Abstract

We present the development and study of a single bowtie nano-aperture (BNA) at the end of a monomode optical fiber as an interface between near-fields/nano-optical objects and the fiber mode. To optimize energy conversion between BNA and the single fiber mode, the BNA is opened at the apex of a specially designed polymer fiber tip which acts as an efficient mediator (like a horn optical antenna) between the two systems. As a first application, we propose to use our device as polarizing electric-field nanocollector for scanning near-field optical microscopy (SNOM). However, this BNA-on-fiber probe may also find applications in nanolithography, addressing and telecommunications as well as in situ biological and chemical probing and trapping.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonnant optical antenna,” Science 308, 1607–1609 (2005).
    [CrossRef] [PubMed]
  2. R. Grober, R. Schoelkopf, and D. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–6 (1997).
    [CrossRef]
  3. P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, andW. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
    [CrossRef] [PubMed]
  4. T. Taminiau, R. Moerland, F. Segerink, L. Kuipers, and N. V. Hulst, “λ /4 resonance of an optical monopole antenna probes by single molecule fluorescence,” Nano Lett. 7, 28 (2007).
    [CrossRef] [PubMed]
  5. L. Wang, S. Uppuluri, E. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361 (2006).
    [CrossRef] [PubMed]
  6. T. Kalkbrenner, U. Hakanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nano-antenna,” Phys. Rev. Lett. 95(20), 200801.1–4 (2005).
    [CrossRef]
  7. A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78(19), 195111 (2008).
    [CrossRef]
  8. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
    [CrossRef]
  9. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [CrossRef] [PubMed]
  10. J. Farahani, D. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna : A tunable superemitter,” Phys. Rev. Lett. 95(1), 017402.1–4 (2005).
    [CrossRef]
  11. A. Sundaramurthy, P. J. Schuck, N. Conley, D. Fromm, G. Kino, and W. Moerner, “Toward Nanometre-Scale Optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355 (2006).
    [CrossRef] [PubMed]
  12. N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. V. Uppuluri, and X. Xu, “Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,” Opt. Express 16(4), 2584–2589 (2008).
    [CrossRef] [PubMed]
  13. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. G. de Abajo, and R. Quidant, “Nanooptical trapping of Rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
    [CrossRef] [PubMed]
  14. P. Biagioni, M. Savoini, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
    [CrossRef]
  15. T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient Nonlinear Light Emission of Single Gold Optical Antennas Driven by Few-Cycle Near-Infrared Pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
    [CrossRef]
  16. M. Danckwerts and L. Novotny, “Optical Frequency Mixing at Coupled Gold Nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
    [CrossRef] [PubMed]
  17. L. Novotny, D. Pohl, and P. Regli, “Light propagation through nanometer-sized structures: the two-dimensionalaperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11, 1768–1779 (1994).
    [CrossRef]
  18. E. Smythe, E. Cubukcu, and F. Capasso, “Optical properties of surface plasmon resonances of coupled metallic nanorods,” Opt. Express 15(12), 7439–7447 (2007).
    [CrossRef] [PubMed]
  19. D. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97(5), 053002.
    [PubMed]
  20. I. Ibrahim, M. Mivelle, T. Grosjean, J.-T. Allegre, G. Burr, and F. Baida, “The bowtie shaped nano-aperture: a modal study,” Accepted.
  21. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition (Artech House, Boston, 2005).
  22. J. Roden and S. Gedney, “Convolution PML (CPML): an efficient fdtd implementation of the CFS-PML for arbitrarymedia,” Microw. Opt. Technol. Lett 27, 334–339 (2000).
    [CrossRef]
  23. J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett., To be published .
  24. T. Grosjean, M. Mivelle, and G. W. Burr, “Polarization-dependent extraction properties of bare fiber probes,” Opt. Lett. 35(3), 357–359 (2010).
    [CrossRef] [PubMed]
  25. L. Novotny and B. Hecht, Principle of nano-optics (Cambridge University Press, 2006).
  26. R. Bachelot, C. Ecoffet, D. Deloeil, P. Royer, and D.-J. Lougnot, “Integration of Micrometer-Sized Polymer Elements at the End of Optical Fibers by Free-Radical Photopolymerization,” Appl. Opt. 40, 5860–5871 (2001).
    [CrossRef]
  27. L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251 (2001).
    [CrossRef] [PubMed]
  28. L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 261105 (2007).
    [CrossRef]
  29. E. Betzig, J. K. Trautman, J. S. Weiner, T. D. Harris, and R. Wolfe, “Polarization contrast in near-field scanning optical microscopy,” Appl. Opt. 31(22), 4563–4568 (1992).
    [CrossRef] [PubMed]
  30. K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
    [CrossRef]
  31. M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the Magnetic Field of Light at Optical Frequencies,” Science 326, 550–553 (2009).
    [CrossRef] [PubMed]
  32. T. Grosjean, I. A. Ibrahim, M. A. Suarez, G. W. Burr, M. Mivelle, and D. Charraut, “Full vectorial imaging of electromagneticlight at subwavelength scale,” Opt. Express 18(6), 5809–5824 (2010).
    [CrossRef] [PubMed]
  33. E. Bortchagovsky, G. C. des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B 84, 49–53 (2006).
    [CrossRef]
  34. U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B. 64, 125420.1–10 (2001).</jrn>
    [CrossRef]

2010

2009

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. G. de Abajo, and R. Quidant, “Nanooptical trapping of Rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[CrossRef] [PubMed]

P. Biagioni, M. Savoini, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[CrossRef]

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient Nonlinear Light Emission of Single Gold Optical Antennas Driven by Few-Cycle Near-Infrared Pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[CrossRef]

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the Magnetic Field of Light at Optical Frequencies,” Science 326, 550–553 (2009).
[CrossRef] [PubMed]

2008

2007

E. Smythe, E. Cubukcu, and F. Capasso, “Optical properties of surface plasmon resonances of coupled metallic nanorods,” Opt. Express 15(12), 7439–7447 (2007).
[CrossRef] [PubMed]

L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 261105 (2007).
[CrossRef]

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[CrossRef]

T. Taminiau, R. Moerland, F. Segerink, L. Kuipers, and N. V. Hulst, “λ /4 resonance of an optical monopole antenna probes by single molecule fluorescence,” Nano Lett. 7, 28 (2007).
[CrossRef] [PubMed]

M. Danckwerts and L. Novotny, “Optical Frequency Mixing at Coupled Gold Nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
[CrossRef] [PubMed]

2006

E. Bortchagovsky, G. C. des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B 84, 49–53 (2006).
[CrossRef]

L. Wang, S. Uppuluri, E. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361 (2006).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

A. Sundaramurthy, P. J. Schuck, N. Conley, D. Fromm, G. Kino, and W. Moerner, “Toward Nanometre-Scale Optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355 (2006).
[CrossRef] [PubMed]

2005

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, andW. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonnant optical antenna,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

2001

2000

J. Roden and S. Gedney, “Convolution PML (CPML): an efficient fdtd implementation of the CFS-PML for arbitrarymedia,” Microw. Opt. Technol. Lett 27, 334–339 (2000).
[CrossRef]

1997

R. Grober, R. Schoelkopf, and D. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–6 (1997).
[CrossRef]

1994

1992

Alù, A.

A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78(19), 195111 (2008).
[CrossRef]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

Bachelot, R.

Betzig, E.

Beversluis, M.

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251 (2001).
[CrossRef] [PubMed]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Biagioni, P.

P. Biagioni, M. Savoini, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[CrossRef]

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett., To be published .

Bortchagovsky, E.

E. Bortchagovsky, G. C. des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B 84, 49–53 (2006).
[CrossRef]

Bratschitsch, R.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient Nonlinear Light Emission of Single Gold Optical Antennas Driven by Few-Cycle Near-Infrared Pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[CrossRef]

Brown, T.

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251 (2001).
[CrossRef] [PubMed]

Burr, G. W.

Burresi, M.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the Magnetic Field of Light at Optical Frequencies,” Science 326, 550–553 (2009).
[CrossRef] [PubMed]

Capasso, F.

Chang, D.

D. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97(5), 053002.
[PubMed]

Charraut, D.

Cherukulappurath, S.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. G. de Abajo, and R. Quidant, “Nanooptical trapping of Rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[CrossRef] [PubMed]

Choi, S.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[CrossRef]

Choi, W.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[CrossRef]

Conley, N.

A. Sundaramurthy, P. J. Schuck, N. Conley, D. Fromm, G. Kino, and W. Moerner, “Toward Nanometre-Scale Optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355 (2006).
[CrossRef] [PubMed]

Cubukcu, E.

Danckwerts, M.

M. Danckwerts and L. Novotny, “Optical Frequency Mixing at Coupled Gold Nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
[CrossRef] [PubMed]

de Abajo, F. G.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. G. de Abajo, and R. Quidant, “Nanooptical trapping of Rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[CrossRef] [PubMed]

Deloeil, D.

des Francs, G. C.

E. Bortchagovsky, G. C. des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B 84, 49–53 (2006).
[CrossRef]

Duò, L.

P. Biagioni, M. Savoini, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[CrossRef]

Ecoffet, C.

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonnant optical antenna,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Engheta, N.

A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78(19), 195111 (2008).
[CrossRef]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

Finazzi, M.

P. Biagioni, M. Savoini, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[CrossRef]

Fischer, U.

E. Bortchagovsky, G. C. des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B 84, 49–53 (2006).
[CrossRef]

Forchel, A.

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett., To be published .

Fromm, D.

A. Sundaramurthy, P. J. Schuck, N. Conley, D. Fromm, G. Kino, and W. Moerner, “Toward Nanometre-Scale Optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355 (2006).
[CrossRef] [PubMed]

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, andW. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Gedney, S.

J. Roden and S. Gedney, “Convolution PML (CPML): an efficient fdtd implementation of the CFS-PML for arbitrarymedia,” Microw. Opt. Technol. Lett 27, 334–339 (2000).
[CrossRef]

Geisler, P.

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett., To be published .

Ghenuche, P.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. G. de Abajo, and R. Quidant, “Nanooptical trapping of Rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[CrossRef] [PubMed]

Grober, R.

R. Grober, R. Schoelkopf, and D. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–6 (1997).
[CrossRef]

Grosjean, T.

Hanke, T.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient Nonlinear Light Emission of Single Gold Optical Antennas Driven by Few-Cycle Near-Infrared Pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[CrossRef]

Harris, T. D.

Hecht, B.

P. Biagioni, M. Savoini, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[CrossRef]

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonnant optical antenna,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett., To be published .

Heideman, R.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the Magnetic Field of Light at Optical Frequencies,” Science 326, 550–553 (2009).
[CrossRef] [PubMed]

Hemmer, P.

D. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97(5), 053002.
[PubMed]

Huang, J.

P. Biagioni, M. Savoini, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[CrossRef]

Huang, J.-S.

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett., To be published .

Hulst, N. V.

T. Taminiau, R. Moerland, F. Segerink, L. Kuipers, and N. V. Hulst, “λ /4 resonance of an optical monopole antenna probes by single molecule fluorescence,” Nano Lett. 7, 28 (2007).
[CrossRef] [PubMed]

Ibrahim, I. A.

Jin, E.

L. Wang, S. Uppuluri, E. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361 (2006).
[CrossRef] [PubMed]

Kamp, M.

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett., To be published .

Kampfrath, T.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the Magnetic Field of Light at Optical Frequencies,” Science 326, 550–553 (2009).
[CrossRef] [PubMed]

Kern, J.

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett., To be published .

Kihm, H.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[CrossRef]

Kihm, J.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[CrossRef]

Kim, D.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[CrossRef]

Kim, H.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[CrossRef]

Kim, J.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[CrossRef]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

Kino, G.

A. Sundaramurthy, P. J. Schuck, N. Conley, D. Fromm, G. Kino, and W. Moerner, “Toward Nanometre-Scale Optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355 (2006).
[CrossRef] [PubMed]

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, andW. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Kinzel, E. C.

Krauss, G.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient Nonlinear Light Emission of Single Gold Optical Antennas Driven by Few-Cycle Near-Infrared Pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[CrossRef]

Kuipers, L.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the Magnetic Field of Light at Optical Frequencies,” Science 326, 550–553 (2009).
[CrossRef] [PubMed]

T. Taminiau, R. Moerland, F. Segerink, L. Kuipers, and N. V. Hulst, “λ /4 resonance of an optical monopole antenna probes by single molecule fluorescence,” Nano Lett. 7, 28 (2007).
[CrossRef] [PubMed]

Lee, B.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[CrossRef]

Lee, K.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[CrossRef]

Leinse, A.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the Magnetic Field of Light at Optical Frequencies,” Science 326, 550–553 (2009).
[CrossRef] [PubMed]

Leitenstorfer, A.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient Nonlinear Light Emission of Single Gold Optical Antennas Driven by Few-Cycle Near-Infrared Pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[CrossRef]

Lienau, C.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[CrossRef]

Lougnot, D.-J.

Lukin, M.

D. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97(5), 053002.
[PubMed]

Martin, O.

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonnant optical antenna,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Mivelle, M.

Moerland, R.

T. Taminiau, R. Moerland, F. Segerink, L. Kuipers, and N. V. Hulst, “λ /4 resonance of an optical monopole antenna probes by single molecule fluorescence,” Nano Lett. 7, 28 (2007).
[CrossRef] [PubMed]

Moerner, W.

A. Sundaramurthy, P. J. Schuck, N. Conley, D. Fromm, G. Kino, and W. Moerner, “Toward Nanometre-Scale Optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355 (2006).
[CrossRef] [PubMed]

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

Molenda, D.

E. Bortchagovsky, G. C. des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B 84, 49–53 (2006).
[CrossRef]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonnant optical antenna,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Mullen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

Murphy-DuBay, N.

Myroshnychenko, V.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. G. de Abajo, and R. Quidant, “Nanooptical trapping of Rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[CrossRef] [PubMed]

Naber, A.

E. Bortchagovsky, G. C. des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B 84, 49–53 (2006).
[CrossRef]

Novotny, L.

M. Danckwerts and L. Novotny, “Optical Frequency Mixing at Coupled Gold Nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251 (2001).
[CrossRef] [PubMed]

L. Novotny, D. Pohl, and P. Regli, “Light propagation through nanometer-sized structures: the two-dimensionalaperture scanning near-field optical microscope,” J. Opt. Soc. Am. A 11, 1768–1779 (1994).
[CrossRef]

Park, D.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[CrossRef]

Parka, Q.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[CrossRef]

Pohl, D.

Prober, D.

R. Grober, R. Schoelkopf, and D. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–6 (1997).
[CrossRef]

Quidant, R.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. G. de Abajo, and R. Quidant, “Nanooptical trapping of Rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[CrossRef] [PubMed]

Regli, P.

Righini, M.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. G. de Abajo, and R. Quidant, “Nanooptical trapping of Rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[CrossRef] [PubMed]

Roden, J.

J. Roden and S. Gedney, “Convolution PML (CPML): an efficient fdtd implementation of the CFS-PML for arbitrarymedia,” Microw. Opt. Technol. Lett 27, 334–339 (2000).
[CrossRef]

Ropers, C.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[CrossRef]

Royer, P.

Savoini, M.

P. Biagioni, M. Savoini, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[CrossRef]

Schoelkopf, R.

R. Grober, R. Schoelkopf, and D. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–6 (1997).
[CrossRef]

Schoenmaker, H.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the Magnetic Field of Light at Optical Frequencies,” Science 326, 550–553 (2009).
[CrossRef] [PubMed]

Schuck, P.

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, andW. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Schuck, P. J.

A. Sundaramurthy, P. J. Schuck, N. Conley, D. Fromm, G. Kino, and W. Moerner, “Toward Nanometre-Scale Optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355 (2006).
[CrossRef] [PubMed]

Segerink, F.

T. Taminiau, R. Moerland, F. Segerink, L. Kuipers, and N. V. Hulst, “λ /4 resonance of an optical monopole antenna probes by single molecule fluorescence,” Nano Lett. 7, 28 (2007).
[CrossRef] [PubMed]

Smythe, E.

Sørensen, A.

D. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97(5), 053002.
[PubMed]

Suarez, M. A.

Sundaramurthy, A.

A. Sundaramurthy, P. J. Schuck, N. Conley, D. Fromm, G. Kino, and W. Moerner, “Toward Nanometre-Scale Optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355 (2006).
[CrossRef] [PubMed]

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, andW. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

Taminiau, T.

T. Taminiau, R. Moerland, F. Segerink, L. Kuipers, and N. V. Hulst, “λ /4 resonance of an optical monopole antenna probes by single molecule fluorescence,” Nano Lett. 7, 28 (2007).
[CrossRef] [PubMed]

Träutlein, D.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient Nonlinear Light Emission of Single Gold Optical Antennas Driven by Few-Cycle Near-Infrared Pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[CrossRef]

Trautman, J. K.

Uppuluri, S.

L. Wang, S. Uppuluri, E. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361 (2006).
[CrossRef] [PubMed]

Uppuluri, S. M. V.

van Oosten, D.

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the Magnetic Field of Light at Optical Frequencies,” Science 326, 550–553 (2009).
[CrossRef] [PubMed]

Wang, L.

N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. V. Uppuluri, and X. Xu, “Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,” Opt. Express 16(4), 2584–2589 (2008).
[CrossRef] [PubMed]

L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 261105 (2007).
[CrossRef]

L. Wang, S. Uppuluri, E. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361 (2006).
[CrossRef] [PubMed]

Weiner, J. S.

Weinmann, P.

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett., To be published .

Wild, B.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient Nonlinear Light Emission of Single Gold Optical Antennas Driven by Few-Cycle Near-Infrared Pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[CrossRef]

Wolfe, R.

Woo, D.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[CrossRef]

Xu, X.

N. Murphy-DuBay, L. Wang, E. C. Kinzel, S. M. V. Uppuluri, and X. Xu, “Nanopatterning using NSOM probes integrated with high transmission nanoscale bowtie aperture,” Opt. Express 16(4), 2584–2589 (2008).
[CrossRef] [PubMed]

L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 261105 (2007).
[CrossRef]

L. Wang, S. Uppuluri, E. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361 (2006).
[CrossRef] [PubMed]

Yoon, Y.

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[CrossRef]

Youngworth, K.

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251 (2001).
[CrossRef] [PubMed]

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

Appl. Opt.

Appl. Phys. B

E. Bortchagovsky, G. C. des Francs, D. Molenda, A. Naber, and U. Fischer, “Transmission of an obliquely incident beam of light through small apertures in a metal film,” Appl. Phys. B 84, 49–53 (2006).
[CrossRef]

Appl. Phys. Lett.

L. Wang and X. Xu, “High transmission nanoscale bowtie-shaped aperture probe for near-field optical imaging,” Appl. Phys. Lett. 90, 261105 (2007).
[CrossRef]

R. Grober, R. Schoelkopf, and D. Prober, “Optical antenna: Towards a unity efficiency near-field optical probe,” Appl. Phys. Lett. 70(11), 1354–6 (1997).
[CrossRef]

J. Opt. Soc. Am. A

Microw. Opt. Technol. Lett

J. Roden and S. Gedney, “Convolution PML (CPML): an efficient fdtd implementation of the CFS-PML for arbitrarymedia,” Microw. Opt. Technol. Lett 27, 334–339 (2000).
[CrossRef]

Nano Lett.

J.-S. Huang, J. Kern, P. Geisler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, and B. Hecht, “Mode imaging and selection in strongly coupled nanoantennas,” Nano Lett., To be published .

T. Taminiau, R. Moerland, F. Segerink, L. Kuipers, and N. V. Hulst, “λ /4 resonance of an optical monopole antenna probes by single molecule fluorescence,” Nano Lett. 7, 28 (2007).
[CrossRef] [PubMed]

L. Wang, S. Uppuluri, E. Jin, and X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6, 361 (2006).
[CrossRef] [PubMed]

A. Sundaramurthy, P. J. Schuck, N. Conley, D. Fromm, G. Kino, and W. Moerner, “Toward Nanometre-Scale Optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett. 6, 355 (2006).
[CrossRef] [PubMed]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. G. de Abajo, and R. Quidant, “Nanooptical trapping of Rayleigh particles and escherichia coli bacteria with resonant optical antennas,” Nano Lett. 9, 3387–3391 (2009).
[CrossRef] [PubMed]

Nat. Photon.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photon. 3, 654–657 (2009).
[CrossRef]

K. Lee, H. Kihm, J. Kihm, W. Choi, H. Kim, C. Ropers, D. Park, Y. Yoon, S. Choi, D. Woo, J. Kim, B. Lee, Q. Parka, C. Lienau, and D. Kim, “Vector field microscopic imaging of light,” Nat. Photon. 1, 53–56 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

A. Alù and N. Engheta, “Hertzian plasmonic nanodimer as an efficient optical nanoantenna,” Phys. Rev. B 78(19), 195111 (2008).
[CrossRef]

P. Biagioni, M. Savoini, J. Huang, L. Duò, M. Finazzi, and B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009).
[CrossRef]

Phys. Rev. Lett.

T. Hanke, G. Krauss, D. Träutlein, B. Wild, R. Bratschitsch, and A. Leitenstorfer, “Efficient Nonlinear Light Emission of Single Gold Optical Antennas Driven by Few-Cycle Near-Infrared Pulses,” Phys. Rev. Lett. 103(25), 257404 (2009).
[CrossRef]

M. Danckwerts and L. Novotny, “Optical Frequency Mixing at Coupled Gold Nanoparticles,” Phys. Rev. Lett. 98(2), 026104 (2007).
[CrossRef] [PubMed]

D. Chang, A. Sørensen, P. Hemmer, and M. Lukin, “Quantum Optics with Surface Plasmons,” Phys. Rev. Lett. 97(5), 053002.
[PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of Single-Molecule Fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

P. Schuck, D. Fromm, A. Sundaramurthy, G. Kino, andW. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94, 017402 (2005).
[CrossRef] [PubMed]

L. Novotny, M. Beversluis, K. Youngworth, and T. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251 (2001).
[CrossRef] [PubMed]

Science

M. Burresi, D. van Oosten, T. Kampfrath, H. Schoenmaker, R. Heideman, A. Leinse, and L. Kuipers, “Probing the Magnetic Field of Light at Optical Frequencies,” Science 326, 550–553 (2009).
[CrossRef] [PubMed]

P. Mühlschlegel, H.-J. Eisler, O. Martin, B. Hecht, and D. Pohl, “Resonnant optical antenna,” Science 308, 1607–1609 (2005).
[CrossRef] [PubMed]

Other

J. Farahani, D. Pohl, H.-J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna : A tunable superemitter,” Phys. Rev. Lett. 95(1), 017402.1–4 (2005).
[CrossRef]

T. Kalkbrenner, U. Hakanson, A. Schädle, S. Burger, C. Henkel, and V. Sandoghdar, “Optical microscopy via spectral modifications of a nano-antenna,” Phys. Rev. Lett. 95(20), 200801.1–4 (2005).
[CrossRef]

I. Ibrahim, M. Mivelle, T. Grosjean, J.-T. Allegre, G. Burr, and F. Baida, “The bowtie shaped nano-aperture: a modal study,” Accepted.

A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Third Edition (Artech House, Boston, 2005).

L. Novotny and B. Hecht, Principle of nano-optics (Cambridge University Press, 2006).

U. Schröter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B. 64, 125420.1–10 (2001).</jrn>
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Scheme of the proposed nanoantenna fiber device.

Fig. 2.
Fig. 2.

Enhancement factor R of the optical electric field intensity ((xz)-plane) in the last 2 microns of the BNA fiber probe. R is the ratio between intensity in the tip apex and the maximum intensity of the input gaussian beam. The incident polarization is (a,b) parallel and (c) perpendicular to the direction (0x) of the BNA metal triangles. In (b), the color scale is mapped to R raised to the power 0.2, in order to provide a better view of the light distribution within the taper. Insets of (a) and (c) show R-factor in a transverse (xy)-plane placed 10 nm far from the BNA. Maximum values of R along this (xy)-plane are 120 in (a) and 1.5 in (c).

Fig. 3.
Fig. 3.

(a): Scheme of the theoretical configuration. (b) and (c): collection spectra for tip excitations with (b) electric and (c) magnetic dipoles oriented along the 3 spatial directions.

Fig. 4.
Fig. 4.

(a,b) Scanning electron micrograph of the BNA fiber probe: (a) side view of the overall fiber tip and (b) top view of the tip apex revealing the BNA. (c,d) far-field radiation of the system used in emission mode, for input guided waves of orthogonal linear polarizations (see figure insets). (e) Polarization diagram of the BNA used in collection mode. Solid curve: experiments, dashed curve: case of an ideal nanopolarizer: fluorescence diagram of a single molecule (dipole absorption moment) versus incident polarization. (f) collected signals of the far-field diffraction pattern of a 1D-grating, for two orientations of the BNA with respect to the incident polarization (see figure insets).

Fig. 5.
Fig. 5.

Image with the BNA-on-tip of an electric dipole oriented along (0x) and placed 10 nm far from the BNA, in vacuum (represented by a double arrow in the figure inset). Solid curve: collected signal along (0x)-axis parallel to the BNA metallic triangles; dashed curve: collected signal along perpendicular (0y)-axis.

Fig. 6.
Fig. 6.

(a): topography of the grating as measured by the BNA fiber probe, (b): corresponding optical image (scale bar: 1 micron), (c): upper curve: profile of the topography along a line perpendicular to the grooves, lower curves: profiles of the corresponding optical signal (solid line) and simulation of the intensity of the electric-field component along the BNA metallic triangles (perpendicular to the grating grooves) (dashed line).

Metrics