Abstract

This work presents a novel approach for a miniaturized optical scanning module based on lateral and piston motion of two commercial lenses by MEMS actuation. Two aspheric glass lenses of 1 mm diameter are assembled on two electrostatically actuated microstages moving along perpendicular axes to tilt optical path. The compact integration secures the effective beam aperture of 0.6 mm within the device width of 2 mm. The lens mass provides high-Q motions at low operating voltages of DC 5 V and AC 10 Vpp, i.e., the lateral angle of ±4.6° at 277 Hz and the vertical angle of ±5.3° at 204 Hz. The device can provide a new direction for miniaturizing laser scanning based endoscopes or handheld projectors.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Piyawattanametha, E. D. Cocker, L. D. Burns, R. P. J. Barretto, J. C. Jung, H. Ra, O. Solgaard, and M. J. Schnitzer, “In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror,” Opt. Lett. 34(15), 2309–2311 (2009).
    [CrossRef] [PubMed]
  2. J. T. C. Liu, M. J. Mandella, H. Ra, L. K. Wong, O. Solgaard, G. S. Kino, W. Piyawattanametha, C. H. Contag, and T. D. Wang, “Miniature near-infrared dual-axes confocal microscope utilizing a two-dimensional microelectromechanical systems scanner,” Opt. Lett. 32(3), 256–258 (2007).
    [CrossRef] [PubMed]
  3. R. A. Conant, J. T. Nee, K. Y. Lau, and R. S. Muller, “A flat high-frequency scanning micromirror,” in Proceedings of the Solid-State Sensor and Actuator Workshop, (Transducers Research Foundation, Cleveland, Ohio, 2000), pp. 6–9.
  4. H. Toshiyoshi, G. D. J. Su, J. LaCosse, and M. C. Wu, “A surface micromachined optical scanner array using photoresist lenses fabricated by a thermal reflow process,” J. Lightwave Technol. 21(7), 1700–1708 (2003).
    [CrossRef]
  5. A. Jain and H. Xie, “An electrothermal microlens scanner with low-voltage large-vertical-displacement actuation,” IEEE Photon. Technol. Lett. 17(9), 1971–1973 (2005).
    [CrossRef]
  6. C. P. B. Siu, H. Zeng, and M. Chiao, “Magnetically actuated MEMS microlens scanner for in vivo medical imaging,” Opt. Express 15(18), 11154–11166 (2007), http://www.opticsinfobase.org/VJBO/abstract.cfm?URI=oe-15-18-11154 .
    [CrossRef] [PubMed]
  7. S. Kwon and L. P. Lee, “Micromachined transmissive scanning confocal microscope,” Opt. Lett. 29(7), 706–708 (2004).
    [CrossRef] [PubMed]
  8. K. Takahashi, H. N. Kwon, M. Mita, K. Saruta, J.-H. Lee, H. Fujita, and H. Toshiyoshi, “A silicon micromachined f–θ micro lens scanner array by double-deck device design technique,” IEEE J. Sel. Top. Quantum Electron. 13(2), 277–282 (2007).
    [CrossRef]
  9. X. Liu, M. J. Cobb, Y. Chen, M. B. Kimmey, and X. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29(15), 1763–1765 (2004).
    [CrossRef] [PubMed]
  10. T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10(2), 024010 (2005).
    [CrossRef] [PubMed]
  11. Y. Wang, M. Bachman, G. P. Li, S. Guo, B. J. F. Wong, and Z. Chen, “Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography,” Opt. Lett. 30(1), 53–55 (2005).
    [CrossRef] [PubMed]
  12. Y. Fukuta, H. Fujita, and H. Toshiyoshi, “Vapor Hydrofluoric Acid Sacrificial Release Technique for Micro Electro Mechanical Systems Using Labware,” Jpn. J. Appl. Phys. 42(Part 1, No. 6A), 3690–3694 (2003).
    [CrossRef]
  13. Y. S. S. Chiu, K. D. J. Chang, R. W. Johnstone, and M. Parameswaran, “Fuse-tethers in MEMS,” J. Micromech. Microeng. 16(3), 480–486 (2006).
    [CrossRef]
  14. S. S. Rao, Mechanical Vibrations, (Reading: Addison-Wesley, 1990), Chap. 3.
  15. H. J. Shin, M. C. Pierce, D. Lee, H. Ra, O. Solgaard, and R. Richards-Kortum, “Fiber-optic confocal microscope using a MEMS scanner and miniature objective lens,” Opt. Express 15(15), 9113–9122 (2007), http://www.opticsinfobase.org/VJBO/abstract.cfm?URI=oe-15-15-9113 .
    [CrossRef] [PubMed]

2009

2007

2006

Y. S. S. Chiu, K. D. J. Chang, R. W. Johnstone, and M. Parameswaran, “Fuse-tethers in MEMS,” J. Micromech. Microeng. 16(3), 480–486 (2006).
[CrossRef]

2005

A. Jain and H. Xie, “An electrothermal microlens scanner with low-voltage large-vertical-displacement actuation,” IEEE Photon. Technol. Lett. 17(9), 1971–1973 (2005).
[CrossRef]

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10(2), 024010 (2005).
[CrossRef] [PubMed]

Y. Wang, M. Bachman, G. P. Li, S. Guo, B. J. F. Wong, and Z. Chen, “Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography,” Opt. Lett. 30(1), 53–55 (2005).
[CrossRef] [PubMed]

2004

2003

H. Toshiyoshi, G. D. J. Su, J. LaCosse, and M. C. Wu, “A surface micromachined optical scanner array using photoresist lenses fabricated by a thermal reflow process,” J. Lightwave Technol. 21(7), 1700–1708 (2003).
[CrossRef]

Y. Fukuta, H. Fujita, and H. Toshiyoshi, “Vapor Hydrofluoric Acid Sacrificial Release Technique for Micro Electro Mechanical Systems Using Labware,” Jpn. J. Appl. Phys. 42(Part 1, No. 6A), 3690–3694 (2003).
[CrossRef]

Bachman, M.

Barretto, R. P. J.

Burns, L. D.

Chang, K. D. J.

Y. S. S. Chiu, K. D. J. Chang, R. W. Johnstone, and M. Parameswaran, “Fuse-tethers in MEMS,” J. Micromech. Microeng. 16(3), 480–486 (2006).
[CrossRef]

Chen, Y.

Chen, Z.

Chiao, M.

Chiu, Y. S. S.

Y. S. S. Chiu, K. D. J. Chang, R. W. Johnstone, and M. Parameswaran, “Fuse-tethers in MEMS,” J. Micromech. Microeng. 16(3), 480–486 (2006).
[CrossRef]

Cobb, M. J.

Cocker, E. D.

Contag, C. H.

Fujita, H.

K. Takahashi, H. N. Kwon, M. Mita, K. Saruta, J.-H. Lee, H. Fujita, and H. Toshiyoshi, “A silicon micromachined f–θ micro lens scanner array by double-deck device design technique,” IEEE J. Sel. Top. Quantum Electron. 13(2), 277–282 (2007).
[CrossRef]

Y. Fukuta, H. Fujita, and H. Toshiyoshi, “Vapor Hydrofluoric Acid Sacrificial Release Technique for Micro Electro Mechanical Systems Using Labware,” Jpn. J. Appl. Phys. 42(Part 1, No. 6A), 3690–3694 (2003).
[CrossRef]

Fukuta, Y.

Y. Fukuta, H. Fujita, and H. Toshiyoshi, “Vapor Hydrofluoric Acid Sacrificial Release Technique for Micro Electro Mechanical Systems Using Labware,” Jpn. J. Appl. Phys. 42(Part 1, No. 6A), 3690–3694 (2003).
[CrossRef]

Fukuyama, H.

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10(2), 024010 (2005).
[CrossRef] [PubMed]

Guo, S.

Ishihara, Y.

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10(2), 024010 (2005).
[CrossRef] [PubMed]

Jain, A.

A. Jain and H. Xie, “An electrothermal microlens scanner with low-voltage large-vertical-displacement actuation,” IEEE Photon. Technol. Lett. 17(9), 1971–1973 (2005).
[CrossRef]

Johnstone, R. W.

Y. S. S. Chiu, K. D. J. Chang, R. W. Johnstone, and M. Parameswaran, “Fuse-tethers in MEMS,” J. Micromech. Microeng. 16(3), 480–486 (2006).
[CrossRef]

Jung, J. C.

Kimmey, M. B.

Kino, G. S.

Kwon, H. N.

K. Takahashi, H. N. Kwon, M. Mita, K. Saruta, J.-H. Lee, H. Fujita, and H. Toshiyoshi, “A silicon micromachined f–θ micro lens scanner array by double-deck device design technique,” IEEE J. Sel. Top. Quantum Electron. 13(2), 277–282 (2007).
[CrossRef]

Kwon, S.

LaCosse, J.

Lee, D.

Lee, J.-H.

K. Takahashi, H. N. Kwon, M. Mita, K. Saruta, J.-H. Lee, H. Fujita, and H. Toshiyoshi, “A silicon micromachined f–θ micro lens scanner array by double-deck device design technique,” IEEE J. Sel. Top. Quantum Electron. 13(2), 277–282 (2007).
[CrossRef]

Lee, L. P.

Li, G. P.

Li, X.

Liu, J. T. C.

Liu, X.

Mandella, M. J.

Mita, M.

K. Takahashi, H. N. Kwon, M. Mita, K. Saruta, J.-H. Lee, H. Fujita, and H. Toshiyoshi, “A silicon micromachined f–θ micro lens scanner array by double-deck device design technique,” IEEE J. Sel. Top. Quantum Electron. 13(2), 277–282 (2007).
[CrossRef]

Ota, T.

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10(2), 024010 (2005).
[CrossRef] [PubMed]

Parameswaran, M.

Y. S. S. Chiu, K. D. J. Chang, R. W. Johnstone, and M. Parameswaran, “Fuse-tethers in MEMS,” J. Micromech. Microeng. 16(3), 480–486 (2006).
[CrossRef]

Pierce, M. C.

Piyawattanametha, W.

Ra, H.

Richards-Kortum, R.

Saruta, K.

K. Takahashi, H. N. Kwon, M. Mita, K. Saruta, J.-H. Lee, H. Fujita, and H. Toshiyoshi, “A silicon micromachined f–θ micro lens scanner array by double-deck device design technique,” IEEE J. Sel. Top. Quantum Electron. 13(2), 277–282 (2007).
[CrossRef]

Schnitzer, M. J.

Shin, H. J.

Siu, C. P. B.

Solgaard, O.

Su, G. D. J.

Takahashi, K.

K. Takahashi, H. N. Kwon, M. Mita, K. Saruta, J.-H. Lee, H. Fujita, and H. Toshiyoshi, “A silicon micromachined f–θ micro lens scanner array by double-deck device design technique,” IEEE J. Sel. Top. Quantum Electron. 13(2), 277–282 (2007).
[CrossRef]

Takamatsu, T.

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10(2), 024010 (2005).
[CrossRef] [PubMed]

Tanaka, H.

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10(2), 024010 (2005).
[CrossRef] [PubMed]

Toshiyoshi, H.

K. Takahashi, H. N. Kwon, M. Mita, K. Saruta, J.-H. Lee, H. Fujita, and H. Toshiyoshi, “A silicon micromachined f–θ micro lens scanner array by double-deck device design technique,” IEEE J. Sel. Top. Quantum Electron. 13(2), 277–282 (2007).
[CrossRef]

Y. Fukuta, H. Fujita, and H. Toshiyoshi, “Vapor Hydrofluoric Acid Sacrificial Release Technique for Micro Electro Mechanical Systems Using Labware,” Jpn. J. Appl. Phys. 42(Part 1, No. 6A), 3690–3694 (2003).
[CrossRef]

H. Toshiyoshi, G. D. J. Su, J. LaCosse, and M. C. Wu, “A surface micromachined optical scanner array using photoresist lenses fabricated by a thermal reflow process,” J. Lightwave Technol. 21(7), 1700–1708 (2003).
[CrossRef]

Wang, T. D.

Wang, Y.

Wong, B. J. F.

Wong, L. K.

Wu, M. C.

Xie, H.

A. Jain and H. Xie, “An electrothermal microlens scanner with low-voltage large-vertical-displacement actuation,” IEEE Photon. Technol. Lett. 17(9), 1971–1973 (2005).
[CrossRef]

Zeng, H.

IEEE J. Sel. Top. Quantum Electron.

K. Takahashi, H. N. Kwon, M. Mita, K. Saruta, J.-H. Lee, H. Fujita, and H. Toshiyoshi, “A silicon micromachined f–θ micro lens scanner array by double-deck device design technique,” IEEE J. Sel. Top. Quantum Electron. 13(2), 277–282 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

A. Jain and H. Xie, “An electrothermal microlens scanner with low-voltage large-vertical-displacement actuation,” IEEE Photon. Technol. Lett. 17(9), 1971–1973 (2005).
[CrossRef]

J. Biomed. Opt.

T. Ota, H. Fukuyama, Y. Ishihara, H. Tanaka, and T. Takamatsu, “In situ fluorescence imaging of organs through compact scanning head for confocal laser microscopy,” J. Biomed. Opt. 10(2), 024010 (2005).
[CrossRef] [PubMed]

J. Lightwave Technol.

J. Micromech. Microeng.

Y. S. S. Chiu, K. D. J. Chang, R. W. Johnstone, and M. Parameswaran, “Fuse-tethers in MEMS,” J. Micromech. Microeng. 16(3), 480–486 (2006).
[CrossRef]

Jpn. J. Appl. Phys.

Y. Fukuta, H. Fujita, and H. Toshiyoshi, “Vapor Hydrofluoric Acid Sacrificial Release Technique for Micro Electro Mechanical Systems Using Labware,” Jpn. J. Appl. Phys. 42(Part 1, No. 6A), 3690–3694 (2003).
[CrossRef]

Opt. Express

Opt. Lett.

Other

R. A. Conant, J. T. Nee, K. Y. Lau, and R. S. Muller, “A flat high-frequency scanning micromirror,” in Proceedings of the Solid-State Sensor and Actuator Workshop, (Transducers Research Foundation, Cleveland, Ohio, 2000), pp. 6–9.

S. S. Rao, Mechanical Vibrations, (Reading: Addison-Wesley, 1990), Chap. 3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) The optical layout of lens based two-dimensional scanning module consisting of a collimating lens, x and y scanning lenses and an objective lens. (b) Linear relationship between scanning length yi, and lens displacement u. (c) The variation of beam spot size along the lens displacement.

Fig. 2
Fig. 2

Microfabrication procedure for 2D MEMS lens scanning modules at wafer level.

Fig. 3
Fig. 3

(a) SEM image of the fabricated device. MEMS actuators, microstructures for integrating optical components, i.e., lens holders and fiber grooves, and tether structures to separate device from the wafer are integrated on a chip satisfying both optical and mechanical requirements. (b), (c) Perspective view of the 2D lens microstage. Fiber collimator, scanning lenses are integrated on a chip within a dimension of 2 x 2.7 x 5.5 mm3.

Fig. 4
Fig. 4

Frequency response of the lens microstages. The lateral resonance is at 276.5Hz and piston resonance is at 204.4Hz.

Fig. 5
Fig. 5

Two-dimensional optical scanning demonstration; (a) x-scanning, (b) y-scanning, (c) 2D Lissajous pattern. 891 μm x 1040 μm scanning area is achieved under the resonance excitation. (d) Elliptical scanning pattern excited at the same frequency. Since piston motion is not excited at resonance, y-scanning is much smaller than x-scanning.

Metrics