Abstract

In this paper we report evidence of structural color in Myxomycetes, a group of eukaryotic microorganisms with an uncertain taxonomic position. We investigated the Diachea leucopoda, which belongs to the Physarales order, Myxomycetes class, and found that its peridium-protective layer that encloses the mass of spores- is basically a corrugated layer of a transparent material, which produces a multicolored pointillistic effect, characteristic of this species. Scanning (SEM) and transmission (TEM) electron microspcopy techniques have been employed to characterize the samples. A simple optical model of a planar slab is proposed to calculate the reflectance. The chromaticity coordinates are obtained, and the results confirm that the color observed is a result of an interference effect.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Berthier, Iridescences, the physical colours of insects, (Springer Science + Business Media, LLC, France, 2007).
  2. S. Kinoshita, Structural colors in the realm of nature, (World Scientific Publishing Co., Singapore, 2008).
    [CrossRef]
  3. A. Parker, “515 million years of structural colour,” J. Opt. A, Pure Appl. Opt. 2, R15–R28 (2000).
    [CrossRef]
  4. M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev. 99, 1935–1961 (1999).
    [CrossRef]
  5. P. Vukusic, and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
    [CrossRef] [PubMed]
  6. P. Vukusic, and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface 6, S133–S148 (2009).
    [PubMed]
  7. S. M. Doucet, and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc. Interface 6, S115–S132 (2009).
    [PubMed]
  8. S. Yoshioka, and S. Kinoshita, “Single-scale spectroscopy of structurally colored butterflies: measurements of quantified reflectance and transmittance,” J. Opt. Soc. Am. A 23, 134–141 (2006).
    [CrossRef]
  9. W. Zhang, D. Zhang, T. Fan, J. Ding, J. Gu, Q. Guo, and H. Ogawa, “Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates,” Bioinspir. Biomim. 1, 89–95 (2006).
    [CrossRef]
  10. R. J. Martín-Palma, C. G. Pantano, and A. Lakhtakia, “Biomimetization of butterfly wings by the conformal evaporated-film-by rotation technique for photonics,” Appl. Phys. Lett. 93, 083901 (2008).
    [CrossRef]
  11. “Biomimetics and bioinspiration,” Proceedings of SPIE - The International Society for Optical Engineering Volume 7401, 183 (2009).
  12. S. Stephenson, and H. Stempen, “Myxomycetes. A handbook of slime molds,” Timber Press, Hong Kong, pp. 183 (2000).
  13. H. W. Keller, M. Skrabal, U. Eliasson, and T. Gaither, “Tree canopy biodiversity in the Great Smoky Mountains National Park: Ecological and developmental observations of a new Myxomycete species of Diachea,” Mycologia 96, 537–547 (2004).
    [CrossRef] [PubMed]
  14. J. D. Schoknecht, and H. W. Keller, “Peridial composition of white fructifications in the trichiales (Perichaena and Dianema),” Can. J. Bot. 55, 1807–1819 (1977).
    [CrossRef]
  15. H. C. Aldrich, “Influence of inorganic ions on color of lime in the myxomycetes,” Mycologia 74, 404–411 (1982).
    [CrossRef]
  16. T. W. Gaither, and H. W. Keller, “Taxonomic comparison of Diachea subsessilis and D. Deviata (Myxomycetes, Didymiaceae) using scanning electron microscopy,” Syst. Geogr. Plants 74, 217–230 (2004).
  17. T. P. O’Brien, and M. E. McCully, “The study of plant structure. Principles and selected methods,” Termarcarphi Pty. Ltd., Melbourne, Australia (1981).
  18. U. Eliasson, “Ultrastructure of Lycogala and Reticularia,” Trans. Br. Mycol. Soc. 77, 243–249 (1981).
    [CrossRef]
  19. E. F. Haskins, and M. D. McGuiness, “Sporophore ultrastructure of Echinostelium arboreum,” Mycologia 81, 303–307 (1989).
    [CrossRef]
  20. R. McHugh, and C. Reid, “Sporangial ultrastructure of Hemitrichia minor (Myxomycetes: Trichiales),” Mycol. Res. 94, 1144–1146 (1990).
    [CrossRef]
  21. E. Hecht, Optica, (Addison Wesley Iberoamericana ed., Madrid, 2000).
  22. R. Lozano, El color y su medición, (Americalee Ed., Argentina, 1978).
  23. B. Gralak, G. Tayeb, and S. Enoch, “Morpho butterflies wings color modeled with lamellar grating theory,” Opt. Express 9, 567 (2001).
    [CrossRef] [PubMed]
  24. The website Easy RGB http://www.easyrgb.com has the application Color calculator which converts color data to different color standards.

2009 (2)

P. Vukusic, and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface 6, S133–S148 (2009).
[PubMed]

S. M. Doucet, and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc. Interface 6, S115–S132 (2009).
[PubMed]

2008 (1)

R. J. Martín-Palma, C. G. Pantano, and A. Lakhtakia, “Biomimetization of butterfly wings by the conformal evaporated-film-by rotation technique for photonics,” Appl. Phys. Lett. 93, 083901 (2008).
[CrossRef]

2006 (2)

W. Zhang, D. Zhang, T. Fan, J. Ding, J. Gu, Q. Guo, and H. Ogawa, “Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates,” Bioinspir. Biomim. 1, 89–95 (2006).
[CrossRef]

S. Yoshioka, and S. Kinoshita, “Single-scale spectroscopy of structurally colored butterflies: measurements of quantified reflectance and transmittance,” J. Opt. Soc. Am. A 23, 134–141 (2006).
[CrossRef]

2004 (2)

H. W. Keller, M. Skrabal, U. Eliasson, and T. Gaither, “Tree canopy biodiversity in the Great Smoky Mountains National Park: Ecological and developmental observations of a new Myxomycete species of Diachea,” Mycologia 96, 537–547 (2004).
[CrossRef] [PubMed]

T. W. Gaither, and H. W. Keller, “Taxonomic comparison of Diachea subsessilis and D. Deviata (Myxomycetes, Didymiaceae) using scanning electron microscopy,” Syst. Geogr. Plants 74, 217–230 (2004).

2003 (1)

P. Vukusic, and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[CrossRef] [PubMed]

2001 (1)

2000 (1)

A. Parker, “515 million years of structural colour,” J. Opt. A, Pure Appl. Opt. 2, R15–R28 (2000).
[CrossRef]

1999 (1)

M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev. 99, 1935–1961 (1999).
[CrossRef]

1990 (1)

R. McHugh, and C. Reid, “Sporangial ultrastructure of Hemitrichia minor (Myxomycetes: Trichiales),” Mycol. Res. 94, 1144–1146 (1990).
[CrossRef]

1989 (1)

E. F. Haskins, and M. D. McGuiness, “Sporophore ultrastructure of Echinostelium arboreum,” Mycologia 81, 303–307 (1989).
[CrossRef]

1982 (1)

H. C. Aldrich, “Influence of inorganic ions on color of lime in the myxomycetes,” Mycologia 74, 404–411 (1982).
[CrossRef]

1981 (1)

U. Eliasson, “Ultrastructure of Lycogala and Reticularia,” Trans. Br. Mycol. Soc. 77, 243–249 (1981).
[CrossRef]

1977 (1)

J. D. Schoknecht, and H. W. Keller, “Peridial composition of white fructifications in the trichiales (Perichaena and Dianema),” Can. J. Bot. 55, 1807–1819 (1977).
[CrossRef]

Aldrich, H. C.

H. C. Aldrich, “Influence of inorganic ions on color of lime in the myxomycetes,” Mycologia 74, 404–411 (1982).
[CrossRef]

Ding, J.

W. Zhang, D. Zhang, T. Fan, J. Ding, J. Gu, Q. Guo, and H. Ogawa, “Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates,” Bioinspir. Biomim. 1, 89–95 (2006).
[CrossRef]

Doucet, S. M.

S. M. Doucet, and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc. Interface 6, S115–S132 (2009).
[PubMed]

Eliasson, U.

H. W. Keller, M. Skrabal, U. Eliasson, and T. Gaither, “Tree canopy biodiversity in the Great Smoky Mountains National Park: Ecological and developmental observations of a new Myxomycete species of Diachea,” Mycologia 96, 537–547 (2004).
[CrossRef] [PubMed]

U. Eliasson, “Ultrastructure of Lycogala and Reticularia,” Trans. Br. Mycol. Soc. 77, 243–249 (1981).
[CrossRef]

Enoch, S.

Fan, T.

W. Zhang, D. Zhang, T. Fan, J. Ding, J. Gu, Q. Guo, and H. Ogawa, “Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates,” Bioinspir. Biomim. 1, 89–95 (2006).
[CrossRef]

Gaither, T.

H. W. Keller, M. Skrabal, U. Eliasson, and T. Gaither, “Tree canopy biodiversity in the Great Smoky Mountains National Park: Ecological and developmental observations of a new Myxomycete species of Diachea,” Mycologia 96, 537–547 (2004).
[CrossRef] [PubMed]

Gaither, T. W.

T. W. Gaither, and H. W. Keller, “Taxonomic comparison of Diachea subsessilis and D. Deviata (Myxomycetes, Didymiaceae) using scanning electron microscopy,” Syst. Geogr. Plants 74, 217–230 (2004).

Gralak, B.

Gu, J.

W. Zhang, D. Zhang, T. Fan, J. Ding, J. Gu, Q. Guo, and H. Ogawa, “Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates,” Bioinspir. Biomim. 1, 89–95 (2006).
[CrossRef]

Guo, Q.

W. Zhang, D. Zhang, T. Fan, J. Ding, J. Gu, Q. Guo, and H. Ogawa, “Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates,” Bioinspir. Biomim. 1, 89–95 (2006).
[CrossRef]

Haskins, E. F.

E. F. Haskins, and M. D. McGuiness, “Sporophore ultrastructure of Echinostelium arboreum,” Mycologia 81, 303–307 (1989).
[CrossRef]

Keller, H. W.

H. W. Keller, M. Skrabal, U. Eliasson, and T. Gaither, “Tree canopy biodiversity in the Great Smoky Mountains National Park: Ecological and developmental observations of a new Myxomycete species of Diachea,” Mycologia 96, 537–547 (2004).
[CrossRef] [PubMed]

T. W. Gaither, and H. W. Keller, “Taxonomic comparison of Diachea subsessilis and D. Deviata (Myxomycetes, Didymiaceae) using scanning electron microscopy,” Syst. Geogr. Plants 74, 217–230 (2004).

J. D. Schoknecht, and H. W. Keller, “Peridial composition of white fructifications in the trichiales (Perichaena and Dianema),” Can. J. Bot. 55, 1807–1819 (1977).
[CrossRef]

Kinoshita, S.

Lakhtakia, A.

R. J. Martín-Palma, C. G. Pantano, and A. Lakhtakia, “Biomimetization of butterfly wings by the conformal evaporated-film-by rotation technique for photonics,” Appl. Phys. Lett. 93, 083901 (2008).
[CrossRef]

Martín-Palma, R. J.

R. J. Martín-Palma, C. G. Pantano, and A. Lakhtakia, “Biomimetization of butterfly wings by the conformal evaporated-film-by rotation technique for photonics,” Appl. Phys. Lett. 93, 083901 (2008).
[CrossRef]

McGuiness, M. D.

E. F. Haskins, and M. D. McGuiness, “Sporophore ultrastructure of Echinostelium arboreum,” Mycologia 81, 303–307 (1989).
[CrossRef]

McHugh, R.

R. McHugh, and C. Reid, “Sporangial ultrastructure of Hemitrichia minor (Myxomycetes: Trichiales),” Mycol. Res. 94, 1144–1146 (1990).
[CrossRef]

Meadows, M. G.

S. M. Doucet, and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc. Interface 6, S115–S132 (2009).
[PubMed]

Ogawa, H.

W. Zhang, D. Zhang, T. Fan, J. Ding, J. Gu, Q. Guo, and H. Ogawa, “Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates,” Bioinspir. Biomim. 1, 89–95 (2006).
[CrossRef]

Pantano, C. G.

R. J. Martín-Palma, C. G. Pantano, and A. Lakhtakia, “Biomimetization of butterfly wings by the conformal evaporated-film-by rotation technique for photonics,” Appl. Phys. Lett. 93, 083901 (2008).
[CrossRef]

Parker, A.

A. Parker, “515 million years of structural colour,” J. Opt. A, Pure Appl. Opt. 2, R15–R28 (2000).
[CrossRef]

Reid, C.

R. McHugh, and C. Reid, “Sporangial ultrastructure of Hemitrichia minor (Myxomycetes: Trichiales),” Mycol. Res. 94, 1144–1146 (1990).
[CrossRef]

Sambles, J. R.

P. Vukusic, and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[CrossRef] [PubMed]

Schoknecht, J. D.

J. D. Schoknecht, and H. W. Keller, “Peridial composition of white fructifications in the trichiales (Perichaena and Dianema),” Can. J. Bot. 55, 1807–1819 (1977).
[CrossRef]

Skrabal, M.

H. W. Keller, M. Skrabal, U. Eliasson, and T. Gaither, “Tree canopy biodiversity in the Great Smoky Mountains National Park: Ecological and developmental observations of a new Myxomycete species of Diachea,” Mycologia 96, 537–547 (2004).
[CrossRef] [PubMed]

Srinivasarao, M.

M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev. 99, 1935–1961 (1999).
[CrossRef]

Stavenga, D. G.

P. Vukusic, and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface 6, S133–S148 (2009).
[PubMed]

Tayeb, G.

Vukusic, P.

P. Vukusic, and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface 6, S133–S148 (2009).
[PubMed]

P. Vukusic, and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[CrossRef] [PubMed]

Yoshioka, S.

Zhang, D.

W. Zhang, D. Zhang, T. Fan, J. Ding, J. Gu, Q. Guo, and H. Ogawa, “Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates,” Bioinspir. Biomim. 1, 89–95 (2006).
[CrossRef]

Zhang, W.

W. Zhang, D. Zhang, T. Fan, J. Ding, J. Gu, Q. Guo, and H. Ogawa, “Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates,” Bioinspir. Biomim. 1, 89–95 (2006).
[CrossRef]

Appl. Phys. Lett. (1)

R. J. Martín-Palma, C. G. Pantano, and A. Lakhtakia, “Biomimetization of butterfly wings by the conformal evaporated-film-by rotation technique for photonics,” Appl. Phys. Lett. 93, 083901 (2008).
[CrossRef]

Bioinspir. Biomim. (1)

W. Zhang, D. Zhang, T. Fan, J. Ding, J. Gu, Q. Guo, and H. Ogawa, “Biomimetic zinc oxide replica with structural color using butterfly (Ideopsis similis) wings as templates,” Bioinspir. Biomim. 1, 89–95 (2006).
[CrossRef]

Can. J. Bot. (1)

J. D. Schoknecht, and H. W. Keller, “Peridial composition of white fructifications in the trichiales (Perichaena and Dianema),” Can. J. Bot. 55, 1807–1819 (1977).
[CrossRef]

Chem. Rev. (1)

M. Srinivasarao, “Nano-optics in the biological world: beetles, butterflies, birds, and moths,” Chem. Rev. 99, 1935–1961 (1999).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

A. Parker, “515 million years of structural colour,” J. Opt. A, Pure Appl. Opt. 2, R15–R28 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. R. Soc. Interface (2)

P. Vukusic, and D. G. Stavenga, “Physical methods for investigating structural colours in biological systems,” J. R. Soc. Interface 6, S133–S148 (2009).
[PubMed]

S. M. Doucet, and M. G. Meadows, “Iridescence: a functional perspective,” J. R. Soc. Interface 6, S115–S132 (2009).
[PubMed]

Mycol. Res. (1)

R. McHugh, and C. Reid, “Sporangial ultrastructure of Hemitrichia minor (Myxomycetes: Trichiales),” Mycol. Res. 94, 1144–1146 (1990).
[CrossRef]

Mycologia (3)

E. F. Haskins, and M. D. McGuiness, “Sporophore ultrastructure of Echinostelium arboreum,” Mycologia 81, 303–307 (1989).
[CrossRef]

H. C. Aldrich, “Influence of inorganic ions on color of lime in the myxomycetes,” Mycologia 74, 404–411 (1982).
[CrossRef]

H. W. Keller, M. Skrabal, U. Eliasson, and T. Gaither, “Tree canopy biodiversity in the Great Smoky Mountains National Park: Ecological and developmental observations of a new Myxomycete species of Diachea,” Mycologia 96, 537–547 (2004).
[CrossRef] [PubMed]

Nature (1)

P. Vukusic, and J. R. Sambles, “Photonic structures in biology,” Nature 424, 852–855 (2003).
[CrossRef] [PubMed]

Opt. Express (1)

Syst. Geogr. Plants (1)

T. W. Gaither, and H. W. Keller, “Taxonomic comparison of Diachea subsessilis and D. Deviata (Myxomycetes, Didymiaceae) using scanning electron microscopy,” Syst. Geogr. Plants 74, 217–230 (2004).

Trans. Br. Mycol. Soc. (1)

U. Eliasson, “Ultrastructure of Lycogala and Reticularia,” Trans. Br. Mycol. Soc. 77, 243–249 (1981).
[CrossRef]

Other (8)

“Biomimetics and bioinspiration,” Proceedings of SPIE - The International Society for Optical Engineering Volume 7401, 183 (2009).

S. Stephenson, and H. Stempen, “Myxomycetes. A handbook of slime molds,” Timber Press, Hong Kong, pp. 183 (2000).

T. P. O’Brien, and M. E. McCully, “The study of plant structure. Principles and selected methods,” Termarcarphi Pty. Ltd., Melbourne, Australia (1981).

S. Berthier, Iridescences, the physical colours of insects, (Springer Science + Business Media, LLC, France, 2007).

S. Kinoshita, Structural colors in the realm of nature, (World Scientific Publishing Co., Singapore, 2008).
[CrossRef]

E. Hecht, Optica, (Addison Wesley Iberoamericana ed., Madrid, 2000).

R. Lozano, El color y su medición, (Americalee Ed., Argentina, 1978).

The website Easy RGB http://www.easyrgb.com has the application Color calculator which converts color data to different color standards.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Diachea leucopoda observed under the optical microscope with different magnifications.

Fig. 2.
Fig. 2.

Scanning electron microscope images of the peridium with different magnifications.

Fig. 3.
Fig. 3.

Peridium cross section observed under SEM [(a), (b) and (c)] and TEM (d).

Fig. 4.
Fig. 4.

Simplified model for the scattering process within the peridium. (a) For normal incidence, the light impinges upon the sample with different local angles; (b) the system is locally represented by a planar slab with varying incidence angle.

Fig. 5.
Fig. 5.

Chromaticity coordinates of a homogeneous slab. (a) Normal incidence, for varying n 2 d; (b) d = 200 nm, n 2 = 1.48, for varying incidence angle; (c) d = 500 nm, n 2 = 1.58, for varying incidence angle. The arrows indicate the direction of increasing n 2 d (a) or θ 0 (b and c).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

r q = r 12 q + t 12 q r 23 q t 21 q e i ϕ κ q ,
X = 1 k D ( λ ) R ( λ ) x ¯ ( λ ) d λ ,
Y = 1 k D ( λ ) R ( λ ) y ¯ ( λ ) d λ ,
Z = 1 k D ( λ ) R ( λ ) z ¯ ( λ ) d λ ,
x = X X + Y + Z ,
y = Y X + Y + Z ,
z = Z X + Y + Z .

Metrics