Abstract

The quantification of total hemoglobin concentration (HbT) obtained from multi-modality image-guided near infrared spectroscopy (IG-NIRS) was characterized using the boundary element method (BEM) for 3D image reconstruction. Multi-modality IG-NIRS systems use a priori information to guide the reconstruction process. While this has been shown to improve resolution, the effect on quantitative accuracy is unclear. Here, through systematic contrast-detail analysis, the fidelity of IG-NIRS in quantifying HbT was examined using 3D simulations. These simulations show that HbT could be recovered for medium sized (20mm in 100mm total diameter) spherical inclusions with an average error of 15%, for the physiologically relevant situation of 2:1 or higher contrast between background and inclusion. Using partial 3D volume meshes to reduce the ill-posed nature of the image reconstruction, inclusions as small as 14mm could be accurately quantified with less than 15% error, for contrasts of 1.5 or higher. This suggests that 3D IG-NIRS provides quantitatively accurate results for sizes seen early in treatment cycle of patients undergoing neoadjuvant chemotherapy when the tumors are larger than 30mm.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study," Acad. Radiol. 12, 925-33 (2005).
    [CrossRef] [PubMed]
  2. B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-6 (2001).
    [PubMed]
  3. B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. But-ler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
    [CrossRef] [PubMed]
  4. G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light," Biol. Psychiatry 52, 679-693 (2002).
    [CrossRef] [PubMed]
  5. D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging," Appl. Opt. 45, 8142-51 (2006).
    [CrossRef] [PubMed]
  6. M. J. C. van Gemert, S. L. Jacques, H. Sterenborg, and W. M. Star, “Skin Optics," IEEE Trans. Biomed. Eng. 36, 1146-1154 (1989).
    [CrossRef] [PubMed]
  7. G. Xu, D. Piao, C. H. Musgrove, C. F. Bunting, and H. Dehghani, “Trans-rectal ultrasound coupled near infrared optical tomography of the prostate: Part I: simulation," Opt. Express 16, 17484-17504 (2008).
    [CrossRef]
  8. A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints," Phys. Med. Biol. 49, 1147-63 (2004).
    [CrossRef] [PubMed]
  9. Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray-guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints," J. Biomed Opt 13, 044-006 (2008).
  10. C. D. Kurth, J. M. Steven, S. C. Nicolson, B. Chance, and M. Delivoria-Papadopoulos, “Kinetics of cerebral deoxygenation during deep hypothermic circulatory arrest in neonates,"Anesthesiology 77, 656-61 (1992).
    [CrossRef] [PubMed]
  11. D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review," Breast Cancer Res Treat: Review (2007).
  12. S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction," Technology in Cancer Research and Treatment 4, 513- 526 (2005).
    [PubMed]
  13. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography," Phys Med Biol 50, 2489-2502 (2005).
    [CrossRef] [PubMed]
  14. X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results," Acad. Radiology 12, 934-947 (2005).
    [CrossRef]
  15. D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg,”Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas," Phys Med Biol 50, 2451-2468 (2005).
    [CrossRef] [PubMed]
  16. R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography," J. Biomed. Opt. 14, 024,020 (2009).
    [CrossRef]
  17. S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes," Radiology 252, 551-60 (2009).
    [CrossRef] [PubMed]
  18. A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy," Proc. Natl. Acad. Sci. U S A 104, 4014-9 (2007).
    [CrossRef] [PubMed]
  19. T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concen-tration and oxygen saturation in breast tissue," Appl Opt 38, 5480-90 (1999).
    [CrossRef]
  20. H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging," Appl Opt 42, 3117-28 (2003).
    [CrossRef] [PubMed]
  21. D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-KÄobrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy," JAMA 292, 2735-42 (2004).
    [CrossRef] [PubMed]
  22. C. K. Kuhl, “Current status of breast MR imaging. Part 2. Clinical applications," Radiology 244, 672-91 (2007).
    [CrossRef] [PubMed]
  23. Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results," J Biomed Opt. 10, 024,033 (2005).
    [CrossRef]
  24. Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction," Radiology 237, 57-66 (2005).
    [CrossRef] [PubMed]
  25. V. Ntziachristos, “Concurrent diffuse optical tomography, spectroscopy and magnetic resonance imaging of Breast Cancer," Ph.D. thesis, UPenn (2000).
  26. G. Boverman, E. Miller, D. H. Brooks, D. Isaacson, Q. Fang, and D. A. Boas, “Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography," IEEE Trans. Med. Imaging 27, 752-765 (2008).
    [CrossRef]
  27. P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomogra-phy," Opt Express 15, 8043-58 (2007).
    [CrossRef] [PubMed]
  28. G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantita-tive spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information," Phys. Med. Biol. 50, 3941-56 (2005).
    [CrossRef] [PubMed]
  29. M. Schweiger and S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information," Phys. Med. Biol. 44, 2703-2721 (1999).
    [CrossRef] [PubMed]
  30. M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with apriori anatomical information," Phys. Med. Biol. 50, 2837-58 (2005).
    [CrossRef] [PubMed]
  31. A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography," Appl. Opt. 44, 1948-56 (2005).
    [CrossRef] [PubMed]
  32. M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application," Lasers Med. Sci. 6, 155-168 (1991).
    [CrossRef]
  33. S. R. Arridge, “Optical tomography in medical imaging," Inverse Problems 15, R41-R93 (1999).
    [CrossRef]
  34. S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
    [CrossRef] [PubMed]
  35. K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation," Med Phys 22, 691-701 (1995).
    [CrossRef] [PubMed]
  36. S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen,”A boundary element approach for image-guided near-infrared absorption and scatter estimation," Med Phys 34, 4545- 57 (2007).
    [CrossRef] [PubMed]
  37. R. T. Constable and R. M. Henkelman, “Contrast resolution and detectability in MR imaging," J. Comput. Assis. Tomogr. 15, 297-303 (1991).
    [CrossRef]
  38. G. Cohen, “Contrast-detail-dose analysis of six different computed tomographic scanners," J. Comput. Assis. Tomogr. 3, 197-203 (1979).
    [CrossRef]
  39. K. J. Robinson, C. J. Kotre, and K. Faulkner, “The use of contrast-detail test objects in the optimization of optical density in mammography," Br. J. Radiol. 68, 277-282 (1995).
    [CrossRef]
  40. S. W. Smith and H. Lopez, “A contrast-detail analysis of diagnostic ultrasound imaging," Med. Phys. 9, 4-12 (1982).
    [CrossRef] [PubMed]
  41. Mimics Software," http://materialise.com/mimics.
  42. A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spheri-cal harmonic parametrization and a boundary element method," Inverse Problems 22, 1509-1532 (2006).
    [CrossRef]
  43. S. Srinivasan, C. Carpenter, B. W. Pogue, and K. D. Paulsen, “Image-guided near infrared spec-troscopy using boundary element method: phantom validation," Proc. SPIE 7171, 717103 (2009).
  44. B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast," Rev. Sci. Instrum. 75, 5262-5270 (2004).
    [CrossRef]
  45. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust recon-struction," Appl. Opt. 44, 1858-69 (2005).
    [CrossRef] [PubMed]
  46. A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomog-raphy," Opt. Lett. 28, 2339-41 (2003).
    [CrossRef] [PubMed]
  47. A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography," Opt. Lett. 29, 256- 8 (2004).
    [CrossRef] [PubMed]
  48. B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. U S A 103, 8828-33 (2006).
    [CrossRef] [PubMed]
  49. S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography," Proc. Natl. Acad. Sci. U S A 100, 12,349-54 (2003).
    [CrossRef]
  50. B. W. Pogue and K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information," Opt. Lett. 23, 1716-8 (1998).
    [CrossRef]
  51. A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography," Appl. Opt. 42, 5181-90 (2003).
    [CrossRef] [PubMed]
  52. M. Huang, T. Xie, N. G. Chen, and Q. Zhu, “Simultaneous reconstruction of absorption and scattering maps with ultrasound localization: feasibility study using transmission geometry," Appl. Opt. 42, 4102-14 (2003).
    [CrossRef] [PubMed]
  53. B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography," J. Biomed. Opt. 11, 33,001 (2006).
    [CrossRef]
  54. B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-52 (2004).
    [CrossRef] [PubMed]
  55. N. Shah, A. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue," J. Biomed. Opt. 9, 534-540 (2004).
    [CrossRef]
  56. B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry," J. Biomed. Opt. 11, 041,102-16 (2006).
  57. R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-91 (2000).
    [PubMed]
  58. J. A. Knight, K. M. Blackmore, J. Wong, S. Tharmalingam, and L. Lilge, “Optical spectroscopy of the breast in premenopausal women reveals tissue variation with changes in age and parity," Med. Phys. 37, 419-26 (2010).
    [CrossRef] [PubMed]
  59. M. C. Stahel, M. Wolf, A. Banos, and R. Hornung, “Optical properties of the breast during spontaneous and birth control pill-mediated menstrual cycles," Lasers Med. Sci. 24, 901-7 (2009).
    [CrossRef] [PubMed]
  60. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization," Appl. Opt. 44, 2082-2093 (2005).
    [CrossRef] [PubMed]
  61. B. Brendel and T. Nielsen, “Selection of optimal wavelengths for spectral reconstruction in diffuse optical tomography," J. Biomed. Opt. 14, 034,041 (2009).</jrn>
    [CrossRef]
  62. J. Wang, “Broadband Near-Infrared Tomography For Breast Cancer Imaging," Ph.D. thesis, Dartmouth College (Department of Physics and Astronomy) (2009).
  63. S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy," Phys. Med. Biol. 53, 6713-27 (2008).
    [CrossRef] [PubMed]
  64. S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms," Technol. Cancer Res. Treat. 2, 563-9 (2003).
    [PubMed]
  65. P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spec-troscopy of breast tissue extended to 1100 nm," J. Biomed. Opt. 14, 054,030 (2009).
    [CrossRef]
  66. J.-H. Chen, B. A. Feig, D. J.-B. Hsiang, J. A. Butler, R. S. Mehta, S. Bahri, O. Nalcioglu, and M.-Y. Su, “Impact of MRI-evaluated neoadjuvant chemotherapy response on change of surgical recommendation in breast cancer," Ann. Surg. 249, 448-54 (2009).
    [CrossRef] [PubMed]

2010 (1)

J. A. Knight, K. M. Blackmore, J. Wong, S. Tharmalingam, and L. Lilge, “Optical spectroscopy of the breast in premenopausal women reveals tissue variation with changes in age and parity," Med. Phys. 37, 419-26 (2010).
[CrossRef] [PubMed]

2009 (3)

M. C. Stahel, M. Wolf, A. Banos, and R. Hornung, “Optical properties of the breast during spontaneous and birth control pill-mediated menstrual cycles," Lasers Med. Sci. 24, 901-7 (2009).
[CrossRef] [PubMed]

J.-H. Chen, B. A. Feig, D. J.-B. Hsiang, J. A. Butler, R. S. Mehta, S. Bahri, O. Nalcioglu, and M.-Y. Su, “Impact of MRI-evaluated neoadjuvant chemotherapy response on change of surgical recommendation in breast cancer," Ann. Surg. 249, 448-54 (2009).
[CrossRef] [PubMed]

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes," Radiology 252, 551-60 (2009).
[CrossRef] [PubMed]

2008 (3)

G. Xu, D. Piao, C. H. Musgrove, C. F. Bunting, and H. Dehghani, “Trans-rectal ultrasound coupled near infrared optical tomography of the prostate: Part I: simulation," Opt. Express 16, 17484-17504 (2008).
[CrossRef]

G. Boverman, E. Miller, D. H. Brooks, D. Isaacson, Q. Fang, and D. A. Boas, “Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography," IEEE Trans. Med. Imaging 27, 752-765 (2008).
[CrossRef]

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy," Phys. Med. Biol. 53, 6713-27 (2008).
[CrossRef] [PubMed]

2007 (4)

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomogra-phy," Opt Express 15, 8043-58 (2007).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen,”A boundary element approach for image-guided near-infrared absorption and scatter estimation," Med Phys 34, 4545- 57 (2007).
[CrossRef] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy," Proc. Natl. Acad. Sci. U S A 104, 4014-9 (2007).
[CrossRef] [PubMed]

C. K. Kuhl, “Current status of breast MR imaging. Part 2. Clinical applications," Radiology 244, 672-91 (2007).
[CrossRef] [PubMed]

2006 (5)

D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging," Appl. Opt. 45, 8142-51 (2006).
[CrossRef] [PubMed]

A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spheri-cal harmonic parametrization and a boundary element method," Inverse Problems 22, 1509-1532 (2006).
[CrossRef]

B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography," J. Biomed. Opt. 11, 33,001 (2006).
[CrossRef]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry," J. Biomed. Opt. 11, 041,102-16 (2006).

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. U S A 103, 8828-33 (2006).
[CrossRef] [PubMed]

2005 (11)

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust recon-struction," Appl. Opt. 44, 1858-69 (2005).
[CrossRef] [PubMed]

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography," Appl. Opt. 44, 1948-56 (2005).
[CrossRef] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization," Appl. Opt. 44, 2082-2093 (2005).
[CrossRef] [PubMed]

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantita-tive spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information," Phys. Med. Biol. 50, 3941-56 (2005).
[CrossRef] [PubMed]

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with apriori anatomical information," Phys. Med. Biol. 50, 2837-58 (2005).
[CrossRef] [PubMed]

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study," Acad. Radiol. 12, 925-33 (2005).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction," Technology in Cancer Research and Treatment 4, 513- 526 (2005).
[PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography," Phys Med Biol 50, 2489-2502 (2005).
[CrossRef] [PubMed]

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results," Acad. Radiology 12, 934-947 (2005).
[CrossRef]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg,”Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas," Phys Med Biol 50, 2451-2468 (2005).
[CrossRef] [PubMed]

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction," Radiology 237, 57-66 (2005).
[CrossRef] [PubMed]

2004 (5)

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints," Phys. Med. Biol. 49, 1147-63 (2004).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast," Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-KÄobrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy," JAMA 292, 2735-42 (2004).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-52 (2004).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue," J. Biomed. Opt. 9, 534-540 (2004).
[CrossRef]

2003 (4)

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms," Technol. Cancer Res. Treat. 2, 563-9 (2003).
[PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography," Appl. Opt. 42, 5181-90 (2003).
[CrossRef] [PubMed]

M. Huang, T. Xie, N. G. Chen, and Q. Zhu, “Simultaneous reconstruction of absorption and scattering maps with ultrasound localization: feasibility study using transmission geometry," Appl. Opt. 42, 4102-14 (2003).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging," Appl Opt 42, 3117-28 (2003).
[CrossRef] [PubMed]

2002 (1)

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light," Biol. Psychiatry 52, 679-693 (2002).
[CrossRef] [PubMed]

2001 (1)

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-6 (2001).
[PubMed]

2000 (2)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. But-ler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-91 (2000).
[PubMed]

1999 (3)

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concen-tration and oxygen saturation in breast tissue," Appl Opt 38, 5480-90 (1999).
[CrossRef]

S. R. Arridge, “Optical tomography in medical imaging," Inverse Problems 15, R41-R93 (1999).
[CrossRef]

M. Schweiger and S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information," Phys. Med. Biol. 44, 2703-2721 (1999).
[CrossRef] [PubMed]

1998 (1)

B. W. Pogue and K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information," Opt. Lett. 23, 1716-8 (1998).
[CrossRef]

1995 (2)

K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation," Med Phys 22, 691-701 (1995).
[CrossRef] [PubMed]

K. J. Robinson, C. J. Kotre, and K. Faulkner, “The use of contrast-detail test objects in the optimization of optical density in mammography," Br. J. Radiol. 68, 277-282 (1995).
[CrossRef]

1993 (1)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

1992 (1)

C. D. Kurth, J. M. Steven, S. C. Nicolson, B. Chance, and M. Delivoria-Papadopoulos, “Kinetics of cerebral deoxygenation during deep hypothermic circulatory arrest in neonates,"Anesthesiology 77, 656-61 (1992).
[CrossRef] [PubMed]

1991 (2)

M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application," Lasers Med. Sci. 6, 155-168 (1991).
[CrossRef]

R. T. Constable and R. M. Henkelman, “Contrast resolution and detectability in MR imaging," J. Comput. Assis. Tomogr. 15, 297-303 (1991).
[CrossRef]

1989 (1)

M. J. C. van Gemert, S. L. Jacques, H. Sterenborg, and W. M. Star, “Skin Optics," IEEE Trans. Biomed. Eng. 36, 1146-1154 (1989).
[CrossRef] [PubMed]

1982 (1)

S. W. Smith and H. Lopez, “A contrast-detail analysis of diagnostic ultrasound imaging," Med. Phys. 9, 4-12 (1982).
[CrossRef] [PubMed]

1979 (1)

G. Cohen, “Contrast-detail-dose analysis of six different computed tomographic scanners," J. Comput. Assis. Tomogr. 3, 197-203 (1979).
[CrossRef]

Arridge, S. R.

A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spheri-cal harmonic parametrization and a boundary element method," Inverse Problems 22, 1509-1532 (2006).
[CrossRef]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization," Appl. Opt. 44, 2082-2093 (2005).
[CrossRef] [PubMed]

S. R. Arridge, “Optical tomography in medical imaging," Inverse Problems 15, R41-R93 (1999).
[CrossRef]

M. Schweiger and S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information," Phys. Med. Biol. 44, 2703-2721 (1999).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Backhaus, M.

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints," Phys. Med. Biol. 49, 1147-63 (2004).
[CrossRef] [PubMed]

Baek, H. M.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy," Phys. Med. Biol. 53, 6713-27 (2008).
[CrossRef] [PubMed]

Bahri, S.

J.-H. Chen, B. A. Feig, D. J.-B. Hsiang, J. A. Butler, R. S. Mehta, S. Bahri, O. Nalcioglu, and M.-Y. Su, “Impact of MRI-evaluated neoadjuvant chemotherapy response on change of surgical recommendation in breast cancer," Ann. Surg. 249, 448-54 (2009).
[CrossRef] [PubMed]

Beuthan, J.

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints," Phys. Med. Biol. 49, 1147-63 (2004).
[CrossRef] [PubMed]

Birgul, O.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy," Phys. Med. Biol. 53, 6713-27 (2008).
[CrossRef] [PubMed]

Blackmore, K. M.

J. A. Knight, K. M. Blackmore, J. Wong, S. Tharmalingam, and L. Lilge, “Optical spectroscopy of the breast in premenopausal women reveals tissue variation with changes in age and parity," Med. Phys. 37, 419-26 (2010).
[CrossRef] [PubMed]

Bluemke, D. A.

D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-KÄobrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy," JAMA 292, 2735-42 (2004).
[CrossRef] [PubMed]

Boas, D.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results," Acad. Radiology 12, 934-947 (2005).
[CrossRef]

Boas, D. A.

G. Boverman, E. Miller, D. H. Brooks, D. Isaacson, Q. Fang, and D. A. Boas, “Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography," IEEE Trans. Med. Imaging 27, 752-765 (2008).
[CrossRef]

D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging," Appl. Opt. 45, 8142-51 (2006).
[CrossRef] [PubMed]

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantita-tive spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information," Phys. Med. Biol. 50, 3941-56 (2005).
[CrossRef] [PubMed]

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography," Appl. Opt. 44, 1948-56 (2005).
[CrossRef] [PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography," Appl. Opt. 42, 5181-90 (2003).
[CrossRef] [PubMed]

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light," Biol. Psychiatry 52, 679-693 (2002).
[CrossRef] [PubMed]

Boverman, G.

G. Boverman, E. Miller, D. H. Brooks, D. Isaacson, Q. Fang, and D. A. Boas, “Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography," IEEE Trans. Med. Imaging 27, 752-765 (2008).
[CrossRef]

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography," Appl. Opt. 44, 1948-56 (2005).
[CrossRef] [PubMed]

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantita-tive spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information," Phys. Med. Biol. 50, 3941-56 (2005).
[CrossRef] [PubMed]

Briest, S.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study," Acad. Radiol. 12, 925-33 (2005).
[CrossRef] [PubMed]

Brooks, D.

Brooks, D. H.

G. Boverman, E. Miller, D. H. Brooks, D. Isaacson, Q. Fang, and D. A. Boas, “Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography," IEEE Trans. Med. Imaging 27, 752-765 (2008).
[CrossRef]

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantita-tive spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information," Phys. Med. Biol. 50, 3941-56 (2005).
[CrossRef] [PubMed]

Brooksby, B.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. U S A 103, 8828-33 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction," Technology in Cancer Research and Treatment 4, 513- 526 (2005).
[PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast," Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging," Appl Opt 42, 3117-28 (2003).
[CrossRef] [PubMed]

Brooksby, B. A.

B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography," J. Biomed. Opt. 11, 33,001 (2006).
[CrossRef]

Brukilacchio, T. J.

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography," Appl. Opt. 42, 5181-90 (2003).
[CrossRef] [PubMed]

Bunting, C. F.

G. Xu, D. Piao, C. H. Musgrove, C. F. Bunting, and H. Dehghani, “Trans-rectal ultrasound coupled near infrared optical tomography of the prostate: Part I: simulation," Opt. Express 16, 17484-17504 (2008).
[CrossRef]

Butler, J.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy," Proc. Natl. Acad. Sci. U S A 104, 4014-9 (2007).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue," J. Biomed. Opt. 9, 534-540 (2004).
[CrossRef]

Butler, J. A.

J.-H. Chen, B. A. Feig, D. J.-B. Hsiang, J. A. Butler, R. S. Mehta, S. Bahri, O. Nalcioglu, and M.-Y. Su, “Impact of MRI-evaluated neoadjuvant chemotherapy response on change of surgical recommendation in breast cancer," Ann. Surg. 249, 448-54 (2009).
[CrossRef] [PubMed]

But-ler, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. But-ler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Carpenter, C.

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomogra-phy," Opt Express 15, 8043-58 (2007).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen,”A boundary element approach for image-guided near-infrared absorption and scatter estimation," Med Phys 34, 4545- 57 (2007).
[CrossRef] [PubMed]

Carpenter, C. M.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes," Radiology 252, 551-60 (2009).
[CrossRef] [PubMed]

Cerussi, A.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy," Proc. Natl. Acad. Sci. U S A 104, 4014-9 (2007).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue," J. Biomed. Opt. 9, 534-540 (2004).
[CrossRef]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. But-ler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Cerussi, A. E.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy," Phys. Med. Biol. 53, 6713-27 (2008).
[CrossRef] [PubMed]

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms," Technol. Cancer Res. Treat. 2, 563-9 (2003).
[PubMed]

Chance, B.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study," Acad. Radiol. 12, 925-33 (2005).
[CrossRef] [PubMed]

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with apriori anatomical information," Phys. Med. Biol. 50, 2837-58 (2005).
[CrossRef] [PubMed]

C. D. Kurth, J. M. Steven, S. C. Nicolson, B. Chance, and M. Delivoria-Papadopoulos, “Kinetics of cerebral deoxygenation during deep hypothermic circulatory arrest in neonates,"Anesthesiology 77, 656-61 (1992).
[CrossRef] [PubMed]

Chaves, T.

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantita-tive spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information," Phys. Med. Biol. 50, 3941-56 (2005).
[CrossRef] [PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography," Appl. Opt. 42, 5181-90 (2003).
[CrossRef] [PubMed]

Chen, J.-H.

J.-H. Chen, B. A. Feig, D. J.-B. Hsiang, J. A. Butler, R. S. Mehta, S. Bahri, O. Nalcioglu, and M.-Y. Su, “Impact of MRI-evaluated neoadjuvant chemotherapy response on change of surgical recommendation in breast cancer," Ann. Surg. 249, 448-54 (2009).
[CrossRef] [PubMed]

Chen, M. H.

D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-KÄobrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy," JAMA 292, 2735-42 (2004).
[CrossRef] [PubMed]

Chen, N.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction," Radiology 237, 57-66 (2005).
[CrossRef] [PubMed]

Chen, N. G.

Chiou, G.

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms," Technol. Cancer Res. Treat. 2, 563-9 (2003).
[PubMed]

Choe, R.

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization," Appl. Opt. 44, 2082-2093 (2005).
[CrossRef] [PubMed]

Chorlton, M.

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography," Appl. Opt. 42, 5181-90 (2003).
[CrossRef] [PubMed]

Chu, Y.

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms," Technol. Cancer Res. Treat. 2, 563-9 (2003).
[PubMed]

Chung, S. H.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy," Phys. Med. Biol. 53, 6713-27 (2008).
[CrossRef] [PubMed]

Cohen, G.

G. Cohen, “Contrast-detail-dose analysis of six different computed tomographic scanners," J. Comput. Assis. Tomogr. 3, 197-203 (1979).
[CrossRef]

Conant, E. F.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study," Acad. Radiol. 12, 925-33 (2005).
[CrossRef] [PubMed]

Constable, R. T.

R. T. Constable and R. M. Henkelman, “Contrast resolution and detectability in MR imaging," J. Comput. Assis. Tomogr. 15, 297-303 (1991).
[CrossRef]

Corlu, A.

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization," Appl. Opt. 44, 2082-2093 (2005).
[CrossRef] [PubMed]

Cronin, E. B.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction," Radiology 237, 57-66 (2005).
[CrossRef] [PubMed]

Cubeddu, R.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography," Phys Med Biol 50, 2489-2502 (2005).
[CrossRef] [PubMed]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-91 (2000).
[PubMed]

Currier, A. A.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction," Radiology 237, 57-66 (2005).
[CrossRef] [PubMed]

Czerniecki, B. J.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study," Acad. Radiol. 12, 925-33 (2005).
[CrossRef] [PubMed]

D'Andrea, C.

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-91 (2000).
[PubMed]

Danesini, G. M.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography," Phys Med Biol 50, 2489-2502 (2005).
[CrossRef] [PubMed]

Davis, S. C.

B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography," J. Biomed. Opt. 11, 33,001 (2006).
[CrossRef]

DeAngelis, G. A.

D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-KÄobrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy," JAMA 292, 2735-42 (2004).
[CrossRef] [PubMed]

DeBruhl, N.

D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-KÄobrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy," JAMA 292, 2735-42 (2004).
[CrossRef] [PubMed]

Dehghani, H.

G. Xu, D. Piao, C. H. Musgrove, C. F. Bunting, and H. Dehghani, “Trans-rectal ultrasound coupled near infrared optical tomography of the prostate: Part I: simulation," Opt. Express 16, 17484-17504 (2008).
[CrossRef]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomogra-phy," Opt Express 15, 8043-58 (2007).
[CrossRef] [PubMed]

B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography," J. Biomed. Opt. 11, 33,001 (2006).
[CrossRef]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. U S A 103, 8828-33 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction," Technology in Cancer Research and Treatment 4, 513- 526 (2005).
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust recon-struction," Appl. Opt. 44, 1858-69 (2005).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-52 (2004).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast," Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging," Appl Opt 42, 3117-28 (2003).
[CrossRef] [PubMed]

Delivoria-Papadopoulos, M.

C. D. Kurth, J. M. Steven, S. C. Nicolson, B. Chance, and M. Delivoria-Papadopoulos, “Kinetics of cerebral deoxygenation during deep hypothermic circulatory arrest in neonates,"Anesthesiology 77, 656-61 (1992).
[CrossRef] [PubMed]

Delpy, D. T.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Deng, C.

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms," Technol. Cancer Res. Treat. 2, 563-9 (2003).
[PubMed]

Djeziri, S.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results," Acad. Radiology 12, 934-947 (2005).
[CrossRef]

Dorn, O.

A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spheri-cal harmonic parametrization and a boundary element method," Inverse Problems 22, 1509-1532 (2006).
[CrossRef]

Doyley, M.

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast," Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

Durduran, T.

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization," Appl. Opt. 44, 2082-2093 (2005).
[CrossRef] [PubMed]

Durkin, A.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy," Proc. Natl. Acad. Sci. U S A 104, 4014-9 (2007).
[CrossRef] [PubMed]

Durkin, A. J.

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms," Technol. Cancer Res. Treat. 2, 563-9 (2003).
[PubMed]

Espinoza, J.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. But-ler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Fang, Q.

G. Boverman, E. Miller, D. H. Brooks, D. Isaacson, Q. Fang, and D. A. Boas, “Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography," IEEE Trans. Med. Imaging 27, 752-765 (2008).
[CrossRef]

Faulkner, K.

K. J. Robinson, C. J. Kotre, and K. Faulkner, “The use of contrast-detail test objects in the optimization of optical density in mammography," Br. J. Radiol. 68, 277-282 (1995).
[CrossRef]

Feig, B. A.

J.-H. Chen, B. A. Feig, D. J.-B. Hsiang, J. A. Butler, R. S. Mehta, S. Bahri, O. Nalcioglu, and M.-Y. Su, “Impact of MRI-evaluated neoadjuvant chemotherapy response on change of surgical recommendation in breast cancer," Ann. Surg. 249, 448-54 (2009).
[CrossRef] [PubMed]

Fleiszer, P.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results," Acad. Radiology 12, 934-947 (2005).
[CrossRef]

Forero, J. A.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes," Radiology 252, 551-60 (2009).
[CrossRef] [PubMed]

Franceschini, M. A.

D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging," Appl. Opt. 45, 8142-51 (2006).
[CrossRef] [PubMed]

Gatsonis, C. A.

D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-KÄobrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy," JAMA 292, 2735-42 (2004).
[CrossRef] [PubMed]

Gerety, E. D.

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concen-tration and oxygen saturation in breast tissue," Appl Opt 38, 5480-90 (1999).
[CrossRef]

Grosenick, D.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg,”Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas," Phys Med Biol 50, 2451-2468 (2005).
[CrossRef] [PubMed]

Gulsen, G.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy," Phys. Med. Biol. 53, 6713-27 (2008).
[CrossRef] [PubMed]

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms," Technol. Cancer Res. Treat. 2, 563-9 (2003).
[PubMed]

Guven, M.

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with apriori anatomical information," Phys. Med. Biol. 50, 2837-58 (2005).
[CrossRef] [PubMed]

Hall, D.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results," Acad. Radiology 12, 934-947 (2005).
[CrossRef]

Harms, S.

D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-KÄobrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy," JAMA 292, 2735-42 (2004).
[CrossRef] [PubMed]

Henkelman, R. M.

R. T. Constable and R. M. Henkelman, “Contrast resolution and detectability in MR imaging," J. Comput. Assis. Tomogr. 15, 297-303 (1991).
[CrossRef]

Hielscher, A. H.

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints," Phys. Med. Biol. 49, 1147-63 (2004).
[CrossRef] [PubMed]

Hillman, E. M.

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization," Appl. Opt. 44, 2082-2093 (2005).
[CrossRef] [PubMed]

Hillman, E. M. C.

Hiraoka, M.

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Hsiang, D.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy," Phys. Med. Biol. 53, 6713-27 (2008).
[CrossRef] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy," Proc. Natl. Acad. Sci. U S A 104, 4014-9 (2007).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue," J. Biomed. Opt. 9, 534-540 (2004).
[CrossRef]

Hsiang, D. J.-B.

J.-H. Chen, B. A. Feig, D. J.-B. Hsiang, J. A. Butler, R. S. Mehta, S. Bahri, O. Nalcioglu, and M.-Y. Su, “Impact of MRI-evaluated neoadjuvant chemotherapy response on change of surgical recommendation in breast cancer," Ann. Surg. 249, 448-54 (2009).
[CrossRef] [PubMed]

Huang, M.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction," Radiology 237, 57-66 (2005).
[CrossRef] [PubMed]

M. Huang, T. Xie, N. G. Chen, and Q. Zhu, “Simultaneous reconstruction of absorption and scattering maps with ultrasound localization: feasibility study using transmission geometry," Appl. Opt. 42, 4102-14 (2003).
[CrossRef] [PubMed]

Huppert, T. J.

D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging," Appl. Opt. 45, 8142-51 (2006).
[CrossRef] [PubMed]

Hwang, E.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study," Acad. Radiol. 12, 925-33 (2005).
[CrossRef] [PubMed]

Ichalalene, Z.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results," Acad. Radiology 12, 934-947 (2005).
[CrossRef]

Intes, X.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results," Acad. Radiology 12, 934-947 (2005).
[CrossRef]

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with apriori anatomical information," Phys. Med. Biol. 50, 2837-58 (2005).
[CrossRef] [PubMed]

Isaacson, D.

G. Boverman, E. Miller, D. H. Brooks, D. Isaacson, Q. Fang, and D. A. Boas, “Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography," IEEE Trans. Med. Imaging 27, 752-765 (2008).
[CrossRef]

Jacques, S. L.

M. J. C. van Gemert, S. L. Jacques, H. Sterenborg, and W. M. Star, “Skin Optics," IEEE Trans. Biomed. Eng. 36, 1146-1154 (1989).
[CrossRef] [PubMed]

Jakubowski, D.

N. Shah, A. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue," J. Biomed. Opt. 9, 534-540 (2004).
[CrossRef]

Jiang, H.

K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation," Med Phys 22, 691-701 (1995).
[CrossRef] [PubMed]

Jiang, S.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes," Radiology 252, 551-60 (2009).
[CrossRef] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomogra-phy," Opt Express 15, 8043-58 (2007).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. U S A 103, 8828-33 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction," Technology in Cancer Research and Treatment 4, 513- 526 (2005).
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust recon-struction," Appl. Opt. 44, 1858-69 (2005).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-52 (2004).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast," Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

Joseph, D. K.

D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging," Appl. Opt. 45, 8142-51 (2006).
[CrossRef] [PubMed]

Kilmer, M. E.

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography," Appl. Opt. 44, 1948-56 (2005).
[CrossRef] [PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography," Appl. Opt. 42, 5181-90 (2003).
[CrossRef] [PubMed]

Klifa, C.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy," Phys. Med. Biol. 53, 6713-27 (2008).
[CrossRef] [PubMed]

Klose, A. D.

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints," Phys. Med. Biol. 49, 1147-63 (2004).
[CrossRef] [PubMed]

Knight, J. A.

J. A. Knight, K. M. Blackmore, J. Wong, S. Tharmalingam, and L. Lilge, “Optical spectroscopy of the breast in premenopausal women reveals tissue variation with changes in age and parity," Med. Phys. 37, 419-26 (2010).
[CrossRef] [PubMed]

Kogel, C.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. U S A 103, 8828-33 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction," Technology in Cancer Research and Treatment 4, 513- 526 (2005).
[PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast," Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-52 (2004).
[CrossRef] [PubMed]

Kogel, C. A.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes," Radiology 252, 551-60 (2009).
[CrossRef] [PubMed]

Kolehmainen, V.

A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spheri-cal harmonic parametrization and a boundary element method," Inverse Problems 22, 1509-1532 (2006).
[CrossRef]

Kopans, D. B.

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography," Appl. Opt. 42, 5181-90 (2003).
[CrossRef] [PubMed]

Kotre, C. J.

K. J. Robinson, C. J. Kotre, and K. Faulkner, “The use of contrast-detail test objects in the optimization of optical density in mammography," Br. J. Radiol. 68, 277-282 (1995).
[CrossRef]

Kuhl, C. K.

C. K. Kuhl, “Current status of breast MR imaging. Part 2. Clinical applications," Radiology 244, 672-91 (2007).
[CrossRef] [PubMed]

Kurth, C. D.

C. D. Kurth, J. M. Steven, S. C. Nicolson, B. Chance, and M. Delivoria-Papadopoulos, “Kinetics of cerebral deoxygenation during deep hypothermic circulatory arrest in neonates,"Anesthesiology 77, 656-61 (1992).
[CrossRef] [PubMed]

Lanning, R.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. But-ler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Lee, K.

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization," Appl. Opt. 44, 2082-2093 (2005).
[CrossRef] [PubMed]

Lesage, F.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results," Acad. Radiology 12, 934-947 (2005).
[CrossRef]

Li, A.

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography," Appl. Opt. 44, 1948-56 (2005).
[CrossRef] [PubMed]

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantita-tive spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information," Phys. Med. Biol. 50, 3941-56 (2005).
[CrossRef] [PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography," Appl. Opt. 42, 5181-90 (2003).
[CrossRef] [PubMed]

Lilge, L.

J. A. Knight, K. M. Blackmore, J. Wong, S. Tharmalingam, and L. Lilge, “Optical spectroscopy of the breast in premenopausal women reveals tissue variation with changes in age and parity," Med. Phys. 37, 419-26 (2010).
[CrossRef] [PubMed]

Lopez, H.

S. W. Smith and H. Lopez, “A contrast-detail analysis of diagnostic ultrasound imaging," Med. Phys. 9, 4-12 (1982).
[CrossRef] [PubMed]

McBride, T. O.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-6 (2001).
[PubMed]

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concen-tration and oxygen saturation in breast tissue," Appl Opt 38, 5480-90 (1999).
[CrossRef]

Mehta, R.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy," Proc. Natl. Acad. Sci. U S A 104, 4014-9 (2007).
[CrossRef] [PubMed]

Mehta, R. S.

J.-H. Chen, B. A. Feig, D. J.-B. Hsiang, J. A. Butler, R. S. Mehta, S. Bahri, O. Nalcioglu, and M.-Y. Su, “Impact of MRI-evaluated neoadjuvant chemotherapy response on change of surgical recommendation in breast cancer," Ann. Surg. 249, 448-54 (2009).
[CrossRef] [PubMed]

Merritt, S.

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms," Technol. Cancer Res. Treat. 2, 563-9 (2003).
[PubMed]

Merritt, S. I.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy," Phys. Med. Biol. 53, 6713-27 (2008).
[CrossRef] [PubMed]

Mesurolle, B.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results," Acad. Radiology 12, 934-947 (2005).
[CrossRef]

Miller, E.

G. Boverman, E. Miller, D. H. Brooks, D. Isaacson, Q. Fang, and D. A. Boas, “Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography," IEEE Trans. Med. Imaging 27, 752-765 (2008).
[CrossRef]

Miller, E. L.

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantita-tive spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information," Phys. Med. Biol. 50, 3941-56 (2005).
[CrossRef] [PubMed]

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography," Appl. Opt. 44, 1948-56 (2005).
[CrossRef] [PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography," Appl. Opt. 42, 5181-90 (2003).
[CrossRef] [PubMed]

Mincu, N.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results," Acad. Radiology 12, 934-947 (2005).
[CrossRef]

Moa-Anderson, B.

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints," Phys. Med. Biol. 49, 1147-63 (2004).
[CrossRef] [PubMed]

Moesta, K. T.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg,”Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas," Phys Med Biol 50, 2451-2468 (2005).
[CrossRef] [PubMed]

Moore, R. H.

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography," Appl. Opt. 42, 5181-90 (2003).
[CrossRef] [PubMed]

Mucke, J.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg,”Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas," Phys Med Biol 50, 2451-2468 (2005).
[CrossRef] [PubMed]

Musgrove, C. H.

G. Xu, D. Piao, C. H. Musgrove, C. F. Bunting, and H. Dehghani, “Trans-rectal ultrasound coupled near infrared optical tomography of the prostate: Part I: simulation," Opt. Express 16, 17484-17504 (2008).
[CrossRef]

Nalcioglu, O.

J.-H. Chen, B. A. Feig, D. J.-B. Hsiang, J. A. Butler, R. S. Mehta, S. Bahri, O. Nalcioglu, and M.-Y. Su, “Impact of MRI-evaluated neoadjuvant chemotherapy response on change of surgical recommendation in breast cancer," Ann. Surg. 249, 448-54 (2009).
[CrossRef] [PubMed]

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms," Technol. Cancer Res. Treat. 2, 563-9 (2003).
[PubMed]

Netz, U.

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints," Phys. Med. Biol. 49, 1147-63 (2004).
[CrossRef] [PubMed]

Nicolson, S. C.

C. D. Kurth, J. M. Steven, S. C. Nicolson, B. Chance, and M. Delivoria-Papadopoulos, “Kinetics of cerebral deoxygenation during deep hypothermic circulatory arrest in neonates,"Anesthesiology 77, 656-61 (1992).
[CrossRef] [PubMed]

Nioka, S.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study," Acad. Radiol. 12, 925-33 (2005).
[CrossRef] [PubMed]

Orel, S. G.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study," Acad. Radiol. 12, 925-33 (2005).
[CrossRef] [PubMed]

Osterberg, U. L.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-6 (2001).
[PubMed]

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concen-tration and oxygen saturation in breast tissue," Appl Opt 38, 5480-90 (1999).
[CrossRef]

Osterman, K. S.

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-6 (2001).
[PubMed]

Patterson, M. S.

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry," J. Biomed. Opt. 11, 041,102-16 (2006).

M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application," Lasers Med. Sci. 6, 155-168 (1991).
[CrossRef]

Paulsen, K.

S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen,”A boundary element approach for image-guided near-infrared absorption and scatter estimation," Med Phys 34, 4545- 57 (2007).
[CrossRef] [PubMed]

Paulsen, K. D.

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomogra-phy," Opt Express 15, 8043-58 (2007).
[CrossRef] [PubMed]

B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography," J. Biomed. Opt. 11, 33,001 (2006).
[CrossRef]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. U S A 103, 8828-33 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction," Technology in Cancer Research and Treatment 4, 513- 526 (2005).
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust recon-struction," Appl. Opt. 44, 1858-69 (2005).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-52 (2004).
[CrossRef] [PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast," Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging," Appl Opt 42, 3117-28 (2003).
[CrossRef] [PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-6 (2001).
[PubMed]

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concen-tration and oxygen saturation in breast tissue," Appl Opt 38, 5480-90 (1999).
[CrossRef]

B. W. Pogue and K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information," Opt. Lett. 23, 1716-8 (1998).
[CrossRef]

K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation," Med Phys 22, 691-701 (1995).
[CrossRef] [PubMed]

Pham, T.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. But-ler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Piao, D.

G. Xu, D. Piao, C. H. Musgrove, C. F. Bunting, and H. Dehghani, “Trans-rectal ultrasound coupled near infrared optical tomography of the prostate: Part I: simulation," Opt. Express 16, 17484-17504 (2008).
[CrossRef]

Pifferi, A.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography," Phys Med Biol 50, 2489-2502 (2005).
[CrossRef] [PubMed]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-91 (2000).
[PubMed]

Pogue, B. W.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes," Radiology 252, 551-60 (2009).
[CrossRef] [PubMed]

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomogra-phy," Opt Express 15, 8043-58 (2007).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen,”A boundary element approach for image-guided near-infrared absorption and scatter estimation," Med Phys 34, 4545- 57 (2007).
[CrossRef] [PubMed]

B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography," J. Biomed. Opt. 11, 33,001 (2006).
[CrossRef]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. U S A 103, 8828-33 (2006).
[CrossRef] [PubMed]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry," J. Biomed. Opt. 11, 041,102-16 (2006).

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust recon-struction," Appl. Opt. 44, 1858-69 (2005).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction," Technology in Cancer Research and Treatment 4, 513- 526 (2005).
[PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast," Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-52 (2004).
[CrossRef] [PubMed]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging," Appl Opt 42, 3117-28 (2003).
[CrossRef] [PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-6 (2001).
[PubMed]

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concen-tration and oxygen saturation in breast tissue," Appl Opt 38, 5480-90 (1999).
[CrossRef]

B. W. Pogue and K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information," Opt. Lett. 23, 1716-8 (1998).
[CrossRef]

Polyzos, M.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results," Acad. Radiology 12, 934-947 (2005).
[CrossRef]

Poplack, S. B.

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concen-tration and oxygen saturation in breast tissue," Appl Opt 38, 5480-90 (1999).
[CrossRef]

Poplack, S. P.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes," Radiology 252, 551-60 (2009).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. U S A 103, 8828-33 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction," Technology in Cancer Research and Treatment 4, 513- 526 (2005).
[PubMed]

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast," Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-52 (2004).
[CrossRef] [PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-6 (2001).
[PubMed]

Rinneberg, H.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg,”Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas," Phys Med Biol 50, 2451-2468 (2005).
[CrossRef] [PubMed]

Robinson, K. J.

K. J. Robinson, C. J. Kotre, and K. Faulkner, “The use of contrast-detail test objects in the optimization of optical density in mammography," Br. J. Radiol. 68, 277-282 (1995).
[CrossRef]

Scheel, A. K.

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints," Phys. Med. Biol. 49, 1147-63 (2004).
[CrossRef] [PubMed]

Schlag, P. M.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg,”Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas," Phys Med Biol 50, 2451-2468 (2005).
[CrossRef] [PubMed]

Schnall, M. D.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study," Acad. Radiol. 12, 925-33 (2005).
[CrossRef] [PubMed]

Schweiger, M.

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization," Appl. Opt. 44, 2082-2093 (2005).
[CrossRef] [PubMed]

M. Schweiger and S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information," Phys. Med. Biol. 44, 2703-2721 (1999).
[CrossRef] [PubMed]

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

Shah, N.

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy," Proc. Natl. Acad. Sci. U S A 104, 4014-9 (2007).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue," J. Biomed. Opt. 9, 534-540 (2004).
[CrossRef]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. But-ler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Shudong, J.

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging," Appl Opt 42, 3117-28 (2003).
[CrossRef] [PubMed]

Sikora, J.

A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spheri-cal harmonic parametrization and a boundary element method," Inverse Problems 22, 1509-1532 (2006).
[CrossRef]

Smith, S. W.

S. W. Smith and H. Lopez, “A contrast-detail analysis of diagnostic ultrasound imaging," Med. Phys. 9, 4-12 (1982).
[CrossRef] [PubMed]

Soho, S.

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-52 (2004).
[CrossRef] [PubMed]

Song, X.

B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography," J. Biomed. Opt. 11, 33,001 (2006).
[CrossRef]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-52 (2004).
[CrossRef] [PubMed]

Spinelli, L.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography," Phys Med Biol 50, 2489-2502 (2005).
[CrossRef] [PubMed]

Srinivasan, S.

S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen,”A boundary element approach for image-guided near-infrared absorption and scatter estimation," Med Phys 34, 4545- 57 (2007).
[CrossRef] [PubMed]

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. U S A 103, 8828-33 (2006).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction," Technology in Cancer Research and Treatment 4, 513- 526 (2005).
[PubMed]

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, and K. D. Paulsen, “Spectrally constrained chromophore and scattering near-infrared tomography provides quantitative and robust recon-struction," Appl. Opt. 44, 1858-69 (2005).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-52 (2004).
[CrossRef] [PubMed]

Stahel, M. C.

M. C. Stahel, M. Wolf, A. Banos, and R. Hornung, “Optical properties of the breast during spontaneous and birth control pill-mediated menstrual cycles," Lasers Med. Sci. 24, 901-7 (2009).
[CrossRef] [PubMed]

Star, W. M.

M. J. C. van Gemert, S. L. Jacques, H. Sterenborg, and W. M. Star, “Skin Optics," IEEE Trans. Biomed. Eng. 36, 1146-1154 (1989).
[CrossRef] [PubMed]

Sterenborg, H.

M. J. C. van Gemert, S. L. Jacques, H. Sterenborg, and W. M. Star, “Skin Optics," IEEE Trans. Biomed. Eng. 36, 1146-1154 (1989).
[CrossRef] [PubMed]

Steven, J. M.

C. D. Kurth, J. M. Steven, S. C. Nicolson, B. Chance, and M. Delivoria-Papadopoulos, “Kinetics of cerebral deoxygenation during deep hypothermic circulatory arrest in neonates,"Anesthesiology 77, 656-61 (1992).
[CrossRef] [PubMed]

St-Jean, P.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results," Acad. Radiology 12, 934-947 (2005).
[CrossRef]

Stott, J.

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography," Appl. Opt. 42, 5181-90 (2003).
[CrossRef] [PubMed]

Strangman, G.

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light," Biol. Psychiatry 52, 679-693 (2002).
[CrossRef] [PubMed]

Su, M.-Y.

J.-H. Chen, B. A. Feig, D. J.-B. Hsiang, J. A. Butler, R. S. Mehta, S. Bahri, O. Nalcioglu, and M.-Y. Su, “Impact of MRI-evaluated neoadjuvant chemotherapy response on change of surgical recommendation in breast cancer," Ann. Surg. 249, 448-54 (2009).
[CrossRef] [PubMed]

Sutton, J. P.

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light," Biol. Psychiatry 52, 679-693 (2002).
[CrossRef] [PubMed]

Svaasand, L.

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. But-ler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Taroni, P.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography," Phys Med Biol 50, 2489-2502 (2005).
[CrossRef] [PubMed]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-91 (2000).
[PubMed]

Tharmalingam, S.

J. A. Knight, K. M. Blackmore, J. Wong, S. Tharmalingam, and L. Lilge, “Optical spectroscopy of the breast in premenopausal women reveals tissue variation with changes in age and parity," Med. Phys. 37, 419-26 (2010).
[CrossRef] [PubMed]

Torricelli, A.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography," Phys Med Biol 50, 2489-2502 (2005).
[CrossRef] [PubMed]

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-91 (2000).
[PubMed]

Tosteson, T. D.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. U S A 103, 8828-33 (2006).
[CrossRef] [PubMed]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-52 (2004).
[CrossRef] [PubMed]

Tromberg, B.

N. Shah, A. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue," J. Biomed. Opt. 9, 534-540 (2004).
[CrossRef]

Tromberg, B. J.

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy," Phys. Med. Biol. 53, 6713-27 (2008).
[CrossRef] [PubMed]

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy," Proc. Natl. Acad. Sci. U S A 104, 4014-9 (2007).
[CrossRef] [PubMed]

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms," Technol. Cancer Res. Treat. 2, 563-9 (2003).
[PubMed]

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. But-ler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Valentini, G.

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-91 (2000).
[PubMed]

van Gemert, M. J. C.

M. J. C. van Gemert, S. L. Jacques, H. Sterenborg, and W. M. Star, “Skin Optics," IEEE Trans. Biomed. Eng. 36, 1146-1154 (1989).
[CrossRef] [PubMed]

Vine, H. S.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction," Radiology 237, 57-66 (2005).
[CrossRef] [PubMed]

Wabnitz, H.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg,”Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas," Phys Med Biol 50, 2451-2468 (2005).
[CrossRef] [PubMed]

Wang, Y.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results," Acad. Radiology 12, 934-947 (2005).
[CrossRef]

Weaver, J.

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. U S A 103, 8828-33 (2006).
[CrossRef] [PubMed]

Weaver, J. B.

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast," Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

Wells, W. A.

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes," Radiology 252, 551-60 (2009).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction," Technology in Cancer Research and Treatment 4, 513- 526 (2005).
[PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-6 (2001).
[PubMed]

Wilson, B. C.

M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application," Lasers Med. Sci. 6, 155-168 (1991).
[CrossRef]

Wolf, M.

M. C. Stahel, M. Wolf, A. Banos, and R. Hornung, “Optical properties of the breast during spontaneous and birth control pill-mediated menstrual cycles," Lasers Med. Sci. 24, 901-7 (2009).
[CrossRef] [PubMed]

Wong, J.

J. A. Knight, K. M. Blackmore, J. Wong, S. Tharmalingam, and L. Lilge, “Optical spectroscopy of the breast in premenopausal women reveals tissue variation with changes in age and parity," Med. Phys. 37, 419-26 (2010).
[CrossRef] [PubMed]

Wu, T.

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography," Appl. Opt. 42, 5181-90 (2003).
[CrossRef] [PubMed]

Wyman, D. R.

M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application," Lasers Med. Sci. 6, 155-168 (1991).
[CrossRef]

Xie, T.

Xu, C.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction," Radiology 237, 57-66 (2005).
[CrossRef] [PubMed]

Xu, G.

G. Xu, D. Piao, C. H. Musgrove, C. F. Bunting, and H. Dehghani, “Trans-rectal ultrasound coupled near infrared optical tomography of the prostate: Part I: simulation," Opt. Express 16, 17484-17504 (2008).
[CrossRef]

Yalavarthy, P. K.

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomogra-phy," Opt Express 15, 8043-58 (2007).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen,”A boundary element approach for image-guided near-infrared absorption and scatter estimation," Med Phys 34, 4545- 57 (2007).
[CrossRef] [PubMed]

Yazici, B.

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with apriori anatomical information," Phys. Med. Biol. 50, 2837-58 (2005).
[CrossRef] [PubMed]

Yodh, A. G.

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization," Appl. Opt. 44, 2082-2093 (2005).
[CrossRef] [PubMed]

Zacharopoulos, A. D.

A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spheri-cal harmonic parametrization and a boundary element method," Inverse Problems 22, 1509-1532 (2006).
[CrossRef]

Zhang, J.

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study," Acad. Radiol. 12, 925-33 (2005).
[CrossRef] [PubMed]

Zhang, Q.

A. Li, G. Boverman, Y. Zhang, D. Brooks, E. L. Miller, M. E. Kilmer, Q. Zhang, E. M. C. Hillman, and D. A. Boas, “Optimal linear inverse solution with multiple priors in diffuse optical tomography," Appl. Opt. 44, 1948-56 (2005).
[CrossRef] [PubMed]

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantita-tive spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information," Phys. Med. Biol. 50, 3941-56 (2005).
[CrossRef] [PubMed]

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography," Appl. Opt. 42, 5181-90 (2003).
[CrossRef] [PubMed]

Zhang, Y.

Zhu, Q.

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction," Radiology 237, 57-66 (2005).
[CrossRef] [PubMed]

M. Huang, T. Xie, N. G. Chen, and Q. Zhu, “Simultaneous reconstruction of absorption and scattering maps with ultrasound localization: feasibility study using transmission geometry," Appl. Opt. 42, 4102-14 (2003).
[CrossRef] [PubMed]

Acad Radiol (1)

B. Chance, S. Nioka, J. Zhang, E. F. Conant, E. Hwang, S. Briest, S. G. Orel, M. D. Schnall, and B. J. Czerniecki, “Breast cancer detection based on incremental biochemical and physiological properties of breast cancers: a six-year, two-site study," Acad. Radiol. 12, 925-33 (2005).
[CrossRef] [PubMed]

Acad. Radiology (1)

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, P. Fleiszer, and B. Mesurolle, “Time-Domain Optical Mammography SoftScan: Initial Results," Acad. Radiology 12, 934-947 (2005).
[CrossRef]

Anesthesiology (1)

C. D. Kurth, J. M. Steven, S. C. Nicolson, B. Chance, and M. Delivoria-Papadopoulos, “Kinetics of cerebral deoxygenation during deep hypothermic circulatory arrest in neonates,"Anesthesiology 77, 656-61 (1992).
[CrossRef] [PubMed]

Ann. Surg. (1)

J.-H. Chen, B. A. Feig, D. J.-B. Hsiang, J. A. Butler, R. S. Mehta, S. Bahri, O. Nalcioglu, and M.-Y. Su, “Impact of MRI-evaluated neoadjuvant chemotherapy response on change of surgical recommendation in breast cancer," Ann. Surg. 249, 448-54 (2009).
[CrossRef] [PubMed]

Appl Opt (4)

A. Li, E. L. Miller, M. E. Kilmer, T. J. Brukilacchio, T. Chaves, J. Stott, Q. Zhang, T. Wu, M. Chorlton, R. H. Moore, D. B. Kopans, and D. A. Boas, “Tomographic optical breast imaging guided by three-dimensional mammography," Appl. Opt. 42, 5181-90 (2003).
[CrossRef] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization," Appl. Opt. 44, 2082-2093 (2005).
[CrossRef] [PubMed]

T. O. McBride, B. W. Pogue, E. D. Gerety, S. B. Poplack, U. L. Osterberg, and K. D. Paulsen, “Spectroscopic diffuse optical tomography for the quantitative assessment of hemoglobin concen-tration and oxygen saturation in breast tissue," Appl Opt 38, 5480-90 (1999).
[CrossRef]

H. Dehghani, B. W. Pogue, J. Shudong, B. Brooksby, and K. D. Paulsen, “Three-dimensional optical tomography: resolution in small-object imaging," Appl Opt 42, 3117-28 (2003).
[CrossRef] [PubMed]

Appl. Opt. (3)

Applied Optics (1)

D. K. Joseph, T. J. Huppert, M. A. Franceschini, and D. A. Boas, “Diffuse optical tomography system to image brain activation with improved spatial resolution and validation with functional magnetic resonance imaging," Appl. Opt. 45, 8142-51 (2006).
[CrossRef] [PubMed]

Biol. Psychiatry (1)

G. Strangman, D. A. Boas, and J. P. Sutton, “Non-invasive neuroimaging using near-infrared light," Biol. Psychiatry 52, 679-693 (2002).
[CrossRef] [PubMed]

Br. J. Radiol. (1)

K. J. Robinson, C. J. Kotre, and K. Faulkner, “The use of contrast-detail test objects in the optimization of optical density in mammography," Br. J. Radiol. 68, 277-282 (1995).
[CrossRef]

IEEE Trans Med Imaging (1)

G. Boverman, E. Miller, D. H. Brooks, D. Isaacson, Q. Fang, and D. A. Boas, “Estimation and statistical bounds for three-dimensional polar shapes in diffuse optical tomography," IEEE Trans. Med. Imaging 27, 752-765 (2008).
[CrossRef]

IEEE trans. Biomed. Eng. (1)

M. J. C. van Gemert, S. L. Jacques, H. Sterenborg, and W. M. Star, “Skin Optics," IEEE Trans. Biomed. Eng. 36, 1146-1154 (1989).
[CrossRef] [PubMed]

Inverse Problems (2)

S. R. Arridge, “Optical tomography in medical imaging," Inverse Problems 15, R41-R93 (1999).
[CrossRef]

A. D. Zacharopoulos, S. R. Arridge, O. Dorn, V. Kolehmainen, and J. Sikora, “Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spheri-cal harmonic parametrization and a boundary element method," Inverse Problems 22, 1509-1532 (2006).
[CrossRef]

J. Biomed. Opt. (4)

B. W. Pogue, S. C. Davis, X. Song, B. A. Brooksby, H. Dehghani, and K. D. Paulsen, “Image analysis methods for diffuse optical tomography," J. Biomed. Opt. 11, 33,001 (2006).
[CrossRef]

B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, S. Srinivasan, X. Song, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Characterization of hemoglobin, water, and NIR scattering in breast tissue: analysis of intersubject variability and menstrual cycle changes," J. Biomed. Opt. 9, 541-52 (2004).
[CrossRef] [PubMed]

N. Shah, A. Cerussi, D. Jakubowski, D. Hsiang, J. Butler, and B. Tromberg, “Spatial variations in optical and physiological properties of healthy breast tissue," J. Biomed. Opt. 9, 534-540 (2004).
[CrossRef]

B. W. Pogue and M. S. Patterson, “Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry," J. Biomed. Opt. 11, 041,102-16 (2006).

J. Comput. Assis. Tomogr. (2)

R. T. Constable and R. M. Henkelman, “Contrast resolution and detectability in MR imaging," J. Comput. Assis. Tomogr. 15, 297-303 (1991).
[CrossRef]

G. Cohen, “Contrast-detail-dose analysis of six different computed tomographic scanners," J. Comput. Assis. Tomogr. 3, 197-203 (1979).
[CrossRef]

JAMA (1)

D. A. Bluemke, C. A. Gatsonis, M. H. Chen, G. A. DeAngelis, N. DeBruhl, S. Harms, S. H. Heywang-KÄobrunner, N. Hylton, C. K. Kuhl, C. Lehman, E. D. Pisano, P. Causer, S. J. Schnitt, S. F. Smazal, C. B. Stelling, P. T. Weatherall, and M. D. Schnall, “Magnetic resonance imaging of the breast prior to biopsy," JAMA 292, 2735-42 (2004).
[CrossRef] [PubMed]

Lasers Med. Sci. (2)

M. S. Patterson, B. C. Wilson, and D. R. Wyman, “The propagation of optical radiation in tissue I. Models of radiation transport and their application," Lasers Med. Sci. 6, 155-168 (1991).
[CrossRef]

M. C. Stahel, M. Wolf, A. Banos, and R. Hornung, “Optical properties of the breast during spontaneous and birth control pill-mediated menstrual cycles," Lasers Med. Sci. 24, 901-7 (2009).
[CrossRef] [PubMed]

Med Phys (2)

K. D. Paulsen and H. Jiang, “Spatially varying optical property reconstruction using a finite element diffusion equation approximation," Med Phys 22, 691-701 (1995).
[CrossRef] [PubMed]

S. Srinivasan, B. W. Pogue, C. Carpenter, P. K. Yalavarthy, and K. Paulsen,”A boundary element approach for image-guided near-infrared absorption and scatter estimation," Med Phys 34, 4545- 57 (2007).
[CrossRef] [PubMed]

Med. Phys. (3)

S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue," Med. Phys. 20, 299-309 (1993).
[CrossRef] [PubMed]

J. A. Knight, K. M. Blackmore, J. Wong, S. Tharmalingam, and L. Lilge, “Optical spectroscopy of the breast in premenopausal women reveals tissue variation with changes in age and parity," Med. Phys. 37, 419-26 (2010).
[CrossRef] [PubMed]

S. W. Smith and H. Lopez, “A contrast-detail analysis of diagnostic ultrasound imaging," Med. Phys. 9, 4-12 (1982).
[CrossRef] [PubMed]

Neoplasia (1)

B. J. Tromberg, N. Shah, R. Lanning, A. Cerussi, J. Espinoza, T. Pham, L. Svaasand, and J. But-ler, “Non-invasive in vivo characterization of breast tumors using photon migration spectroscopy," Neoplasia 2, 26-40 (2000).
[CrossRef] [PubMed]

Opt Express (1)

P. K. Yalavarthy, B. W. Pogue, H. Dehghani, C. Carpenter, S. Jiang, and K. D. Paulsen, “Structural information within regularization matrices improves near infrared diffuse optical tomogra-phy," Opt Express 15, 8043-58 (2007).
[CrossRef] [PubMed]

Opt Lett (1)

B. W. Pogue and K. D. Paulsen, “High-resolution near-infrared tomographic imaging simulations of the rat cranium by use of a priori magnetic resonance imaging structural information," Opt. Lett. 23, 1716-8 (1998).
[CrossRef]

Optics Express (1)

G. Xu, D. Piao, C. H. Musgrove, C. F. Bunting, and H. Dehghani, “Trans-rectal ultrasound coupled near infrared optical tomography of the prostate: Part I: simulation," Opt. Express 16, 17484-17504 (2008).
[CrossRef]

Photochem. Photobiol. (1)

R. Cubeddu, C. D'Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast," Photochem. Photobiol. 72, 383-91 (2000).
[PubMed]

Phys Med Biol (3)

A. H. Hielscher, A. D. Klose, A. K. Scheel, B. Moa-Anderson, M. Backhaus, U. Netz, and J. Beuthan, “Sagittal laser optical tomography for imaging of rheumatoid finger joints," Phys. Med. Biol. 49, 1147-63 (2004).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Characterization of female breast lesions from multi-wavelength time-resolved optical mammography," Phys Med Biol 50, 2489-2502 (2005).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg,”Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas," Phys Med Biol 50, 2451-2468 (2005).
[CrossRef] [PubMed]

Phys. Med. Biol. (4)

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas, “Quantita-tive spectroscopic diffuse optical tomography of the breast guided by imperfect a priori structural information," Phys. Med. Biol. 50, 3941-56 (2005).
[CrossRef] [PubMed]

M. Schweiger and S. R. Arridge, “Optical tomographic reconstruction in a complex head model using a priori region boundary information," Phys. Med. Biol. 44, 2703-2721 (1999).
[CrossRef] [PubMed]

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with apriori anatomical information," Phys. Med. Biol. 50, 2837-58 (2005).
[CrossRef] [PubMed]

S. H. Chung, A. E. Cerussi, C. Klifa, H. M. Baek, O. Birgul, G. Gulsen, S. I. Merritt, D. Hsiang, and B. J. Tromberg, “In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy," Phys. Med. Biol. 53, 6713-27 (2008).
[CrossRef] [PubMed]

Proc Natl Acad Sci U S A (1)

A. Cerussi, D. Hsiang, N. Shah, R. Mehta, A. Durkin, J. Butler, and B. J. Tromberg, “Predicting response to breast cancer neoadjuvant chemotherapy using diffuse optical spectroscopy," Proc. Natl. Acad. Sci. U S A 104, 4014-9 (2007).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U S A (1)

B. Brooksby, B. W. Pogue, S. Jiang, H. Dehghani, S. Srinivasan, C. Kogel, T. D. Tosteson, J. Weaver, S. P. Poplack, and K. D. Paulsen, “Imaging breast adipose and fibroglandular tissue molecular signatures by using hybrid MRI-guided near-infrared spectral tomography," Proc. Natl. Acad. Sci. U S A 103, 8828-33 (2006).
[CrossRef] [PubMed]

Radiology (4)

S. Jiang, B. W. Pogue, C. M. Carpenter, S. P. Poplack, W. A. Wells, C. A. Kogel, J. A. Forero, L. S. Muffly, G. N. Schwartz, K. D. Paulsen, and P. A. Kaufman, “Evaluation of breast tumor response to neoadjuvant chemotherapy with tomographic diffuse optical spectroscopy: case studies of tumor region-of-interest changes," Radiology 252, 551-60 (2009).
[CrossRef] [PubMed]

B. W. Pogue, S. P. Poplack, T. O. McBride, W. A. Wells, K. S. Osterman, U. L. Osterberg, and K. D. Paulsen, “Quantitative hemoglobin tomography with diffuse near-infrared spectroscopy: pilot results in the breast," Radiology 218, 261-6 (2001).
[PubMed]

C. K. Kuhl, “Current status of breast MR imaging. Part 2. Clinical applications," Radiology 244, 672-91 (2007).
[CrossRef] [PubMed]

Q. Zhu, E. B. Cronin, A. A. Currier, H. S. Vine, M. Huang, N. Chen, and C. Xu, “Benign versus malignant breast masses: optical differentiation with US-guided optical imaging reconstruction," Radiology 237, 57-66 (2005).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

B. Brooksby, S. Jiang, H. Dehghani, B. W. Pogue, K. D. Paulsen, C. Kogel, M. Doyley, J. B. Weaver, and S. P. Poplack, “Magnetic resonance-guided near-infrared tomography of the breast," Rev. Sci. Instrum. 75, 5262-5270 (2004).
[CrossRef]

Technol. Cancer Res. Treat. (1)

S. Merritt, G. Gulsen, G. Chiou, Y. Chu, C. Deng, A. E. Cerussi, A. J. Durkin, B. J. Tromberg, and O. Nalcioglu, “Comparison of water and lipid content measurements using diffuse optical spectroscopy and MRI in emulsion phantoms," Technol. Cancer Res. Treat. 2, 563-9 (2003).
[PubMed]

Technology in Cancer Research and Treatment (1)

S. Srinivasan, B. W. Pogue, B. Brooksby, S. Jiang, H. Dehghani, C. Kogel, W. A. Wells, S. P. Poplack, and K. D. Paulsen, “Near-infrared characterization of breast tumors in-vivo using spectrally-constrained reconstruction," Technology in Cancer Research and Treatment 4, 513- 526 (2005).
[PubMed]

Other (13)

D. R. Leff, O. J. Warren, L. C. Enfield, A. Gibson, T. Athanasiou, D. K. Patten, J. C. Hebden, G. Z. Yang, and A. Darzi, “Diffuse optical imaging of the healthy and diseased breast: a systematic review," Breast Cancer Res Treat: Review (2007).

R. Choe, S. D. Konecky, A. Corlu, K. Lee, T. Durduran, D. R. Busch, S. Pathak, B. J. Czerniecki, J. Tchou, D. L. Fraker, A. Demichele, B. Chance, S. R. Arridge, M. Schweiger, J. P. Culver, M. D. Schnall, M. E. Putt, M. A. Rosen, and A. G. Yodh, “Differentiation of benign and malignant breast tumors by in-vivo three-dimensional parallel-plate diffuse optical tomography," J. Biomed. Opt. 14, 024,020 (2009).
[CrossRef]

Z. Yuan, Q. Zhang, E. S. Sobel, and H. Jiang, “Tomographic x-ray-guided three-dimensional diffuse optical tomography of osteoarthritis in the finger joints," J. Biomed Opt 13, 044-006 (2008).

V. Ntziachristos, “Concurrent diffuse optical tomography, spectroscopy and magnetic resonance imaging of Breast Cancer," Ph.D. thesis, UPenn (2000).

Q. Zhang, T. J. Brukilacchio, A. Li, J. J. Stott, T. Chaves, E. Hillman, T. Wu, M. Chorlton, E. Rafferty, R. H. Moore, D. B. Kopans, and D. A. Boas, “Coregistered tomographic x-ray and optical breast imaging: initial results," J Biomed Opt. 10, 024,033 (2005).
[CrossRef]

P. Taroni, A. Bassi, D. Comelli, A. Farina, R. Cubeddu, and A. Pifferi, “Diffuse optical spec-troscopy of breast tissue extended to 1100 nm," J. Biomed. Opt. 14, 054,030 (2009).
[CrossRef]

B. Brendel and T. Nielsen, “Selection of optimal wavelengths for spectral reconstruction in diffuse optical tomography," J. Biomed. Opt. 14, 034,041 (2009).</jrn>
[CrossRef]

J. Wang, “Broadband Near-Infrared Tomography For Breast Cancer Imaging," Ph.D. thesis, Dartmouth College (Department of Physics and Astronomy) (2009).

Mimics Software," http://materialise.com/mimics.

S. Srinivasan, C. Carpenter, B. W. Pogue, and K. D. Paulsen, “Image-guided near infrared spec-troscopy using boundary element method: phantom validation," Proc. SPIE 7171, 717103 (2009).

S. Srinivasan, B. W. Pogue, S. Jiang, H. Dehghani, C. Kogel, S. Soho, J. J. Gibson, T. D. Tosteson, S. P. Poplack, and K. D. Paulsen, “Interpreting hemoglobin and water concentration, oxygen saturation, and scattering measured in vivo by near-infrared breast tomography," Proc. Natl. Acad. Sci. U S A 100, 12,349-54 (2003).
[CrossRef]

A. Corlu, T. Durduran, R. Choe, M. Schweiger, E. M. Hillman, S. R. Arridge, and A. G. Yodh, “Uniqueness and wavelength optimization in continuous-wave multispectral diffuse optical tomog-raphy," Opt. Lett. 28, 2339-41 (2003).
[CrossRef] [PubMed]

A. Li, Q. Zhang, J. P. Culver, E. L. Miller, and D. A. Boas, “Reconstructing chromosphere concentration images directly by continuous-wave diffuse optical tomography," Opt. Lett. 29, 256- 8 (2004).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

In (a) the MR image of a breast phantom is used to generate the surface of breast shown in (b), which is a 3D rendering of the mesh with inclusion and the position of source/detectors in red dots.

Fig. 2.
Fig. 2.

Percent error plots (color bar shows error values) are shown for the range of sizes (x-axis) and contrasts (y-axis). Each plot represents the error in recovering an expected value of a different chromophore based on varying sizes (x-axis) and contrasts (y-axis): (a) HbO, (b) Hb, (c) HbT, (d) Contrast Ratio. The results are for non-spherical inclusions with no water contrast.

Fig. 3.
Fig. 3.

Percent error plots (color bar shows error values) are shown for the range of sizes (x-axis) and contrasts (y-axis). Each plot represents the error in recovering an expected value of a different chromophore based on varying sizes (x-axis) and contrasts (y-axis): (a) HbO, (b) Hb, (c) HbT, (d) Contrast Ratio. The results are for non-spherical inclusions with water contrast.

Fig. 4.
Fig. 4.

Percent error plots (color bar shows error values) are shown for the range of sizes (x-axis) and contrasts (y-axis). Each plot represents the error in recovering an expected value of a different chromophore based on varying sizes (x-axis) and contrasts (y-axis): (a) HbO, (b) Hb, (c) HbT, (d) Contrast Ratio. The results are for spherical inclusions (with water contrast) whose sizes were smaller than that of non-spherical inclusions shown in Figures 2 and 3.

Fig. 5.
Fig. 5.

(a) Different heights from the MR image of the the breast phantom (17, 25, 35, 45, 55, 65 and 74mm) were used to create various sizes for the 3D breast mesh to study the effect of trimmed meshes. (b) Using the full breast mesh as the reference, the change in light fluence of the trimmed meshes (shown in (a)) at the detector locations is shown here. Horizontal axis is the distance between source/detector pairs and vertical axis is the light fluence difference between full mesh (I 0) and partial mesh (I). For clarity not all trimmed sizes are shown. The height of the full breast mesh was 79mm.

Fig. 6.
Fig. 6.

Percent error plots (color bar shows error values) are shown for the range of sizes (x-axis) and contrasts (y-axis). Each plot represents the error in recovering an expected value of a different chromophore based on varying sizes (x-axis) and contrasts (y-axis): (a) HbO, (b) Hb, (c) HbT, (d) Contrast Ratio. The results are for spherical inclusions (with water contrast) using partial volume type reconstruction with reduced volume for breast mesh as shown in Figure 5(a).

Fig. 7.
Fig. 7.

(a) Reconstructed estimates of HbO, Hb and HbT concentration are shown for a simulated inclusion with an equivalent diameter of 19.2mm. The resolution of the inclusion mesh was doubled. The difference in HbT was less than 2% using different mesh resolutions. The numbers shown on top of each set of bars are the % error of the medium resolution relative to the fine resolution. Refer to Table 4 for mesh information. (b) Using a relatively coarser mesh for the breast model not only produces accurate chromophore values but also it reduces computational time relative to normal breast mesh. The numbers shown on top of each set of bars are the % error of each chromophore of the coarse breast mesh relative to normal breast mesh. Refer to Table 5 for the mesh information used here.

Tables (5)

Tables Icon

Table 1. Size and mesh properties of non-spherical inclusions used in the simulations. Equivalent diameters is diameter of a sphere that would contain the same volume as the inclusion.

Tables Icon

Table 2. Size and mesh properties of spherical inclusions used in the simulations and contrast-detail plots.

Tables Icon

Table 3. Level of oxy-hemoglobin (HbO), deoxy-hemoglobin (Hb) and HbT in different simulated contrast ratios (µM)

Tables Icon

Table 4. Number of nodes used in different mesh resolution for “size 3” inclusion.

Tables Icon

Table 5. Better computational performance is achieved by choosing the mesh as described in section 3.3. The simulations were run on a computer with 32 GB of memory and an AMD Opteron CPU @ 2.7GHz with Linux as operating system.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

· D ( r ) Φ ( r , ω ) + ( μ a ( r ) + i ω c ) Φ ( r , ω ) = q 0 ( r , ω )
exp ( λ · r ) 4 π · D · r
λ = μ a + i ω c D

Metrics