Abstract

We have theoretically investigated a hybrid nanocrystal complex consisted of a metal nanoparticle (MNP) and a semiconductor quantum dot (SQD) embedded in a nanomechanical resonator in the simultaneous presence of a strong control field and a weak probe field. It is shown that the resonance amplification peak of the probe spectrum will enhance dramatically due to the coupling of the plasmon, exciton and nanomechanical resonator. The enhancement increases significantly with decreasing the distance between the metal nanoparticle and a quantum dot, which implies the strong plasmon enhancement effect in this coupled system. The results obtained here may have the potential applications such as tunable Raman lasers and bio-sensors.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102 (1997).
    [CrossRef] [PubMed]
  2. A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V Walks hand-overhand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061 (2003).
    [CrossRef] [PubMed]
  3. A. O. Govorov, and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett. 7, 620 (2007).
    [CrossRef] [PubMed]
  4. A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett. 5, 1371 (2005).
    [CrossRef] [PubMed]
  5. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698 (2007).
    [CrossRef] [PubMed]
  6. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508 (2006).
    [CrossRef] [PubMed]
  7. A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de L. Snapp, A. V. Akimov, M. Jo, M. D. Lukin, and H. K. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nature 5, 475 (2009).
  8. M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 3145 (2007).
    [CrossRef] [PubMed]
  9. W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
    [CrossRef] [PubMed]
  10. V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’Ko, N. Gaponik, and E. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89, 253118 (2006).
    [CrossRef]
  11. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
    [CrossRef]
  12. R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle system: Double peaked Fano structure and bistability,” Nano Lett. 8, 2106 (2008).
    [CrossRef] [PubMed]
  13. S. M. Sadeghi, “Plasmonic metaresonances: Molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B 79, 233309 (2009).
    [CrossRef]
  14. Z. E. Lu and K. D. Zhu, “Enhancing Kerr nonlinearity of a strong coupled exciton-plasmon in hybrid nanocrystal molecules,” J. Phys. B 41, 185503 (2008).
    [CrossRef]
  15. Z. E. Lu and K. D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009).
    [CrossRef]
  16. A. Otto, I. Mrozek, and H. Grabhorn, “Surface-enhanced Raman scattering,” J. Phys. Condens. Matter 4, 1143 (1992).
    [CrossRef]
  17. J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5, 2262 (2005).
    [CrossRef] [PubMed]
  18. H. Wei, F. Hao, Y. Z. Huang, W. Z. Wang, P. Nordlander, and H. X. Xu, “Polarization dependence of surface enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8, 2497 (2008).
    [CrossRef] [PubMed]
  19. M. Becker, V. Sivakov, G. Andrä, R. Geiger, J. Schreiber, S. Hoffmann, J. Michler, A. P. Milenin, P. Werner, and S. H. Christiansen, “The SERS and TERS effects obtained by gold droplets on top of Si nanowires,” Nano Lett. 7, 75 (2007).
    [CrossRef] [PubMed]
  20. K. L. Ekinci, X. M. H. Huang, and M. L. Roukes, “Ultrasensitive nanoelectromechanical mass detection,” Appl. Phys. Lett. 84, 4469 (2004).
    [CrossRef]
  21. M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304, 74 (2004).
    [CrossRef] [PubMed]
  22. K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76, 061101 (2006).
    [CrossRef]
  23. M. E. Dickinson, K. V. Wolf, and A. B. Mann, “Nanomechanical and chemical characterization of incipient in vitro carious lesions in human dental enamel,” Arch. Oral Biol. 52, 753 (2007).
    [CrossRef] [PubMed]
  24. S. H. Lim, D. Raorane, S. Satyanarayana, and A. Majumdar, “Nano-chemo-mechanical sensor array platform for high-throughput chemical analysis,” Sens. Actuators B 119, 466 (2006).
    [CrossRef]
  25. I. Wilson-Rae, P. Zoller, and A. Imamoglu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92, 075507 (2004).
    [CrossRef] [PubMed]
  26. A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612 (2002).
    [CrossRef] [PubMed]
  27. S. Stufler, P. Ester, A. Zrenner, and M. Bichler, “Quantum optical properties of a single InxGa1−xAs-GaAs quantum dot two-level system,” Phys. Rev. B 72, 121301 (2005).
    [CrossRef]
  28. T. Kalkbrenner, U. Håkanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4, 2309 (2004).
    [CrossRef]
  29. T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95, 200801 (2005).
    [CrossRef] [PubMed]
  30. J. Y. Yan, W. Zhang, S. Duan, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
    [CrossRef]
  31. M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136 (2008).
    [CrossRef]
  32. I. C. Khoo, D. H. Werner, X. Liang, A. Diaz, and B. Weiner, “Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes,” Opt. Lett. 31, 2592 (2006).
    [CrossRef] [PubMed]
  33. A. Yariv, Quantum Electronics (Wiley, New York, 1975).
  34. R. W. Boyd, Nonlinear Optics (Academic, San Diego, California, 1992) p.225.
  35. J. J. Li and K. D. Zhu, “A scheme for measuring vibrational frequency and coupling strength in a coupled nanomechanical resonator-quantum dot system,” Appl. Phys. Lett. 94, 063116 (2009).
    [CrossRef]

2009 (4)

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de L. Snapp, A. V. Akimov, M. Jo, M. D. Lukin, and H. K. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nature 5, 475 (2009).

S. M. Sadeghi, “Plasmonic metaresonances: Molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B 79, 233309 (2009).
[CrossRef]

Z. E. Lu and K. D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009).
[CrossRef]

J. J. Li and K. D. Zhu, “A scheme for measuring vibrational frequency and coupling strength in a coupled nanomechanical resonator-quantum dot system,” Appl. Phys. Lett. 94, 063116 (2009).
[CrossRef]

2008 (5)

J. Y. Yan, W. Zhang, S. Duan, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
[CrossRef]

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136 (2008).
[CrossRef]

H. Wei, F. Hao, Y. Z. Huang, W. Z. Wang, P. Nordlander, and H. X. Xu, “Polarization dependence of surface enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8, 2497 (2008).
[CrossRef] [PubMed]

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle system: Double peaked Fano structure and bistability,” Nano Lett. 8, 2106 (2008).
[CrossRef] [PubMed]

Z. E. Lu and K. D. Zhu, “Enhancing Kerr nonlinearity of a strong coupled exciton-plasmon in hybrid nanocrystal molecules,” J. Phys. B 41, 185503 (2008).
[CrossRef]

2007 (5)

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698 (2007).
[CrossRef] [PubMed]

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 3145 (2007).
[CrossRef] [PubMed]

A. O. Govorov, and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett. 7, 620 (2007).
[CrossRef] [PubMed]

M. Becker, V. Sivakov, G. Andrä, R. Geiger, J. Schreiber, S. Hoffmann, J. Michler, A. P. Milenin, P. Werner, and S. H. Christiansen, “The SERS and TERS effects obtained by gold droplets on top of Si nanowires,” Nano Lett. 7, 75 (2007).
[CrossRef] [PubMed]

M. E. Dickinson, K. V. Wolf, and A. B. Mann, “Nanomechanical and chemical characterization of incipient in vitro carious lesions in human dental enamel,” Arch. Oral Biol. 52, 753 (2007).
[CrossRef] [PubMed]

2006 (7)

S. H. Lim, D. Raorane, S. Satyanarayana, and A. Majumdar, “Nano-chemo-mechanical sensor array platform for high-throughput chemical analysis,” Sens. Actuators B 119, 466 (2006).
[CrossRef]

I. C. Khoo, D. H. Werner, X. Liang, A. Diaz, and B. Weiner, “Nanosphere dispersed liquid crystals for tunable negative-zero-positive index of refraction in the optical and terahertz regimes,” Opt. Lett. 31, 2592 (2006).
[CrossRef] [PubMed]

K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76, 061101 (2006).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef] [PubMed]

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’Ko, N. Gaponik, and E. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89, 253118 (2006).
[CrossRef]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508 (2006).
[CrossRef] [PubMed]

2005 (4)

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5, 2262 (2005).
[CrossRef] [PubMed]

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett. 5, 1371 (2005).
[CrossRef] [PubMed]

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95, 200801 (2005).
[CrossRef] [PubMed]

S. Stufler, P. Ester, A. Zrenner, and M. Bichler, “Quantum optical properties of a single InxGa1−xAs-GaAs quantum dot two-level system,” Phys. Rev. B 72, 121301 (2005).
[CrossRef]

2004 (4)

T. Kalkbrenner, U. Håkanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4, 2309 (2004).
[CrossRef]

I. Wilson-Rae, P. Zoller, and A. Imamoglu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92, 075507 (2004).
[CrossRef] [PubMed]

K. L. Ekinci, X. M. H. Huang, and M. L. Roukes, “Ultrasensitive nanoelectromechanical mass detection,” Appl. Phys. Lett. 84, 4469 (2004).
[CrossRef]

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304, 74 (2004).
[CrossRef] [PubMed]

2003 (1)

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V Walks hand-overhand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061 (2003).
[CrossRef] [PubMed]

2002 (1)

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612 (2002).
[CrossRef] [PubMed]

1997 (1)

S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102 (1997).
[CrossRef] [PubMed]

1992 (1)

A. Otto, I. Mrozek, and H. Grabhorn, “Surface-enhanced Raman scattering,” J. Phys. Condens. Matter 4, 1143 (1992).
[CrossRef]

Abdelsalam, M. E.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5, 2262 (2005).
[CrossRef] [PubMed]

Abstreiter, G.

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612 (2002).
[CrossRef] [PubMed]

Aizpurua, J.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136 (2008).
[CrossRef]

Akimov, A. V.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de L. Snapp, A. V. Akimov, M. Jo, M. D. Lukin, and H. K. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nature 5, 475 (2009).

Andrä, G.

M. Becker, V. Sivakov, G. Andrä, R. Geiger, J. Schreiber, S. Hoffmann, J. Michler, A. P. Milenin, P. Werner, and S. H. Christiansen, “The SERS and TERS effects obtained by gold droplets on top of Si nanowires,” Nano Lett. 7, 75 (2007).
[CrossRef] [PubMed]

Artuso, R. D.

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle system: Double peaked Fano structure and bistability,” Nano Lett. 8, 2106 (2008).
[CrossRef] [PubMed]

Bartlett, P. N.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5, 2262 (2005).
[CrossRef] [PubMed]

Baumberg, J. J.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5, 2262 (2005).
[CrossRef] [PubMed]

Becker, M.

M. Becker, V. Sivakov, G. Andrä, R. Geiger, J. Schreiber, S. Hoffmann, J. Michler, A. P. Milenin, P. Werner, and S. H. Christiansen, “The SERS and TERS effects obtained by gold droplets on top of Si nanowires,” Nano Lett. 7, 75 (2007).
[CrossRef] [PubMed]

Beham, E.

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612 (2002).
[CrossRef] [PubMed]

Bichler, M.

S. Stufler, P. Ester, A. Zrenner, and M. Bichler, “Quantum optical properties of a single InxGa1−xAs-GaAs quantum dot two-level system,” Phys. Rev. B 72, 121301 (2005).
[CrossRef]

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612 (2002).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508 (2006).
[CrossRef] [PubMed]

Bradley, A. L.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’Ko, N. Gaponik, and E. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89, 253118 (2006).
[CrossRef]

Braun, D.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett. 5, 1371 (2005).
[CrossRef] [PubMed]

Bryant, G.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136 (2008).
[CrossRef]

Bryant, G. W.

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle system: Double peaked Fano structure and bistability,” Nano Lett. 8, 2106 (2008).
[CrossRef] [PubMed]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef] [PubMed]

Burger, S.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95, 200801 (2005).
[CrossRef] [PubMed]

Buu, O.

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304, 74 (2004).
[CrossRef] [PubMed]

Byrne, S. J.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’Ko, N. Gaponik, and E. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89, 253118 (2006).
[CrossRef]

Camarota, B.

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304, 74 (2004).
[CrossRef] [PubMed]

Carmeli, I.

A. O. Govorov, and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett. 7, 620 (2007).
[CrossRef] [PubMed]

Christiansen, S. H.

M. Becker, V. Sivakov, G. Andrä, R. Geiger, J. Schreiber, S. Hoffmann, J. Michler, A. P. Milenin, P. Werner, and S. H. Christiansen, “The SERS and TERS effects obtained by gold droplets on top of Si nanowires,” Nano Lett. 7, 75 (2007).
[CrossRef] [PubMed]

Cintra, S.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5, 2262 (2005).
[CrossRef] [PubMed]

Dejugnat, C.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett. 5, 1371 (2005).
[CrossRef] [PubMed]

Devaux, E.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508 (2006).
[CrossRef] [PubMed]

Diaz, A.

Dickinson, M. E.

M. E. Dickinson, K. V. Wolf, and A. B. Mann, “Nanomechanical and chemical characterization of incipient in vitro carious lesions in human dental enamel,” Arch. Oral Biol. 52, 753 (2007).
[CrossRef] [PubMed]

Duan, S.

J. Y. Yan, W. Zhang, S. Duan, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
[CrossRef]

Durach, M.

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 3145 (2007).
[CrossRef] [PubMed]

Ebbesen, T. W.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508 (2006).
[CrossRef] [PubMed]

Ekinci, K. L.

K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76, 061101 (2006).
[CrossRef]

K. L. Ekinci, X. M. H. Huang, and M. L. Roukes, “Ultrasensitive nanoelectromechanical mass detection,” Appl. Phys. Lett. 84, 4469 (2004).
[CrossRef]

Emory, S. R.

S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102 (1997).
[CrossRef] [PubMed]

Engheta, N.

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698 (2007).
[CrossRef] [PubMed]

Ester, P.

S. Stufler, P. Ester, A. Zrenner, and M. Bichler, “Quantum optical properties of a single InxGa1−xAs-GaAs quantum dot two-level system,” Phys. Rev. B 72, 121301 (2005).
[CrossRef]

Eychmüller, E.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’Ko, N. Gaponik, and E. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89, 253118 (2006).
[CrossRef]

Falk, A. L.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de L. Snapp, A. V. Akimov, M. Jo, M. D. Lukin, and H. K. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nature 5, 475 (2009).

Findeis, F.

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612 (2002).
[CrossRef] [PubMed]

Forkey, J. N.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V Walks hand-overhand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061 (2003).
[CrossRef] [PubMed]

Gaponik, N.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’Ko, N. Gaponik, and E. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89, 253118 (2006).
[CrossRef]

Geiger, R.

M. Becker, V. Sivakov, G. Andrä, R. Geiger, J. Schreiber, S. Hoffmann, J. Michler, A. P. Milenin, P. Werner, and S. H. Christiansen, “The SERS and TERS effects obtained by gold droplets on top of Si nanowires,” Nano Lett. 7, 75 (2007).
[CrossRef] [PubMed]

Goldman, Y. E.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V Walks hand-overhand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061 (2003).
[CrossRef] [PubMed]

Govorov, A. O.

J. Y. Yan, W. Zhang, S. Duan, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
[CrossRef]

A. O. Govorov, and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett. 7, 620 (2007).
[CrossRef] [PubMed]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef] [PubMed]

Grabhorn, H.

A. Otto, I. Mrozek, and H. Grabhorn, “Surface-enhanced Raman scattering,” J. Phys. Condens. Matter 4, 1143 (1992).
[CrossRef]

Gun’Ko, Y. K.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’Ko, N. Gaponik, and E. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89, 253118 (2006).
[CrossRef]

Ha, T.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V Walks hand-overhand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061 (2003).
[CrossRef] [PubMed]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95, 200801 (2005).
[CrossRef] [PubMed]

T. Kalkbrenner, U. Håkanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4, 2309 (2004).
[CrossRef]

Hao, F.

H. Wei, F. Hao, Y. Z. Huang, W. Z. Wang, P. Nordlander, and H. X. Xu, “Polarization dependence of surface enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8, 2497 (2008).
[CrossRef] [PubMed]

Henkel, C.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95, 200801 (2005).
[CrossRef] [PubMed]

Hoffmann, S.

M. Becker, V. Sivakov, G. Andrä, R. Geiger, J. Schreiber, S. Hoffmann, J. Michler, A. P. Milenin, P. Werner, and S. H. Christiansen, “The SERS and TERS effects obtained by gold droplets on top of Si nanowires,” Nano Lett. 7, 75 (2007).
[CrossRef] [PubMed]

Huang, X. M. H.

K. L. Ekinci, X. M. H. Huang, and M. L. Roukes, “Ultrasensitive nanoelectromechanical mass detection,” Appl. Phys. Lett. 84, 4469 (2004).
[CrossRef]

Huang, Y. Z.

H. Wei, F. Hao, Y. Z. Huang, W. Z. Wang, P. Nordlander, and H. X. Xu, “Polarization dependence of surface enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8, 2497 (2008).
[CrossRef] [PubMed]

Imamoglu, A.

I. Wilson-Rae, P. Zoller, and A. Imamoglu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92, 075507 (2004).
[CrossRef] [PubMed]

Jo, M.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de L. Snapp, A. V. Akimov, M. Jo, M. D. Lukin, and H. K. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nature 5, 475 (2009).

Kalkbrenner, T.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95, 200801 (2005).
[CrossRef] [PubMed]

T. Kalkbrenner, U. Håkanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4, 2309 (2004).
[CrossRef]

Kang, K.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de L. Snapp, A. V. Akimov, M. Jo, M. D. Lukin, and H. K. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nature 5, 475 (2009).

Kelf, T. A.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5, 2262 (2005).
[CrossRef] [PubMed]

Khoo, I. C.

Komarala, V. K.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’Ko, N. Gaponik, and E. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89, 253118 (2006).
[CrossRef]

Koppens, F. H. L.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de L. Snapp, A. V. Akimov, M. Jo, M. D. Lukin, and H. K. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nature 5, 475 (2009).

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

LaHaye, M. D.

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304, 74 (2004).
[CrossRef] [PubMed]

Laluet, J. Y.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508 (2006).
[CrossRef] [PubMed]

Li, J. J.

J. J. Li and K. D. Zhu, “A scheme for measuring vibrational frequency and coupling strength in a coupled nanomechanical resonator-quantum dot system,” Appl. Phys. Lett. 94, 063116 (2009).
[CrossRef]

Liang, X.

Lim, S. H.

S. H. Lim, D. Raorane, S. Satyanarayana, and A. Majumdar, “Nano-chemo-mechanical sensor array platform for high-throughput chemical analysis,” Sens. Actuators B 119, 466 (2006).
[CrossRef]

Lu, Z. E.

Z. E. Lu and K. D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009).
[CrossRef]

Z. E. Lu and K. D. Zhu, “Enhancing Kerr nonlinearity of a strong coupled exciton-plasmon in hybrid nanocrystal molecules,” J. Phys. B 41, 185503 (2008).
[CrossRef]

Lukin, M. D.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de L. Snapp, A. V. Akimov, M. Jo, M. D. Lukin, and H. K. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nature 5, 475 (2009).

Majumdar, A.

S. H. Lim, D. Raorane, S. Satyanarayana, and A. Majumdar, “Nano-chemo-mechanical sensor array platform for high-throughput chemical analysis,” Sens. Actuators B 119, 466 (2006).
[CrossRef]

Mann, A. B.

M. E. Dickinson, K. V. Wolf, and A. B. Mann, “Nanomechanical and chemical characterization of incipient in vitro carious lesions in human dental enamel,” Arch. Oral Biol. 52, 753 (2007).
[CrossRef] [PubMed]

McKinney, S. A.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V Walks hand-overhand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061 (2003).
[CrossRef] [PubMed]

Michler, J.

M. Becker, V. Sivakov, G. Andrä, R. Geiger, J. Schreiber, S. Hoffmann, J. Michler, A. P. Milenin, P. Werner, and S. H. Christiansen, “The SERS and TERS effects obtained by gold droplets on top of Si nanowires,” Nano Lett. 7, 75 (2007).
[CrossRef] [PubMed]

Milenin, A. P.

M. Becker, V. Sivakov, G. Andrä, R. Geiger, J. Schreiber, S. Hoffmann, J. Michler, A. P. Milenin, P. Werner, and S. H. Christiansen, “The SERS and TERS effects obtained by gold droplets on top of Si nanowires,” Nano Lett. 7, 75 (2007).
[CrossRef] [PubMed]

Möhwald, H.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett. 5, 1371 (2005).
[CrossRef] [PubMed]

Mrozek, I.

A. Otto, I. Mrozek, and H. Grabhorn, “Surface-enhanced Raman scattering,” J. Phys. Condens. Matter 4, 1143 (1992).
[CrossRef]

Nelson, K.

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 3145 (2007).
[CrossRef] [PubMed]

Nie, S. M.

S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102 (1997).
[CrossRef] [PubMed]

Nordlander, P.

H. Wei, F. Hao, Y. Z. Huang, W. Z. Wang, P. Nordlander, and H. X. Xu, “Polarization dependence of surface enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8, 2497 (2008).
[CrossRef] [PubMed]

Otto, A.

A. Otto, I. Mrozek, and H. Grabhorn, “Surface-enhanced Raman scattering,” J. Phys. Condens. Matter 4, 1143 (1992).
[CrossRef]

Parak, W. J.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett. 5, 1371 (2005).
[CrossRef] [PubMed]

Park, H. K.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de L. Snapp, A. V. Akimov, M. Jo, M. D. Lukin, and H. K. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nature 5, 475 (2009).

Pelton, M.

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136 (2008).
[CrossRef]

Rakovich, Y. P.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’Ko, N. Gaponik, and E. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89, 253118 (2006).
[CrossRef]

Raorane, D.

S. H. Lim, D. Raorane, S. Satyanarayana, and A. Majumdar, “Nano-chemo-mechanical sensor array platform for high-throughput chemical analysis,” Sens. Actuators B 119, 466 (2006).
[CrossRef]

Rogach, A. L.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett. 5, 1371 (2005).
[CrossRef] [PubMed]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

Roukes, M. L.

K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76, 061101 (2006).
[CrossRef]

K. L. Ekinci, X. M. H. Huang, and M. L. Roukes, “Ultrasensitive nanoelectromechanical mass detection,” Appl. Phys. Lett. 84, 4469 (2004).
[CrossRef]

Rusina, A.

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 3145 (2007).
[CrossRef] [PubMed]

Russell, A. E.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5, 2262 (2005).
[CrossRef] [PubMed]

Sadeghi, S. M.

S. M. Sadeghi, “Plasmonic metaresonances: Molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B 79, 233309 (2009).
[CrossRef]

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95, 200801 (2005).
[CrossRef] [PubMed]

T. Kalkbrenner, U. Håkanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4, 2309 (2004).
[CrossRef]

Satyanarayana, S.

S. H. Lim, D. Raorane, S. Satyanarayana, and A. Majumdar, “Nano-chemo-mechanical sensor array platform for high-throughput chemical analysis,” Sens. Actuators B 119, 466 (2006).
[CrossRef]

Schädle, A.

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95, 200801 (2005).
[CrossRef] [PubMed]

Schreiber, J.

M. Becker, V. Sivakov, G. Andrä, R. Geiger, J. Schreiber, S. Hoffmann, J. Michler, A. P. Milenin, P. Werner, and S. H. Christiansen, “The SERS and TERS effects obtained by gold droplets on top of Si nanowires,” Nano Lett. 7, 75 (2007).
[CrossRef] [PubMed]

Schwab, K. C.

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304, 74 (2004).
[CrossRef] [PubMed]

Selvin, P. R.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V Walks hand-overhand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061 (2003).
[CrossRef] [PubMed]

Sivakov, V.

M. Becker, V. Sivakov, G. Andrä, R. Geiger, J. Schreiber, S. Hoffmann, J. Michler, A. P. Milenin, P. Werner, and S. H. Christiansen, “The SERS and TERS effects obtained by gold droplets on top of Si nanowires,” Nano Lett. 7, 75 (2007).
[CrossRef] [PubMed]

Skirtach, A. G.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett. 5, 1371 (2005).
[CrossRef] [PubMed]

Snapp, N. de L.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de L. Snapp, A. V. Akimov, M. Jo, M. D. Lukin, and H. K. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nature 5, 475 (2009).

Stockman, M. I.

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 3145 (2007).
[CrossRef] [PubMed]

Stufler, S.

S. Stufler, P. Ester, A. Zrenner, and M. Bichler, “Quantum optical properties of a single InxGa1−xAs-GaAs quantum dot two-level system,” Phys. Rev. B 72, 121301 (2005).
[CrossRef]

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612 (2002).
[CrossRef] [PubMed]

Sugawara, Y.

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5, 2262 (2005).
[CrossRef] [PubMed]

Sukhorukov, G. B.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett. 5, 1371 (2005).
[CrossRef] [PubMed]

Susha, A. S.

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett. 5, 1371 (2005).
[CrossRef] [PubMed]

Volkov, V. S.

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508 (2006).
[CrossRef] [PubMed]

Wang, W. Z.

H. Wei, F. Hao, Y. Z. Huang, W. Z. Wang, P. Nordlander, and H. X. Xu, “Polarization dependence of surface enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8, 2497 (2008).
[CrossRef] [PubMed]

Wei, H.

H. Wei, F. Hao, Y. Z. Huang, W. Z. Wang, P. Nordlander, and H. X. Xu, “Polarization dependence of surface enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8, 2497 (2008).
[CrossRef] [PubMed]

Weiner, B.

Werner, D. H.

Werner, P.

M. Becker, V. Sivakov, G. Andrä, R. Geiger, J. Schreiber, S. Hoffmann, J. Michler, A. P. Milenin, P. Werner, and S. H. Christiansen, “The SERS and TERS effects obtained by gold droplets on top of Si nanowires,” Nano Lett. 7, 75 (2007).
[CrossRef] [PubMed]

Wilson-Rae, I.

I. Wilson-Rae, P. Zoller, and A. Imamoglu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92, 075507 (2004).
[CrossRef] [PubMed]

Wolf, K. V.

M. E. Dickinson, K. V. Wolf, and A. B. Mann, “Nanomechanical and chemical characterization of incipient in vitro carious lesions in human dental enamel,” Arch. Oral Biol. 52, 753 (2007).
[CrossRef] [PubMed]

Xu, H. X.

H. Wei, F. Hao, Y. Z. Huang, W. Z. Wang, P. Nordlander, and H. X. Xu, “Polarization dependence of surface enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8, 2497 (2008).
[CrossRef] [PubMed]

Yan, J. Y.

J. Y. Yan, W. Zhang, S. Duan, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
[CrossRef]

Yildiz, A.

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V Walks hand-overhand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061 (2003).
[CrossRef] [PubMed]

Yu, C. L.

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de L. Snapp, A. V. Akimov, M. Jo, M. D. Lukin, and H. K. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nature 5, 475 (2009).

Zhang, W.

J. Y. Yan, W. Zhang, S. Duan, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef] [PubMed]

Zhu, K. D.

Z. E. Lu and K. D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009).
[CrossRef]

J. J. Li and K. D. Zhu, “A scheme for measuring vibrational frequency and coupling strength in a coupled nanomechanical resonator-quantum dot system,” Appl. Phys. Lett. 94, 063116 (2009).
[CrossRef]

Z. E. Lu and K. D. Zhu, “Enhancing Kerr nonlinearity of a strong coupled exciton-plasmon in hybrid nanocrystal molecules,” J. Phys. B 41, 185503 (2008).
[CrossRef]

Zoller, P.

I. Wilson-Rae, P. Zoller, and A. Imamoglu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92, 075507 (2004).
[CrossRef] [PubMed]

Zrenner, A.

S. Stufler, P. Ester, A. Zrenner, and M. Bichler, “Quantum optical properties of a single InxGa1−xAs-GaAs quantum dot two-level system,” Phys. Rev. B 72, 121301 (2005).
[CrossRef]

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612 (2002).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’Ko, N. Gaponik, and E. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89, 253118 (2006).
[CrossRef]

K. L. Ekinci, X. M. H. Huang, and M. L. Roukes, “Ultrasensitive nanoelectromechanical mass detection,” Appl. Phys. Lett. 84, 4469 (2004).
[CrossRef]

J. J. Li and K. D. Zhu, “A scheme for measuring vibrational frequency and coupling strength in a coupled nanomechanical resonator-quantum dot system,” Appl. Phys. Lett. 94, 063116 (2009).
[CrossRef]

Arch. Oral Biol. (1)

M. E. Dickinson, K. V. Wolf, and A. B. Mann, “Nanomechanical and chemical characterization of incipient in vitro carious lesions in human dental enamel,” Arch. Oral Biol. 52, 753 (2007).
[CrossRef] [PubMed]

J. Phys. B (2)

Z. E. Lu and K. D. Zhu, “Enhancing Kerr nonlinearity of a strong coupled exciton-plasmon in hybrid nanocrystal molecules,” J. Phys. B 41, 185503 (2008).
[CrossRef]

Z. E. Lu and K. D. Zhu, “Slow light in an artificial hybrid nanocrystal complex,” J. Phys. B 42, 015502 (2009).
[CrossRef]

J. Phys. Condens. Matter (1)

A. Otto, I. Mrozek, and H. Grabhorn, “Surface-enhanced Raman scattering,” J. Phys. Condens. Matter 4, 1143 (1992).
[CrossRef]

Laser Photon. Rev. (1)

M. Pelton, J. Aizpurua, and G. Bryant, “Metal-nanoparticle plasmonics,” Laser Photon. Rev. 2, 136 (2008).
[CrossRef]

Nano Lett. (8)

T. Kalkbrenner, U. Håkanson, and V. Sandoghdar, “Tomographic plasmon spectroscopy of a single gold nanoparticle,” Nano Lett. 4, 2309 (2004).
[CrossRef]

J. J. Baumberg, T. A. Kelf, Y. Sugawara, S. Cintra, M. E. Abdelsalam, P. N. Bartlett, and A. E. Russell, “Angle-resolved surface-enhanced Raman scattering on metallic nanostructured plasmonic crystals,” Nano Lett. 5, 2262 (2005).
[CrossRef] [PubMed]

H. Wei, F. Hao, Y. Z. Huang, W. Z. Wang, P. Nordlander, and H. X. Xu, “Polarization dependence of surface enhanced Raman scattering in gold nanoparticle-nanowire systems,” Nano Lett. 8, 2497 (2008).
[CrossRef] [PubMed]

M. Becker, V. Sivakov, G. Andrä, R. Geiger, J. Schreiber, S. Hoffmann, J. Michler, A. P. Milenin, P. Werner, and S. H. Christiansen, “The SERS and TERS effects obtained by gold droplets on top of Si nanowires,” Nano Lett. 7, 75 (2007).
[CrossRef] [PubMed]

R. D. Artuso and G. W. Bryant, “Optical response of strongly coupled quantum dot-metal nanoparticle system: Double peaked Fano structure and bistability,” Nano Lett. 8, 2106 (2008).
[CrossRef] [PubMed]

A. O. Govorov, and I. Carmeli, “Hybrid structures composed of photosynthetic system and metal nanoparticles: plasmon enhancement effect,” Nano Lett. 7, 620 (2007).
[CrossRef] [PubMed]

A. G. Skirtach, C. Dejugnat, D. Braun, A. S. Susha, A. L. Rogach, W. J. Parak, H. Möhwald, and G. B. Sukhorukov, “The role of metal nanoparticles in remote release of encapsulated materials,” Nano Lett. 5, 1371 (2005).
[CrossRef] [PubMed]

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett. 7, 3145 (2007).
[CrossRef] [PubMed]

Nature (3)

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J. Y. Laluet, and T. W. Ebbesen, “Channel plasmon subwavelength waveguide components including interferometers and ring resonators,” Nature 440, 508 (2006).
[CrossRef] [PubMed]

A. L. Falk, F. H. L. Koppens, C. L. Yu, K. Kang, N. de L. Snapp, A. V. Akimov, M. Jo, M. D. Lukin, and H. K. Park, “Near-field electrical detection of optical plasmons and single-plasmon sources,” Nature 5, 475 (2009).

A. Zrenner, E. Beham, S. Stufler, F. Findeis, M. Bichler, and G. Abstreiter, “Coherent properties of a two-level system based on a quantum-dot photodiode,” Nature 418, 612 (2002).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (3)

J. Y. Yan, W. Zhang, S. Duan, and A. O. Govorov, “Optical properties of coupled metal-semiconductor and metal-molecule nanocrystal complexes: Role of multipole effects,” Phys. Rev. B 77, 165301 (2008).
[CrossRef]

S. Stufler, P. Ester, A. Zrenner, and M. Bichler, “Quantum optical properties of a single InxGa1−xAs-GaAs quantum dot two-level system,” Phys. Rev. B 72, 121301 (2005).
[CrossRef]

S. M. Sadeghi, “Plasmonic metaresonances: Molecular resonances in quantum dot-metallic nanoparticle conjugates,” Phys. Rev. B 79, 233309 (2009).
[CrossRef]

Phys. Rev. Lett. (4)

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97, 017402 (2006).
[CrossRef]

W. Zhang, A. O. Govorov, and G. W. Bryant, “Semiconductor-metal nanoparticle molecules: Hybrid excitons and the nonlinear Fano effect,” Phys. Rev. Lett. 97, 146804 (2006).
[CrossRef] [PubMed]

I. Wilson-Rae, P. Zoller, and A. Imamoglu, “Laser cooling of a nanomechanical resonator mode to its quantum ground state,” Phys. Rev. Lett. 92, 075507 (2004).
[CrossRef] [PubMed]

T. Kalkbrenner, U. Håkanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nanoantenna,” Phys. Rev. Lett. 95, 200801 (2005).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

K. L. Ekinci and M. L. Roukes, “Nanoelectromechanical systems,” Rev. Sci. Instrum. 76, 061101 (2006).
[CrossRef]

Science (4)

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304, 74 (2004).
[CrossRef] [PubMed]

N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317, 1698 (2007).
[CrossRef] [PubMed]

S. M. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102 (1997).
[CrossRef] [PubMed]

A. Yildiz, J. N. Forkey, S. A. McKinney, T. Ha, Y. E. Goldman, and P. R. Selvin, “Myosin V Walks hand-overhand: single fluorophore imaging with 1.5-nm localization,” Science 300, 2061 (2003).
[CrossRef] [PubMed]

Sens. Actuators B (1)

S. H. Lim, D. Raorane, S. Satyanarayana, and A. Majumdar, “Nano-chemo-mechanical sensor array platform for high-throughput chemical analysis,” Sens. Actuators B 119, 466 (2006).
[CrossRef]

Other (2)

A. Yariv, Quantum Electronics (Wiley, New York, 1975).

R. W. Boyd, Nonlinear Optics (Academic, San Diego, California, 1992) p.225.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematic diagram of a metal nanoparticle and a quantum dot embedded in a nanomechanical resonator and the energy-level diagram of an exciton coupled to plasmons and phonons.

Fig. 2.
Fig. 2.

The probe absorption spectrum as a function of the detuning between probe field and exciton with or without MNP for several separations. The parameters are Γ1 = 2Γ2 = 0.3GHz, ωn = 1.2GHz, γn = 1 × 10−4 GHz, β = 0.06, Δ = 1.2GHz, Ω2 = 0.09(GHz)2, a 0 = 2.5nm, μ = 40D, ωp = 1.37 × 103 THz, γAu = ωp /60. The inset shows the relation between the splitting and the center to center distance R between MNP and SQD.

Fig. 3.
Fig. 3.

(a) The absorption spectrum of the probe field as a function of probe-exciton detuning. Γ1 = 2Γ2 = 0.3GHz, ωn = 1.2GHz, γn = 1 × 10−4 GHz, β = 0.06, Δ = 0, Ω2 = 0.09(GHz)2. (b)The resonance absorption and amplification peaks as a function of probe-exciton detuning for different separations between MNP and SQD, a 0 = 2.5nm, μ = 40D, ωp = 1.37 × 103 THz, γAu = ωp /60.

Fig. 4.
Fig. 4.

The gain enhancement and absorption enhancement as a function of the separation between gold MNP and SQD. The other parameters are the same as in Fig.3.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

H = ω ex S z + ω n a a + ω n β S z ( a + a ) μ ( E SQD S + E SQD * S ) ,
H = Δ S z + ω n a a + ω n β S z ( a + a ) μ ( E ˜ SQD S + E ˜ SQD * S ) ,
d S z d t = Γ 1 ( S z + 1 2 ) + i Ω ( A * S AS ) + i μ 2 S S ( B B * ) + i μ ( A * E s * S e i δ t A E s S + e i δ t ) .
d S d t = [ Γ 2 + i ( Δ + ω n β Q ) ] S i 2 Ω A S z i 2 μ A E s e i δ t i 2 μ 2 S z S ,
d 2 Q d t 2 + γ n dQ dt + ω n 2 Q = 2 β ω n 2 S z ,
χ ( ω s ) = A 2 D w 0 [ ( 2 E + 2 Ω 0 2 A ) ( C + δ 0 ) 2 B 0 ω 0 2 A w 0 ] A w 0 G CG D [ A * ( D δ 0 ) + i B I 0 A w 0 ] [ ( 2 E + 2 ω 0 A ) ( C + δ 0 ) 2 B 0 Ω 0 2 A w 0 ] ,
( w 0 + 1 ) [ ( 1 B I 0 w 0 ) 2 + ( Δ 0 ω n 0 β 2 w 0 + B R 0 w 0 ) 2 ] + 2 Ω 0 2 A 2 w 0 = 0 .

Metrics