Abstract

We report a unique triple-frequency symmetric subtraction scheme to effectively remove the nonresonant background in coherent anti-Stokes Raman scattering (CARS) microscopy. Theoretical and experimental studies show that this unique scheme has an optimal performance for high contrast vibrational imaging, particularly useful when the resonant signal was larger than or comparable to the nonresonant background.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7(8), 350–352 (1982).
    [CrossRef] [PubMed]
  2. A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
    [CrossRef]
  3. Y. R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons, New York, 1984), Chap. 15.
  4. A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
    [CrossRef]
  5. J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
    [CrossRef]
  6. F. Lu, W. Zheng, C. Sheppard, and Z. Huang, “Interferometric polarization coherent anti-Stokes Raman scattering (IP-CARS) microscopy,” Opt. Lett. 33(6), 602–604 (2008).
    [CrossRef] [PubMed]
  7. F. Lu, W. Zheng, and Z. W. Huang, “Heterodyne polarization coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92(12), 123901 (2008).
    [CrossRef]
  8. F. Lu, W. Zheng, and Z. W. Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light,” Opt. Lett. 34(12), 1870–1872 (2009).
    [CrossRef] [PubMed]
  9. A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
    [CrossRef]
  10. B. von Vacano and M. Motzkus, “Time-resolved two color single-beam CARS employing supercontinuum and femtosecond pulse shaping,” Opt. Commun. 264(2), 488–493 (2006).
    [CrossRef]
  11. D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
    [CrossRef] [PubMed]
  12. J. Lin, F. Lu, H. Wang, W. Zheng, C. J. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95(13), 133703 (2009).
    [CrossRef]
  13. S. Postma, A. C. van Rhijn, J. P. Korterik, P. Gross, J. L. Herek, and H. L. Offerhaus, “Application of spectral phase shaping to high resolution CARS spectroscopy,” Opt. Express 16(11), 7985–7996 (2008).
    [CrossRef] [PubMed]
  14. E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31(2), 241–243 (2006).
    [CrossRef] [PubMed]
  15. B. von Vacano, T. Buckup, and M. Motzkus, “Highly sensitive single-beam heterodyne coherent anti-Stokes Raman scattering,” Opt. Lett. 31(16), 2495–2497 (2006).
    [CrossRef] [PubMed]
  16. H. A. Rinia, M. Bonn, M. Müller, and E. M. Vartiainen, “Quantitative CARS spectroscopy using the maximum entropy method: the main lipid phase transition,” ChemPhysChem 8(2), 279–287 (2007).
    [CrossRef]
  17. J.-X. Cheng, “Coherent anti-Stokes Raman scattering microscope,” Appl. Spec. 61197–208 (2007).
    [CrossRef]
  18. M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Imaging biological compounds using the coherent anti-Stokes Raman scattering microscope,” Opt. Eng. 24, 4 (1985).
  19. L. Li, H. Wang, and J.-X. Cheng, “Quantitative coherent anti-Stokes Raman scattering imaging of lipid distribution in coexisting domains,” Biophys. J. 89(5), 3480–3490 (2005).
    [CrossRef] [PubMed]
  20. M. Zimmerley, C.-Y. Lin, D. C. Oertel, J. M. Marsh, J. L. Ward, and E. O. Potma, “Quantitative detection of chemical compounds in human hair with coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 14(4), 044019 (2009).
    [CrossRef] [PubMed]
  21. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
    [CrossRef] [PubMed]
  22. F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
    [CrossRef] [PubMed]
  23. O. Burkacky, A. Zumbusch, C. Brackmann, and A. Enejder, “Dual-pump coherent anti-Stokes-Raman scattering microscopy,” Opt. Lett. 31(24), 3656–3658 (2006).
    [CrossRef] [PubMed]
  24. J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
    [CrossRef]

2009 (3)

F. Lu, W. Zheng, and Z. W. Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light,” Opt. Lett. 34(12), 1870–1872 (2009).
[CrossRef] [PubMed]

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95(13), 133703 (2009).
[CrossRef]

M. Zimmerley, C.-Y. Lin, D. C. Oertel, J. M. Marsh, J. L. Ward, and E. O. Potma, “Quantitative detection of chemical compounds in human hair with coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 14(4), 044019 (2009).
[CrossRef] [PubMed]

2008 (3)

2007 (2)

H. A. Rinia, M. Bonn, M. Müller, and E. M. Vartiainen, “Quantitative CARS spectroscopy using the maximum entropy method: the main lipid phase transition,” ChemPhysChem 8(2), 279–287 (2007).
[CrossRef]

J.-X. Cheng, “Coherent anti-Stokes Raman scattering microscope,” Appl. Spec. 61197–208 (2007).
[CrossRef]

2006 (5)

2005 (1)

L. Li, H. Wang, and J.-X. Cheng, “Quantitative coherent anti-Stokes Raman scattering imaging of lipid distribution in coexisting domains,” Biophys. J. 89(5), 3480–3490 (2005).
[CrossRef] [PubMed]

2003 (1)

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[CrossRef] [PubMed]

2002 (2)

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

2001 (3)

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[CrossRef]

A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
[CrossRef]

J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
[CrossRef]

1999 (1)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

1985 (1)

M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Imaging biological compounds using the coherent anti-Stokes Raman scattering microscope,” Opt. Eng. 24, 4 (1985).

1982 (1)

Bonn, M.

H. A. Rinia, M. Bonn, M. Müller, and E. M. Vartiainen, “Quantitative CARS spectroscopy using the maximum entropy method: the main lipid phase transition,” ChemPhysChem 8(2), 279–287 (2007).
[CrossRef]

Book, L. D.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
[CrossRef]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[CrossRef]

Brackmann, C.

Buckup, T.

Burkacky, O.

Cheng, J. X.

Cheng, J.-X.

J.-X. Cheng, “Coherent anti-Stokes Raman scattering microscope,” Appl. Spec. 61197–208 (2007).
[CrossRef]

L. Li, H. Wang, and J.-X. Cheng, “Quantitative coherent anti-Stokes Raman scattering imaging of lipid distribution in coexisting domains,” Biophys. J. 89(5), 3480–3490 (2005).
[CrossRef] [PubMed]

A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
[CrossRef]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[CrossRef]

Dudovich, N.

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

Duncan, M. D.

M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Imaging biological compounds using the coherent anti-Stokes Raman scattering microscope,” Opt. Eng. 24, 4 (1985).

M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7(8), 350–352 (1982).
[CrossRef] [PubMed]

Enejder, A.

Evans, C. L.

Ganikhanov, F.

Gross, P.

Herek, J. L.

Holtom, G. R.

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Huang, Z.

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95(13), 133703 (2009).
[CrossRef]

F. Lu, W. Zheng, C. Sheppard, and Z. Huang, “Interferometric polarization coherent anti-Stokes Raman scattering (IP-CARS) microscopy,” Opt. Lett. 33(6), 602–604 (2008).
[CrossRef] [PubMed]

Huang, Z. W.

F. Lu, W. Zheng, and Z. W. Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light,” Opt. Lett. 34(12), 1870–1872 (2009).
[CrossRef] [PubMed]

F. Lu, W. Zheng, and Z. W. Huang, “Heterodyne polarization coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92(12), 123901 (2008).
[CrossRef]

Korterik, J. P.

Li, L.

L. Li, H. Wang, and J.-X. Cheng, “Quantitative coherent anti-Stokes Raman scattering imaging of lipid distribution in coexisting domains,” Biophys. J. 89(5), 3480–3490 (2005).
[CrossRef] [PubMed]

Lin, C.-Y.

M. Zimmerley, C.-Y. Lin, D. C. Oertel, J. M. Marsh, J. L. Ward, and E. O. Potma, “Quantitative detection of chemical compounds in human hair with coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 14(4), 044019 (2009).
[CrossRef] [PubMed]

Lin, J.

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95(13), 133703 (2009).
[CrossRef]

Lu, F.

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95(13), 133703 (2009).
[CrossRef]

F. Lu, W. Zheng, and Z. W. Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light,” Opt. Lett. 34(12), 1870–1872 (2009).
[CrossRef] [PubMed]

F. Lu, W. Zheng, and Z. W. Huang, “Heterodyne polarization coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92(12), 123901 (2008).
[CrossRef]

F. Lu, W. Zheng, C. Sheppard, and Z. Huang, “Interferometric polarization coherent anti-Stokes Raman scattering (IP-CARS) microscopy,” Opt. Lett. 33(6), 602–604 (2008).
[CrossRef] [PubMed]

Manuccia, T. J.

M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Imaging biological compounds using the coherent anti-Stokes Raman scattering microscope,” Opt. Eng. 24, 4 (1985).

M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7(8), 350–352 (1982).
[CrossRef] [PubMed]

Marsh, J. M.

M. Zimmerley, C.-Y. Lin, D. C. Oertel, J. M. Marsh, J. L. Ward, and E. O. Potma, “Quantitative detection of chemical compounds in human hair with coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 14(4), 044019 (2009).
[CrossRef] [PubMed]

Motzkus, M.

B. von Vacano, T. Buckup, and M. Motzkus, “Highly sensitive single-beam heterodyne coherent anti-Stokes Raman scattering,” Opt. Lett. 31(16), 2495–2497 (2006).
[CrossRef] [PubMed]

B. von Vacano and M. Motzkus, “Time-resolved two color single-beam CARS employing supercontinuum and femtosecond pulse shaping,” Opt. Commun. 264(2), 488–493 (2006).
[CrossRef]

Müller, M.

H. A. Rinia, M. Bonn, M. Müller, and E. M. Vartiainen, “Quantitative CARS spectroscopy using the maximum entropy method: the main lipid phase transition,” ChemPhysChem 8(2), 279–287 (2007).
[CrossRef]

Oertel, D. C.

M. Zimmerley, C.-Y. Lin, D. C. Oertel, J. M. Marsh, J. L. Ward, and E. O. Potma, “Quantitative detection of chemical compounds in human hair with coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 14(4), 044019 (2009).
[CrossRef] [PubMed]

Offerhaus, H. L.

Oron, D.

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

Postma, S.

Potma, E. O.

M. Zimmerley, C.-Y. Lin, D. C. Oertel, J. M. Marsh, J. L. Ward, and E. O. Potma, “Quantitative detection of chemical compounds in human hair with coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 14(4), 044019 (2009).
[CrossRef] [PubMed]

E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31(2), 241–243 (2006).
[CrossRef] [PubMed]

Reintjes, J.

M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Imaging biological compounds using the coherent anti-Stokes Raman scattering microscope,” Opt. Eng. 24, 4 (1985).

M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Scanning coherent anti-Stokes Raman microscope,” Opt. Lett. 7(8), 350–352 (1982).
[CrossRef] [PubMed]

Rinia, H. A.

H. A. Rinia, M. Bonn, M. Müller, and E. M. Vartiainen, “Quantitative CARS spectroscopy using the maximum entropy method: the main lipid phase transition,” ChemPhysChem 8(2), 279–287 (2007).
[CrossRef]

Saar, B. G.

Sheppard, C.

Sheppard, C. J.

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95(13), 133703 (2009).
[CrossRef]

Silberberg, Y.

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[CrossRef] [PubMed]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

van Rhijn, A. C.

Vartiainen, E. M.

H. A. Rinia, M. Bonn, M. Müller, and E. M. Vartiainen, “Quantitative CARS spectroscopy using the maximum entropy method: the main lipid phase transition,” ChemPhysChem 8(2), 279–287 (2007).
[CrossRef]

Volkmer, A.

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
[CrossRef]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[CrossRef]

von Vacano, B.

B. von Vacano and M. Motzkus, “Time-resolved two color single-beam CARS employing supercontinuum and femtosecond pulse shaping,” Opt. Commun. 264(2), 488–493 (2006).
[CrossRef]

B. von Vacano, T. Buckup, and M. Motzkus, “Highly sensitive single-beam heterodyne coherent anti-Stokes Raman scattering,” Opt. Lett. 31(16), 2495–2497 (2006).
[CrossRef] [PubMed]

Wang, H.

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95(13), 133703 (2009).
[CrossRef]

L. Li, H. Wang, and J.-X. Cheng, “Quantitative coherent anti-Stokes Raman scattering imaging of lipid distribution in coexisting domains,” Biophys. J. 89(5), 3480–3490 (2005).
[CrossRef] [PubMed]

Ward, J. L.

M. Zimmerley, C.-Y. Lin, D. C. Oertel, J. M. Marsh, J. L. Ward, and E. O. Potma, “Quantitative detection of chemical compounds in human hair with coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 14(4), 044019 (2009).
[CrossRef] [PubMed]

Xie, X. S.

F. Ganikhanov, C. L. Evans, B. G. Saar, and X. S. Xie, “High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy,” Opt. Lett. 31(12), 1872–1874 (2006).
[CrossRef] [PubMed]

E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31(2), 241–243 (2006).
[CrossRef] [PubMed]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

J. X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering microscopy,” Opt. Lett. 26(17), 1341–1343 (2001).
[CrossRef]

A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
[CrossRef]

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[CrossRef]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Zheng, W.

F. Lu, W. Zheng, and Z. W. Huang, “Coherent anti-Stokes Raman scattering microscopy using tightly focused radially polarized light,” Opt. Lett. 34(12), 1870–1872 (2009).
[CrossRef] [PubMed]

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95(13), 133703 (2009).
[CrossRef]

F. Lu, W. Zheng, C. Sheppard, and Z. Huang, “Interferometric polarization coherent anti-Stokes Raman scattering (IP-CARS) microscopy,” Opt. Lett. 33(6), 602–604 (2008).
[CrossRef] [PubMed]

F. Lu, W. Zheng, and Z. W. Huang, “Heterodyne polarization coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92(12), 123901 (2008).
[CrossRef]

Zimmerley, M.

M. Zimmerley, C.-Y. Lin, D. C. Oertel, J. M. Marsh, J. L. Ward, and E. O. Potma, “Quantitative detection of chemical compounds in human hair with coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 14(4), 044019 (2009).
[CrossRef] [PubMed]

Zumbusch, A.

O. Burkacky, A. Zumbusch, C. Brackmann, and A. Enejder, “Dual-pump coherent anti-Stokes-Raman scattering microscopy,” Opt. Lett. 31(24), 3656–3658 (2006).
[CrossRef] [PubMed]

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

Appl. Phys. Lett. (3)

F. Lu, W. Zheng, and Z. W. Huang, “Heterodyne polarization coherent anti-Stokes Raman scattering microscopy,” Appl. Phys. Lett. 92(12), 123901 (2008).
[CrossRef]

A. Volkmer, L. D. Book, and X. S. Xie, “Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay,” Appl. Phys. Lett. 80(9), 1505–1507 (2002).
[CrossRef]

J. Lin, F. Lu, H. Wang, W. Zheng, C. J. Sheppard, and Z. Huang, “Improved contrast radially polarized coherent anti-Stokes Raman scattering microscopy using annular aperture detection,” Appl. Phys. Lett. 95(13), 133703 (2009).
[CrossRef]

Appl. Spec. (1)

J.-X. Cheng, “Coherent anti-Stokes Raman scattering microscope,” Appl. Spec. 61197–208 (2007).
[CrossRef]

Biophys. J. (1)

L. Li, H. Wang, and J.-X. Cheng, “Quantitative coherent anti-Stokes Raman scattering imaging of lipid distribution in coexisting domains,” Biophys. J. 89(5), 3480–3490 (2005).
[CrossRef] [PubMed]

ChemPhysChem (1)

H. A. Rinia, M. Bonn, M. Müller, and E. M. Vartiainen, “Quantitative CARS spectroscopy using the maximum entropy method: the main lipid phase transition,” ChemPhysChem 8(2), 279–287 (2007).
[CrossRef]

J. Biomed. Opt. (1)

M. Zimmerley, C.-Y. Lin, D. C. Oertel, J. M. Marsh, J. L. Ward, and E. O. Potma, “Quantitative detection of chemical compounds in human hair with coherent anti-Stokes Raman scattering microscopy,” J. Biomed. Opt. 14(4), 044019 (2009).
[CrossRef] [PubMed]

J. Phys. Chem. B (1)

J.-X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “An Epi-Detected Coherent Anti-Stokes Raman Scattering (E-CARS) Microscope with High Spectral Resolution and High Sensitivity,” J. Phys. Chem. B 105(7), 1277–1280 (2001).
[CrossRef]

Nature (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[CrossRef] [PubMed]

Opt. Commun. (1)

B. von Vacano and M. Motzkus, “Time-resolved two color single-beam CARS employing supercontinuum and femtosecond pulse shaping,” Opt. Commun. 264(2), 488–493 (2006).
[CrossRef]

Opt. Eng. (1)

M. D. Duncan, J. Reintjes, and T. J. Manuccia, “Imaging biological compounds using the coherent anti-Stokes Raman scattering microscope,” Opt. Eng. 24, 4 (1985).

Opt. Express (1)

Opt. Lett. (8)

Phys. Rev. Lett. (3)

A. Zumbusch, G. R. Holtom, and X. S. Xie, “Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering,” Phys. Rev. Lett. 82(20), 4142–4145 (1999).
[CrossRef]

D. Oron, N. Dudovich, and Y. Silberberg, “Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy,” Phys. Rev. Lett. 90(21), 213902 (2003).
[CrossRef] [PubMed]

A. Volkmer, J.-X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87(2), 023901 (2001).
[CrossRef]

Other (1)

Y. R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons, New York, 1984), Chap. 15.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Three terms contributing to the CARS signal (normalized to the nonresonant term) (b) The total CARS signal. The peak and the dip positions are marked on the curve.

Fig. 2
Fig. 2

(a) Three terms contributing to the CARS signal plotted against the Raman shift. (b) The total CARS signal. The spectra are simulated with femtosecond excitation.

Fig. 3
Fig. 3

CARS and spontaneous Raman spectra of (a) cotton fibers in water and (b) dry MCC particles.

Fig. 4
Fig. 4

Ratio contrast and intensity of cotton fibers in the resulting images of triple-frequency symmetric subtraction as a function of the symmetric shift.

Fig. 5
Fig. 5

CARS images of a cotton fiber in water acquired via (a) on-resonance, (b) symmetric subtraction at 30 cm−1, (c) symmetric subtraction at 80 cm−1, and (d) ‘peak minus dip’. ((e) to (h)) are the corresponding intensity profiles along the lines indicated in the images ((a) to (d)).

Fig. 6
Fig. 6

CARS images of dry MCC acquired via (a) on-resonance, (b) symmetric subtraction at shift 30 cm−1, (c) symmetric subtraction at 80 cm−1, and (d) ‘peak minus dip’. (e, f, g, h) are the corresponding intensity profiles along the lines indicated in the images.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

I C A R S | χ ( 3 ) | 2 = | χ R ( 3 ) + χ N R ( 3 ) | 2 = ( χ N R ( 3 ) ) 2 + ( χ R ( 3 ) ) 2 + 2 χ N R ( 3 ) Re χ R ( 3 ) .
χ R ( 3 ) = A Ω R δ i Γ ,
I C A R S ( χ N R ( 3 ) ) 2 + A 2 ( Ω R δ ) 2 + Γ 2 + 2 χ N R ( 3 ) A ( Ω R δ ) ( Ω R δ ) 2 + Γ 2 .
| I o n I o f f | | A 2 [ 1 Γ 2 1 ( Ω R δ o f f ) 2 + Γ 2 ] 2 χ N R ( 3 ) A ( Ω R δ o f f ) ( Ω R δ o f f ) 2 + Γ 2 | ,
δ + = Ω R + A 2 χ N R ( 3 ) 1 2 ( A χ N R ( 3 ) ) 2 + 4 Γ 2 , δ = Ω R + A 2 χ N R ( 3 ) + 1 2 ( A χ N R ( 3 ) ) 2 + 4 Γ 2 ,
| I + I | | | χ ( 3 ) ( δ + ) | 2 | χ ( 3 ) ( δ ) | 2 | = A Γ A 2 Γ 2 + 4 ( χ N R ( 3 ) ) 2 .
| 2 I o n ( I l e f t + I r i g h t ) | | 2 | χ R ( 3 ) ( Ω R ) | 2 [ | χ R ( 3 ) ( Ω R γ ) | 2 + | χ R ( 3 ) ( Ω R + γ ) | 2 ] | = 2 A 2 / Γ 2 2 A 2 / ( γ 2 + Γ 2 ) = 2 A 2 γ 2 Γ 2 ( γ 2 + Γ 2 ) .
E p ( ω p ) = E p 0 s e c h [ 1.76 ( ω p ω p 0 ) Δ p ] , E s ( ω s ) = E s 0 s e c h [ 1.76 ( ω s ω s 0 ) Δ s ] ,
P ( 3 ) ( ω a s ) = + d ω p + d ω s + d ω p r χ ( 3 ) ( ω a s , ω p ω s ω p r ) E p ( ω p ) E s ( ω s ) E p ( ω p r ) δ ( ω p ω s + ω p r ω a s ) ,
I C A R S = + | P ( 3 ) ( ω a s ) | 2 d ω a s .

Metrics