447 (1999).
[CrossRef]

1998

S. Zangooi, R. Bjorklund, and H. Arwin, “Protein adsorption in thermally oxidized porous silicon layers,” Thin Solid Films 313–314(1-2), 825–830 (1998).
[CrossRef]

1994

C. Wang, B. Wherrett, and T. Harvey, “Fabrication and characterization of a 4×4 array of asymmetric Fabry-Perot reflection modulators,” Electron. Lett. 30(15), 1219–1220 (1994).
[CrossRef]

1988

Arwin, H.

S. Zangooi, R. Bjorklund, and H. Arwin, “Protein adsorption in thermally oxidized porous silicon layers,” Thin Solid Films 313–314(1-2), 825–830 (1998).
[CrossRef]

Bjorklund, R.

S. Zangooi, R. Bjorklund, and H. Arwin, “Protein adsorption in thermally oxidized porous silicon layers,” Thin Solid Films 313–314(1-2), 825–830 (1998).
[CrossRef]

Connell, G. A.

Cooper, K. L.

Degertekin, F.

N. Hall and F. Degertekin, “Integrated optical interferometric detection method for micromachined capacitive acoustic transducers,” Appl. Phys. Lett. 80(20), 3859–3861 (2002).
[CrossRef]

Druzhinina, T. S.

K. M. van Delft, J. C. Eijkel, D. Mijatovic, T. S. Druzhinina, H. Rathgen, N. R. Tas, A. van den Berg, and F. Mugele, “Micromachined Fabry-Pérot interferometer with embedded nanochannels for nanoscale fluid dynamics,” Nano Lett. 7(2), 345–350 (2007).
[CrossRef] [PubMed]

Eijkel, J. C.

K. M. van Delft, J. C. Eijkel, D. Mijatovic, T. S. Druzhinina, H. Rathgen, N. R. Tas, A. van den Berg, and F. Mugele, “Micromachined Fabry-Pérot interferometer with embedded nanochannels for nanoscale fluid dynamics,” Nano Lett. 7(2), 345–350 (2007).
[CrossRef] [PubMed]

Fan, X.

Fujii, A.

C. H. Lee, H. Yoshida, Y. Miura, A. Fujii, and M. Ozaki, ““Fabrication of micro-grating structures by direct laser writing based on two photon process and their liquid crystal alignment abilities,” IEICE Transactions on Electronics,” E 91-C(10), 1581–1586 (2008).

Haes, A. J.

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond) 1(2), 219–228 (2006).
[CrossRef]

Hall, N.

N. Hall and F. Degertekin, “Integrated optical interferometric detection method for micromachined capacitive acoustic transducers,” Appl. Phys. Lett. 80(20), 3859–3861 (2002).
[CrossRef]

Han, J.

J. Han, “Fabry-Perot cavity chemical sensors by silicon micromachining techniques,” Appl. Phys. Lett. 74(3), 445–447 (1999).
[CrossRef]

Harvey, T.

C. Wang, B. Wherrett, and T. Harvey, “Fabrication and characterization of a 4×4 array of asymmetric Fabry-Perot reflection modulators,” Electron. Lett. 30(15), 1219–1220 (1994).
[CrossRef]

Jiang, S.

S. Jiang, B. Zeng, Y. Liang, and B. Li, “Optical fiber sensor for tensile and compressive strain measurement by white-light Faby-Perot interferometry,” Opt. Eng. 46(3), 034402 (2007).
[CrossRef]

Lee, C. H.

C. H. Lee, H. Yoshida, Y. Miura, A. Fujii, and M. Ozaki, ““Fabrication of micro-grating structures by direct laser writing based on two photon process and their liquid crystal alignment abilities,” IEICE Transactions on Electronics,” E 91-C(10), 1581–1586 (2008).

Li, B.

S. Jiang, B. Zeng, Y. Liang, and B. Li, “Optical fiber sensor for tensile and compressive strain measurement by white-light Faby-Perot interferometry,” Opt. Eng. 46(3), 034402 (2007).
[CrossRef]

Liang, Y.

S. Jiang, B. Zeng, Y. Liang, and B. Li, “Optical fiber sensor for tensile and compressive strain measurement by white-light Faby-Perot interferometry,” Opt. Eng. 46(3), 034402 (2007).
[CrossRef]

Lipson, M.

Liu, J.

Mijatovic, D.

K. M. van Delft, J. C. Eijkel, D. Mijatovic, T. S. Druzhinina, H. Rathgen, N. R. Tas, A. van den Berg, and F. Mugele, “Micromachined Fabry-Pérot interferometer with embedded nanochannels for nanoscale fluid dynamics,” Nano Lett. 7(2), 345–350 (2007).
[CrossRef] [PubMed]

Miura, Y.

C. H. Lee, H. Yoshida, Y. Miura, A. Fujii, and M. Ozaki, ““Fabrication of micro-grating structures by direct laser writing based on two photon process and their liquid crystal alignment abilities,” IEICE Transactions on Electronics,” E 91-C(10), 1581–1586 (2008).

Mugele, F.

K. M. van Delft, J. C. Eijkel, D. Mijatovic, T. S. Druzhinina, H. Rathgen, N. R. Tas, A. van den Berg, and F. Mugele, “Micromachined Fabry-Pérot interferometer with embedded nanochannels for nanoscale fluid dynamics,” Nano Lett. 7(2), 345–350 (2007).
[CrossRef] [PubMed]

Ozaki, M.

C. H. Lee, H. Yoshida, Y. Miura, A. Fujii, and M. Ozaki, ““Fabrication of micro-grating structures by direct laser writing based on two photon process and their liquid crystal alignment abilities,” IEICE Transactions on Electronics,” E 91-C(10), 1581–1586 (2008).

Popovic, Z. D.

Rathgen, H.

K. M. van Delft, J. C. Eijkel, D. Mijatovic, T. S. Druzhinina, H. Rathgen, N. R. Tas, A. van den Berg, and F. Mugele, “Micromachined Fabry-Pérot interferometer with embedded nanochannels for nanoscale fluid dynamics,” Nano Lett. 7(2), 345–350 (2007).
[CrossRef] [PubMed]

Shibru, H.

Sprague, R. A.

Sun, Y.

Tas, N. R.

K. M. van Delft, J. C. Eijkel, D. Mijatovic, T. S. Druzhinina, H. Rathgen, N. R. Tas, A. van den Berg, and F. Mugele, “Micromachined Fabry-Pérot interferometer with embedded nanochannels for nanoscale fluid dynamics,” Nano Lett. 7(2), 345–350 (2007).
[CrossRef] [PubMed]

van Delft, K. M.

K. M. van Delft, J. C. Eijkel, D. Mijatovic, T. S. Druzhinina, H. Rathgen, N. R. Tas, A. van den Berg, and F. Mugele, “Micromachined Fabry-Pérot interferometer with embedded nanochannels for nanoscale fluid dynamics,” Nano Lett. 7(2), 345–350 (2007).
[CrossRef] [PubMed]

van den Berg, A.

K. M. van Delft, J. C. Eijkel, D. Mijatovic, T. S. Druzhinina, H. Rathgen, N. R. Tas, A. van den Berg, and F. Mugele, “Micromachined Fabry-Pérot interferometer with embedded nanochannels for nanoscale fluid dynamics,” Nano Lett. 7(2), 345–350 (2007).
[CrossRef] [PubMed]

Van Duyne, R. P.

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond) 1(2), 219–228 (2006).
[CrossRef]

Wang, A.

Wang, C.

C. Wang, B. Wherrett, and T. Harvey, “Fabrication and characterization of a 4×4 array of asymmetric Fabry-Perot reflection modulators,” Electron. Lett. 30(15), 1219–1220 (1994).
[CrossRef]

Wherrett, B.

C. Wang, B. Wherrett, and T. Harvey, “Fabrication and characterization of a 4×4 array of asymmetric Fabry-Perot reflection modulators,” Electron. Lett. 30(15), 1219–1220 (1994).
[CrossRef]

Xu, Q.

Yonzon, C. R.

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond) 1(2), 219–228 (2006).
[CrossRef]

Yoshida, H.

C. H. Lee, H. Yoshida, Y. Miura, A. Fujii, and M. Ozaki, ““Fabrication of micro-grating structures by direct laser writing based on two photon process and their liquid crystal alignment abilities,” IEICE Transactions on Electronics,” E 91-C(10), 1581–1586 (2008).

Zangooi, S.

S. Zangooi, R. Bjorklund, and H. Arwin, “Protein adsorption in thermally oxidized porous silicon layers,” Thin Solid Films 313–314(1-2), 825–830 (1998).
[CrossRef]

Zeng, B.

S. Jiang, B. Zeng, Y. Liang, and B. Li, “Optical fiber sensor for tensile and compressive strain measurement by white-light Faby-Perot interferometry,” Opt. Eng. 46(3), 034402 (2007).
[CrossRef]

Zhang, X.

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond) 1(2), 219–228 (2006).
[CrossRef]

Zhang, Y.

Zhao, J.

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond) 1(2), 219–228 (2006).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

N. Hall and F. Degertekin, “Integrated optical interferometric detection method for micromachined capacitive acoustic transducers,” Appl. Phys. Lett. 80(20), 3859–3861 (2002).
[CrossRef]

J. Han, “Fabry-Perot cavity chemical sensors by silicon micromachining techniques,” Appl. Phys. Lett. 74(3), 445–447 (1999).
[CrossRef]

E

C. H. Lee, H. Yoshida, Y. Miura, A. Fujii, and M. Ozaki, ““Fabrication of micro-grating structures by direct laser writing based on two photon process and their liquid crystal alignment abilities,” IEICE Transactions on Electronics,” E 91-C(10), 1581–1586 (2008).

Electron. Lett.

C. Wang, B. Wherrett, and T. Harvey, “Fabrication and characterization of a 4×4 array of asymmetric Fabry-Perot reflection modulators,” Electron. Lett. 30(15), 1219–1220 (1994).
[CrossRef]

Nano Lett.

K. M. van Delft, J. C. Eijkel, D. Mijatovic, T. S. Druzhinina, H. Rathgen, N. R. Tas, A. van den Berg, and F. Mugele, “Micromachined Fabry-Pérot interferometer with embedded nanochannels for nanoscale fluid dynamics,” Nano Lett. 7(2), 345–350 (2007).
[CrossRef] [PubMed]

Nanomedicine (Lond)

J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomedicine (Lond) 1(2), 219–228 (2006).
[CrossRef]

Opt. Eng.

S. Jiang, B. Zeng, Y. Liang, and B. Li, “Optical fiber sensor for tensile and compressive strain measurement by white-light Faby-Perot interferometry,” Opt. Eng. 46(3), 034402 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Thin Solid Films

S. Zangooi, R. Bjorklund, and H. Arwin, “Protein adsorption in thermally oxidized porous silicon layers,” Thin Solid Films 313–314(1-2), 825–830 (1998).
[CrossRef]

Other

T. Zhang, Z. Gong, R. Giorno, and L. Que, “Signal sensitivity and intensity enhancement for a polymer-based Fabry-Perot interferometer with embedded nanostructures in its cavity,” Proceeding of 15th International Conference on Solid-State Sensors, Actuators & Microsystems (Transducers'09), 2310–2313 (2009)

T. Zhang, Z. Gong, and L. Que, “A white-light source operated polymer-based micromachined Fabry-Perot chemo/biosensor,” Proc. of IEEE Intl. Conf. on NEMS, 177–180 (2009)

M. Born, and E. Wolf, Principal of Optics (John Wiley & Sons, Inc., 2000)

L. Que, “Two-dimensional tunable filter array for a matrix of integrated fiber optic input-output light channels”, US Patent 6,449,410 (2002)

M. Blomberg, O. Rusanen, and K. Keranen, “A silicon microsystem-miniaturized infrared spectrometer,” Proc. 9th Int. Conf. On Solid-state Sensors, Actuators and Microsystems, 1257–1258 (1997)

N. Neumann, M. Ebermann, K. Hiller, and S. Kurth, “Tunable infrared detector with integrated micromachined Fabry-Perot filter,” Proceedings of the SPIE, v. 6466, 646606–12 (2007)

L. Que, A. Zribi, A. Banerjee, and D. Hays, “Raman system on a chip,” US Patent 7,505,128 (2009)

T. Dohi, K. Matsumoto, and I. Shimoyama, “The optical blood test device with the micro Fabry-Perot interferometer”, Proceedings of IEEE MEMS, 403–406 (2004)

T. Dohi, K. Matsumoto, and I. Shimoyama, “The micro Fabry-Perot interferometer for the spectral endoscope”, Proceedings of IEEE MEMS, 830–833 (2005)

L. Hornbeck, “Deformable-mirror spatial light modulators,” Proc. SPIE, Spatial Light Modulators and Applications III, v.1150, 86–102 (1990)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(A) Schematic of a PDMS-based µFPI biochemical sensor, showing immobilized probes (Protein A) on the glass surface and the binding between Immunoglobulin G (IgG) antibodies and probes; (B) Operational principle of the µFPI: the reflected light from the µFPI as the output transducing optical signals

Fig. 2
Fig. 2

(A) A sketch showing the inference fringe shift (Δλ) due to the effective index of refraction changes in the FPI cavity with the binding between Protein A and porcine IgG; (B) Testing setup: a custom-designed optical fiber probe (Ocean Optics, Inc) consists of a tight bundle of 7 optical fibers in a stainless steel ferrule. The center fiber is to collect the reflected light while the outer 6 fibers deliver illumination light to the biochemical sensor

Fig. 3
Fig. 3

(A) Sketch of the optical system including the optical fibers and the µFPI device: the indexes of refraction of PDMS, medium in FPI cavity and glass are n1, n2 and n3; (B) Based on Eq. (1) and (2), the calculated matches the measured transducing optical signals from the biochemical sensor

Fig. 4
Fig. 4

(A) The fabrication process flow: (a) form the 50µm tall SU8 mold on the silicon wafer; (b) transfer the mold to PDMS; (c) bond patterned PDMS to glass wafer after plasma treatment, and then form the input /output wells; (B) Optical micrograph of SU8 mold for a PDMS-FPI with integrated microfluidic channel to deliver chemicals to the FPI cavity; (C) Optical micrograph of 2 × 2 PDMS-FPIs; (D-E) Photos of one SU8 mold and one assembled PDMS-FPI biochemical sensor; (F) A photo of arrayed PDMS-FPI biochemical sensors

Fig. 5
Fig. 5

(A-B) Measured signals for PBS, immobilized Protein A (500 µg/ml), Protein A bound with porcine IgG (500 µg/ml) and protein A bound with rabbit IgG (500 µg/ml); (C) Measured transducing signals for immobilized Protein A (500 µg/ml), Protein A bound with porcine IgG (500 µg/ml), rabbit IgG (500 µg/ml)and sheep IgG (500 µg/ml) respectively, showing clear shift of the interference fringes

Tables (2)

Tables Icon

Table 1 Fringe peak shift relative to air for Protein A and different IgG samples

Tables Icon

Table 2 Fringe peak shift relative to air for rabbit IgG samples with varied concentrations

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

I r = I i exp ( 2 ( λ λ 0 ) 2 ω 2 ) × L f i b e r F P I × f ( R a i r P D M S , R a i r g l a s s )
f ( R a i r P D M S , R a i r g l a s s ) = r 2 2 + r 3 2 L F P I 2 2 r 2 r 3 L F P I cos ( 2 k n 2 d ) 1 r 2 2 r 3 2 L F P I 2 2 r 2 r 3 L F P I cos ( 2 k n 2 d )

Metrics