Abstract

The use of shorter pulses is a practical way to improve the signal in two-photon excitation fluorescence microscopy. We report on the theoretical and experimental results of pulse compression in a two-photon excitation fluorescence microscope by using ~100-fs Ti:Sapphire laser and highly nonlinear photonic crystal fiber. Effects of the fiber parameters, transmitted power, and group-delay dispersion provided by the gratings have been investigated to optimize the compressor performance. By using a 20-mm-long photonic crystal fiber with a zero dispersion wavelength of 850 nm, a compressed pulse of 23.6 fs starting from 94 fs at 790 nm is experimentally demonstrated as a verification of our simulations. By integrating the compressor with a two-photon excitation fluorescence microscope, 5.6 times increase in autofluorescence intensity of NAD(P)H in Nasopharyngeal carcinoma cells is demonstrated, showing its potential in enhanced imaging and sensing for disease diagnosis.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
    [CrossRef] [PubMed]
  2. C. M. Hsueh, W. Lo, S. J. Lin, T. J. Wang, F. R. Hu, H. Y. Tan, and C. Y. Dong, “Multiphoton Microscopy: A New Approach, in Physiological Studies and Pathological Diagnosis for Ophthalmology,” J. Innovative Opt. Health Sci. 2(01), 45–60 (2009).
    [CrossRef]
  3. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
    [CrossRef] [PubMed]
  4. F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
    [CrossRef] [PubMed]
  5. C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481–491 (1996).
    [CrossRef]
  6. S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, “Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,” J. Biomed. Opt. 11(2), 020501 (2006).
    [CrossRef] [PubMed]
  7. M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191(2), 141–150 (1998).
    [CrossRef] [PubMed]
  8. R. Du, R. Jiang, and L. Fu, “Enhanced dispersion compensation capability of angular elements based on beam expansion,” Opt. Express 17(19), 16415–16422 (2009).
    [CrossRef] [PubMed]
  9. S. Zeng, X. Lv, C. Zhan, W. R. Chen, W. Xiong, S. L. Jacques, and Q. Luo, “Simultaneous compensation for spatial and temporal dispersion of acousto-optical deflectors for two-dimensional scanning with a single prism,” Opt. Lett. 31(8), 1091–1093 (2006).
    [CrossRef] [PubMed]
  10. A. M. Larson and A. T. Yeh, “Delivery of sub-10-fs pulses for nonlinear optical microscopy by polarization-maintaining single mode optical fiber,” Opt. Express 16(19), 14723–14730 (2008).
    [CrossRef] [PubMed]
  11. E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, “Pulse compression by use of deformable mirrors,” Opt. Lett. 24(7), 493–495 (1999).
    [CrossRef]
  12. P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281(7), 1841–1849 (2008).
    [CrossRef]
  13. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25(8), 575–577 (2000).
    [CrossRef]
  14. C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40(9), 761–763 (1982).
    [CrossRef]
  15. W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J. Opt. Soc. Am. B 1(2), 139–149 (1984).
    [CrossRef]
  16. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2001).
  17. F. Druon and P. Georges, “Pulse-compression down to 20 fs using a photonic crystal fiber seeded by a diode-pumped Yb:SYS laser at 1070 nm,” Opt. Express 12(15), 3383–3396 (2004).
    [CrossRef] [PubMed]
  18. S. W. Clark, F. Ö. Ilday, and F. W. Wise, “Fiber delivery of femtosecond pulses from a Ti:sapphire laser,” Opt. Lett. 26(17), 1320–1322 (2001).
    [CrossRef]
  19. A. Baltuška, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipőcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys,” B-Lasers Opt. 65(2), 175–188 (1997).
    [CrossRef]
  20. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  21. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
    [CrossRef]
  22. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [CrossRef] [PubMed]
  23. S. Lakó, J. Seres, P. Apai, J. Balázs, R. S. Windeler, and R. Szipőcs, “Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation,” Appl. Phys. B 76(3), 267–275 (2003).
    [CrossRef]
  24. G. McConnell and E. Riis, “Two-photon laser scanning fluorescence microscopy using photonic crystal fiber,” J. Biomed. Opt. 9(5), 922–927 (2004).
    [CrossRef] [PubMed]
  25. G. McConnell, “Improving the penetration depth in multiphoton excitation laser scanning microscopy,” J. Biomed. Opt. 11(5), 054020 (2006).
    [CrossRef] [PubMed]
  26. G. McConnell and E. Riis, “Ultra-short pulse compression using photonic crystal fibre,” Appl. Phys. B 78(5), 557–563 (2004).
    [CrossRef]
  27. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).
  28. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
    [CrossRef]
  29. S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82(5), 2811–2825 (2002).
    [CrossRef] [PubMed]
  30. K. Isobe, W. Watanabe, S. Matsunaga, T. Higashi, K. Fukui, and K. Itoh, “Multi-spectral two-photon excited fluorescence microscopy using supercontinuum light source,” Jpn. J. Appl. Phys. 44(4), L167–169 (2005).
    [CrossRef]
  31. A. M. Larson, A. Lee, P.-F. Lee, K. J. Bayless, and A. T. Yeh, “Ultrashort Pulse Multispectral Non-Linear Optical Microscopy,” J. Innovative Opt. Health Sci. 2(01), 27–35 (2009).
    [CrossRef]
  32. K. König, T. W. Becker, P. Fischer, I. Riemann, and K.-J. Halbhuber, “Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes,” Opt. Lett. 24(2), 113–115 (1999).
    [CrossRef]
  33. A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001).
    [CrossRef] [PubMed]
  34. G. H. Patterson and D. W. Piston, “Photobleaching in two-photon excitation microscopy,” Biophys. J. 78(4), 2159–2162 (2000).
    [CrossRef] [PubMed]
  35. Z. Várallyay, J. Fekete, Á. Bányász, and R. Szipőcs, “Optimizing input and output chirps up to the third-order for sub-nanojoule, ultra-short pulse compression in small core area PCF,” Appl. Phys. B 86(4), 567–572 (2007).
    [CrossRef]
  36. D. Li, S. Zeng, Q. Luo, P. Bowlan, V. Chauahan, and R. Trebino, “Propagation dependence of chirp in Gaussian pulses and beams due to angular dispersion,” Opt. Lett. 34(7), 962–964 (2009).
    [CrossRef] [PubMed]
  37. S. Adachi, N. Ishii, T. Kanai, A. Kosuge, J. Itatani, Y. Kobayashi, D. Yoshitomi, K. Torizuka, and S. Watanabe, “5-fs, Multi-mJ, CEP-locked parametric chirped-pulse amplifier pumped by a 450-nm source at 1 kHz,” Opt. Express 16(19), 14341–14352 (2008).
    [CrossRef] [PubMed]
  38. H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Lett. 16, 5499–5504 (2008).

2009 (5)

C. M. Hsueh, W. Lo, S. J. Lin, T. J. Wang, F. R. Hu, H. Y. Tan, and C. Y. Dong, “Multiphoton Microscopy: A New Approach, in Physiological Studies and Pathological Diagnosis for Ophthalmology,” J. Innovative Opt. Health Sci. 2(01), 45–60 (2009).
[CrossRef]

R. Du, R. Jiang, and L. Fu, “Enhanced dispersion compensation capability of angular elements based on beam expansion,” Opt. Express 17(19), 16415–16422 (2009).
[CrossRef] [PubMed]

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
[CrossRef]

A. M. Larson, A. Lee, P.-F. Lee, K. J. Bayless, and A. T. Yeh, “Ultrashort Pulse Multispectral Non-Linear Optical Microscopy,” J. Innovative Opt. Health Sci. 2(01), 27–35 (2009).
[CrossRef]

D. Li, S. Zeng, Q. Luo, P. Bowlan, V. Chauahan, and R. Trebino, “Propagation dependence of chirp in Gaussian pulses and beams due to angular dispersion,” Opt. Lett. 34(7), 962–964 (2009).
[CrossRef] [PubMed]

2008 (4)

S. Adachi, N. Ishii, T. Kanai, A. Kosuge, J. Itatani, Y. Kobayashi, D. Yoshitomi, K. Torizuka, and S. Watanabe, “5-fs, Multi-mJ, CEP-locked parametric chirped-pulse amplifier pumped by a 450-nm source at 1 kHz,” Opt. Express 16(19), 14341–14352 (2008).
[CrossRef] [PubMed]

H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Lett. 16, 5499–5504 (2008).

A. M. Larson and A. T. Yeh, “Delivery of sub-10-fs pulses for nonlinear optical microscopy by polarization-maintaining single mode optical fiber,” Opt. Express 16(19), 14723–14730 (2008).
[CrossRef] [PubMed]

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281(7), 1841–1849 (2008).
[CrossRef]

2007 (1)

Z. Várallyay, J. Fekete, Á. Bányász, and R. Szipőcs, “Optimizing input and output chirps up to the third-order for sub-nanojoule, ultra-short pulse compression in small core area PCF,” Appl. Phys. B 86(4), 567–572 (2007).
[CrossRef]

2006 (3)

G. McConnell, “Improving the penetration depth in multiphoton excitation laser scanning microscopy,” J. Biomed. Opt. 11(5), 054020 (2006).
[CrossRef] [PubMed]

S. Zeng, X. Lv, C. Zhan, W. R. Chen, W. Xiong, S. L. Jacques, and Q. Luo, “Simultaneous compensation for spatial and temporal dispersion of acousto-optical deflectors for two-dimensional scanning with a single prism,” Opt. Lett. 31(8), 1091–1093 (2006).
[CrossRef] [PubMed]

S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, “Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,” J. Biomed. Opt. 11(2), 020501 (2006).
[CrossRef] [PubMed]

2005 (2)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

K. Isobe, W. Watanabe, S. Matsunaga, T. Higashi, K. Fukui, and K. Itoh, “Multi-spectral two-photon excited fluorescence microscopy using supercontinuum light source,” Jpn. J. Appl. Phys. 44(4), L167–169 (2005).
[CrossRef]

2004 (3)

G. McConnell and E. Riis, “Ultra-short pulse compression using photonic crystal fibre,” Appl. Phys. B 78(5), 557–563 (2004).
[CrossRef]

G. McConnell and E. Riis, “Two-photon laser scanning fluorescence microscopy using photonic crystal fiber,” J. Biomed. Opt. 9(5), 922–927 (2004).
[CrossRef] [PubMed]

F. Druon and P. Georges, “Pulse-compression down to 20 fs using a photonic crystal fiber seeded by a diode-pumped Yb:SYS laser at 1070 nm,” Opt. Express 12(15), 3383–3396 (2004).
[CrossRef] [PubMed]

2003 (4)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

S. Lakó, J. Seres, P. Apai, J. Balázs, R. S. Windeler, and R. Szipőcs, “Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation,” Appl. Phys. B 76(3), 267–275 (2003).
[CrossRef]

2002 (1)

S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82(5), 2811–2825 (2002).
[CrossRef] [PubMed]

2001 (2)

A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001).
[CrossRef] [PubMed]

S. W. Clark, F. Ö. Ilday, and F. W. Wise, “Fiber delivery of femtosecond pulses from a Ti:sapphire laser,” Opt. Lett. 26(17), 1320–1322 (2001).
[CrossRef]

2000 (2)

1999 (2)

1998 (1)

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191(2), 141–150 (1998).
[CrossRef] [PubMed]

1997 (1)

A. Baltuška, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipőcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys,” B-Lasers Opt. 65(2), 175–188 (1997).
[CrossRef]

1996 (1)

1990 (1)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

1984 (1)

1982 (1)

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40(9), 761–763 (1982).
[CrossRef]

1969 (1)

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[CrossRef]

Adachi, S.

Andegeko, Y.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281(7), 1841–1849 (2008).
[CrossRef]

Apai, P.

S. Lakó, J. Seres, P. Apai, J. Balázs, R. S. Windeler, and R. Szipőcs, “Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation,” Appl. Phys. B 76(3), 267–275 (2003).
[CrossRef]

Backus, S.

Balázs, J.

S. Lakó, J. Seres, P. Apai, J. Balázs, R. S. Windeler, and R. Szipőcs, “Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation,” Appl. Phys. B 76(3), 267–275 (2003).
[CrossRef]

Baltuška, A.

A. Baltuška, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipőcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys,” B-Lasers Opt. 65(2), 175–188 (1997).
[CrossRef]

Bányász, Á.

Z. Várallyay, J. Fekete, Á. Bányász, and R. Szipőcs, “Optimizing input and output chirps up to the third-order for sub-nanojoule, ultra-short pulse compression in small core area PCF,” Appl. Phys. B 86(4), 567–572 (2007).
[CrossRef]

Bayless, K. J.

A. M. Larson, A. Lee, P.-F. Lee, K. J. Bayless, and A. T. Yeh, “Ultrashort Pulse Multispectral Non-Linear Optical Microscopy,” J. Innovative Opt. Health Sci. 2(01), 27–35 (2009).
[CrossRef]

Becker, T. W.

Bowlan, P.

Brakenhoff, G. J.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191(2), 141–150 (1998).
[CrossRef] [PubMed]

Chauahan, V.

Chen, W. R.

Chen, Z.

S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, “Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,” J. Biomed. Opt. 11(2), 020501 (2006).
[CrossRef] [PubMed]

Cheng, Z.

Clark, S. W.

Dantus, M.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281(7), 1841–1849 (2008).
[CrossRef]

H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Lett. 16, 5499–5504 (2008).

Denk, W.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Dong, C. Y.

C. M. Hsueh, W. Lo, S. J. Lin, T. J. Wang, F. R. Hu, H. Y. Tan, and C. Y. Dong, “Multiphoton Microscopy: A New Approach, in Physiological Studies and Pathological Diagnosis for Ophthalmology,” J. Innovative Opt. Health Sci. 2(01), 45–60 (2009).
[CrossRef]

Druon, F.

Du, R.

Dudley, J. M.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
[CrossRef]

Fekete, J.

Z. Várallyay, J. Fekete, Á. Bányász, and R. Szipőcs, “Optimizing input and output chirps up to the third-order for sub-nanojoule, ultra-short pulse compression in small core area PCF,” Appl. Phys. B 86(4), 567–572 (2007).
[CrossRef]

Fischer, P.

Fork, R. L.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40(9), 761–763 (1982).
[CrossRef]

Fu, L.

Fukui, K.

K. Isobe, W. Watanabe, S. Matsunaga, T. Higashi, K. Fukui, and K. Itoh, “Multi-spectral two-photon excited fluorescence microscopy using supercontinuum light source,” Jpn. J. Appl. Phys. 44(4), L167–169 (2005).
[CrossRef]

Georges, P.

Halbhuber, K.-J.

Harris, D. A.

H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Lett. 16, 5499–5504 (2008).

Heikal, A. A.

S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82(5), 2811–2825 (2002).
[CrossRef] [PubMed]

Helmchen, F.

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

Higashi, T.

K. Isobe, W. Watanabe, S. Matsunaga, T. Higashi, K. Fukui, and K. Itoh, “Multi-spectral two-photon excited fluorescence microscopy using supercontinuum light source,” Jpn. J. Appl. Phys. 44(4), L167–169 (2005).
[CrossRef]

Hopt, A.

A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001).
[CrossRef] [PubMed]

Hsueh, C. M.

C. M. Hsueh, W. Lo, S. J. Lin, T. J. Wang, F. R. Hu, H. Y. Tan, and C. Y. Dong, “Multiphoton Microscopy: A New Approach, in Physiological Studies and Pathological Diagnosis for Ophthalmology,” J. Innovative Opt. Health Sci. 2(01), 45–60 (2009).
[CrossRef]

Hu, F. R.

C. M. Hsueh, W. Lo, S. J. Lin, T. J. Wang, F. R. Hu, H. Y. Tan, and C. Y. Dong, “Multiphoton Microscopy: A New Approach, in Physiological Studies and Pathological Diagnosis for Ophthalmology,” J. Innovative Opt. Health Sci. 2(01), 45–60 (2009).
[CrossRef]

Huang, S.

S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82(5), 2811–2825 (2002).
[CrossRef] [PubMed]

Ilday, F. Ö.

Ishii, N.

Isobe, K.

K. Isobe, W. Watanabe, S. Matsunaga, T. Higashi, K. Fukui, and K. Itoh, “Multi-spectral two-photon excited fluorescence microscopy using supercontinuum light source,” Jpn. J. Appl. Phys. 44(4), L167–169 (2005).
[CrossRef]

Itatani, J.

Itoh, K.

K. Isobe, W. Watanabe, S. Matsunaga, T. Higashi, K. Fukui, and K. Itoh, “Multi-spectral two-photon excited fluorescence microscopy using supercontinuum light source,” Jpn. J. Appl. Phys. 44(4), L167–169 (2005).
[CrossRef]

Jacques, S. L.

Jiang, R.

Kanai, T.

Kapteyn, H.

Knight, J. C.

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

Kobayashi, Y.

König, K.

Kosuge, A.

Krasieva, T. B.

S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, “Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,” J. Biomed. Opt. 11(2), 020501 (2006).
[CrossRef] [PubMed]

Lakó, S.

S. Lakó, J. Seres, P. Apai, J. Balázs, R. S. Windeler, and R. Szipőcs, “Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation,” Appl. Phys. B 76(3), 267–275 (2003).
[CrossRef]

Larson, A. M.

A. M. Larson, A. Lee, P.-F. Lee, K. J. Bayless, and A. T. Yeh, “Ultrashort Pulse Multispectral Non-Linear Optical Microscopy,” J. Innovative Opt. Health Sci. 2(01), 27–35 (2009).
[CrossRef]

A. M. Larson and A. T. Yeh, “Delivery of sub-10-fs pulses for nonlinear optical microscopy by polarization-maintaining single mode optical fiber,” Opt. Express 16(19), 14723–14730 (2008).
[CrossRef] [PubMed]

Laude, V.

Lee, A.

A. M. Larson, A. Lee, P.-F. Lee, K. J. Bayless, and A. T. Yeh, “Ultrashort Pulse Multispectral Non-Linear Optical Microscopy,” J. Innovative Opt. Health Sci. 2(01), 27–35 (2009).
[CrossRef]

Lee, P.-F.

A. M. Larson, A. Lee, P.-F. Lee, K. J. Bayless, and A. T. Yeh, “Ultrashort Pulse Multispectral Non-Linear Optical Microscopy,” J. Innovative Opt. Health Sci. 2(01), 27–35 (2009).
[CrossRef]

Li, D.

Li, H.

H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Lett. 16, 5499–5504 (2008).

Lin, S. J.

C. M. Hsueh, W. Lo, S. J. Lin, T. J. Wang, F. R. Hu, H. Y. Tan, and C. Y. Dong, “Multiphoton Microscopy: A New Approach, in Physiological Studies and Pathological Diagnosis for Ophthalmology,” J. Innovative Opt. Health Sci. 2(01), 45–60 (2009).
[CrossRef]

Lo, W.

C. M. Hsueh, W. Lo, S. J. Lin, T. J. Wang, F. R. Hu, H. Y. Tan, and C. Y. Dong, “Multiphoton Microscopy: A New Approach, in Physiological Studies and Pathological Diagnosis for Ophthalmology,” J. Innovative Opt. Health Sci. 2(01), 45–60 (2009).
[CrossRef]

Lozovoy, V. V.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281(7), 1841–1849 (2008).
[CrossRef]

H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Lett. 16, 5499–5504 (2008).

Luo, Q.

Lv, X.

Maginnis, K.

Matsunaga, S.

K. Isobe, W. Watanabe, S. Matsunaga, T. Higashi, K. Fukui, and K. Itoh, “Multi-spectral two-photon excited fluorescence microscopy using supercontinuum light source,” Jpn. J. Appl. Phys. 44(4), L167–169 (2005).
[CrossRef]

McConnell, G.

G. McConnell, “Improving the penetration depth in multiphoton excitation laser scanning microscopy,” J. Biomed. Opt. 11(5), 054020 (2006).
[CrossRef] [PubMed]

G. McConnell and E. Riis, “Ultra-short pulse compression using photonic crystal fibre,” Appl. Phys. B 78(5), 557–563 (2004).
[CrossRef]

G. McConnell and E. Riis, “Two-photon laser scanning fluorescence microscopy using photonic crystal fiber,” J. Biomed. Opt. 9(5), 922–927 (2004).
[CrossRef] [PubMed]

Mourou, G.

Müller, M.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191(2), 141–150 (1998).
[CrossRef] [PubMed]

Murnane, M.

Neher, E.

A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001).
[CrossRef] [PubMed]

Patterson, G. H.

G. H. Patterson and D. W. Piston, “Photobleaching in two-photon excitation microscopy,” Biophys. J. 78(4), 2159–2162 (2000).
[CrossRef] [PubMed]

Piston, D. W.

G. H. Patterson and D. W. Piston, “Photobleaching in two-photon excitation microscopy,” Biophys. J. 78(4), 2159–2162 (2000).
[CrossRef] [PubMed]

Pshenichnikov, M. S.

A. Baltuška, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipőcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys,” B-Lasers Opt. 65(2), 175–188 (1997).
[CrossRef]

Riemann, I.

Riis, E.

G. McConnell and E. Riis, “Two-photon laser scanning fluorescence microscopy using photonic crystal fiber,” J. Biomed. Opt. 9(5), 922–927 (2004).
[CrossRef] [PubMed]

G. McConnell and E. Riis, “Ultra-short pulse compression using photonic crystal fibre,” Appl. Phys. B 78(5), 557–563 (2004).
[CrossRef]

Russek, U.

Russell, P.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Seres, J.

S. Lakó, J. Seres, P. Apai, J. Balázs, R. S. Windeler, and R. Szipőcs, “Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation,” Appl. Phys. B 76(3), 267–275 (2003).
[CrossRef]

Shank, C. V.

W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J. Opt. Soc. Am. B 1(2), 139–149 (1984).
[CrossRef]

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40(9), 761–763 (1982).
[CrossRef]

Simon, U.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191(2), 141–150 (1998).
[CrossRef] [PubMed]

Spielmann, C.

Squier, J.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191(2), 141–150 (1998).
[CrossRef] [PubMed]

Stolen, R. H.

W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J. Opt. Soc. Am. B 1(2), 139–149 (1984).
[CrossRef]

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40(9), 761–763 (1982).
[CrossRef]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Szipocs, R.

Z. Várallyay, J. Fekete, Á. Bányász, and R. Szipőcs, “Optimizing input and output chirps up to the third-order for sub-nanojoule, ultra-short pulse compression in small core area PCF,” Appl. Phys. B 86(4), 567–572 (2007).
[CrossRef]

S. Lakó, J. Seres, P. Apai, J. Balázs, R. S. Windeler, and R. Szipőcs, “Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation,” Appl. Phys. B 76(3), 267–275 (2003).
[CrossRef]

A. Baltuška, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipőcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys,” B-Lasers Opt. 65(2), 175–188 (1997).
[CrossRef]

Tan, H. Y.

C. M. Hsueh, W. Lo, S. J. Lin, T. J. Wang, F. R. Hu, H. Y. Tan, and C. Y. Dong, “Multiphoton Microscopy: A New Approach, in Physiological Studies and Pathological Diagnosis for Ophthalmology,” J. Innovative Opt. Health Sci. 2(01), 45–60 (2009).
[CrossRef]

Tang, S.

S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, “Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,” J. Biomed. Opt. 11(2), 020501 (2006).
[CrossRef] [PubMed]

Taylor, J. R.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
[CrossRef]

Tempea, G.

S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, “Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,” J. Biomed. Opt. 11(2), 020501 (2006).
[CrossRef] [PubMed]

Tomlinson, W. J.

W. J. Tomlinson, R. H. Stolen, and C. V. Shank, “Compression of optical pulses chirped by self-phase modulation in fibers,” J. Opt. Soc. Am. B 1(2), 139–149 (1984).
[CrossRef]

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40(9), 761–763 (1982).
[CrossRef]

Torizuka, K.

Tournois, P.

Treacy, E. B.

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[CrossRef]

Trebino, R.

Tromberg, B. J.

S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, “Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,” J. Biomed. Opt. 11(2), 020501 (2006).
[CrossRef] [PubMed]

Várallyay, Z.

Z. Várallyay, J. Fekete, Á. Bányász, and R. Szipőcs, “Optimizing input and output chirps up to the third-order for sub-nanojoule, ultra-short pulse compression in small core area PCF,” Appl. Phys. B 86(4), 567–572 (2007).
[CrossRef]

Vdovin, G.

Verluise, F.

Wang, T. J.

C. M. Hsueh, W. Lo, S. J. Lin, T. J. Wang, F. R. Hu, H. Y. Tan, and C. Y. Dong, “Multiphoton Microscopy: A New Approach, in Physiological Studies and Pathological Diagnosis for Ophthalmology,” J. Innovative Opt. Health Sci. 2(01), 45–60 (2009).
[CrossRef]

Watanabe, S.

Watanabe, W.

K. Isobe, W. Watanabe, S. Matsunaga, T. Higashi, K. Fukui, and K. Itoh, “Multi-spectral two-photon excited fluorescence microscopy using supercontinuum light source,” Jpn. J. Appl. Phys. 44(4), L167–169 (2005).
[CrossRef]

Webb, W. W.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82(5), 2811–2825 (2002).
[CrossRef] [PubMed]

C. Xu and W. W. Webb, “Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm,” J. Opt. Soc. Am. B 13(3), 481–491 (1996).
[CrossRef]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Wei, Z.

A. Baltuška, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipőcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys,” B-Lasers Opt. 65(2), 175–188 (1997).
[CrossRef]

Weisel, L. R.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281(7), 1841–1849 (2008).
[CrossRef]

Wiersma, D. A.

A. Baltuška, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipőcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys,” B-Lasers Opt. 65(2), 175–188 (1997).
[CrossRef]

Williams, R. M.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Windeler, R. S.

S. Lakó, J. Seres, P. Apai, J. Balázs, R. S. Windeler, and R. Szipőcs, “Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation,” Appl. Phys. B 76(3), 267–275 (2003).
[CrossRef]

Wise, F. W.

Wolleschensky, R.

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191(2), 141–150 (1998).
[CrossRef] [PubMed]

Wrzesinski, P. J.

H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Lett. 16, 5499–5504 (2008).

Xi, P.

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281(7), 1841–1849 (2008).
[CrossRef]

Xiong, W.

Xu, B.

H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Lett. 16, 5499–5504 (2008).

Xu, C.

Yeh, A. T.

A. M. Larson, A. Lee, P.-F. Lee, K. J. Bayless, and A. T. Yeh, “Ultrashort Pulse Multispectral Non-Linear Optical Microscopy,” J. Innovative Opt. Health Sci. 2(01), 27–35 (2009).
[CrossRef]

A. M. Larson and A. T. Yeh, “Delivery of sub-10-fs pulses for nonlinear optical microscopy by polarization-maintaining single mode optical fiber,” Opt. Express 16(19), 14723–14730 (2008).
[CrossRef] [PubMed]

Yen, R.

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40(9), 761–763 (1982).
[CrossRef]

Yoshitomi, D.

Zeek, E.

Zeng, S.

Zhan, C.

Zipfel, W. R.

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Appl. Phys. B (3)

S. Lakó, J. Seres, P. Apai, J. Balázs, R. S. Windeler, and R. Szipőcs, “Pulse compression of nanojoule pulses in the visible using microstructure optical fiber and dispersion compensation,” Appl. Phys. B 76(3), 267–275 (2003).
[CrossRef]

G. McConnell and E. Riis, “Ultra-short pulse compression using photonic crystal fibre,” Appl. Phys. B 78(5), 557–563 (2004).
[CrossRef]

Z. Várallyay, J. Fekete, Á. Bányász, and R. Szipőcs, “Optimizing input and output chirps up to the third-order for sub-nanojoule, ultra-short pulse compression in small core area PCF,” Appl. Phys. B 86(4), 567–572 (2007).
[CrossRef]

Appl. Phys. Lett. (1)

C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett. 40(9), 761–763 (1982).
[CrossRef]

B-Lasers Opt. (1)

A. Baltuška, Z. Wei, M. S. Pshenichnikov, D. A. Wiersma, and R. Szipőcs, “All-solid-state cavity-dumped sub-5-fs laser,” Appl. Phys,” B-Lasers Opt. 65(2), 175–188 (1997).
[CrossRef]

Biophys. J. (3)

A. Hopt and E. Neher, “Highly nonlinear photodamage in two-photon fluorescence microscopy,” Biophys. J. 80(4), 2029–2036 (2001).
[CrossRef] [PubMed]

G. H. Patterson and D. W. Piston, “Photobleaching in two-photon excitation microscopy,” Biophys. J. 78(4), 2159–2162 (2000).
[CrossRef] [PubMed]

S. Huang, A. A. Heikal, and W. W. Webb, “Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein,” Biophys. J. 82(5), 2811–2825 (2002).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. 5(9), 454–458 (1969).
[CrossRef]

J. Biomed. Opt. (3)

G. McConnell and E. Riis, “Two-photon laser scanning fluorescence microscopy using photonic crystal fiber,” J. Biomed. Opt. 9(5), 922–927 (2004).
[CrossRef] [PubMed]

G. McConnell, “Improving the penetration depth in multiphoton excitation laser scanning microscopy,” J. Biomed. Opt. 11(5), 054020 (2006).
[CrossRef] [PubMed]

S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, and B. J. Tromberg, “Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,” J. Biomed. Opt. 11(2), 020501 (2006).
[CrossRef] [PubMed]

J. Innovative Opt. Health Sci. (2)

C. M. Hsueh, W. Lo, S. J. Lin, T. J. Wang, F. R. Hu, H. Y. Tan, and C. Y. Dong, “Multiphoton Microscopy: A New Approach, in Physiological Studies and Pathological Diagnosis for Ophthalmology,” J. Innovative Opt. Health Sci. 2(01), 45–60 (2009).
[CrossRef]

A. M. Larson, A. Lee, P.-F. Lee, K. J. Bayless, and A. T. Yeh, “Ultrashort Pulse Multispectral Non-Linear Optical Microscopy,” J. Innovative Opt. Health Sci. 2(01), 27–35 (2009).
[CrossRef]

J. Microsc. (1)

M. Müller, J. Squier, R. Wolleschensky, U. Simon, and G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191(2), 141–150 (1998).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (2)

Jpn. J. Appl. Phys. (1)

K. Isobe, W. Watanabe, S. Matsunaga, T. Higashi, K. Fukui, and K. Itoh, “Multi-spectral two-photon excited fluorescence microscopy using supercontinuum light source,” Jpn. J. Appl. Phys. 44(4), L167–169 (2005).
[CrossRef]

Nat. Biotechnol. (1)

W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21(11), 1369–1377 (2003).
[CrossRef] [PubMed]

Nat. Methods (1)

F. Helmchen and W. Denk, “Deep tissue two-photon microscopy,” Nat. Methods 2(12), 932–940 (2005).
[CrossRef] [PubMed]

Nat. Photonics (1)

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009).
[CrossRef]

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

P. Xi, Y. Andegeko, L. R. Weisel, V. V. Lozovoy, and M. Dantus, “Greater signal, increased depth, and less photobleaching in two-photon microscopy with 10 fs pulses,” Opt. Commun. 281(7), 1841–1849 (2008).
[CrossRef]

Opt. Express (4)

Opt. Lett. (7)

H. Li, D. A. Harris, B. Xu, P. J. Wrzesinski, V. V. Lozovoy, and M. Dantus, “Coherent mode-selective Raman excitation towards standoff detection,” Opt. Lett. 16, 5499–5504 (2008).

S. Zeng, X. Lv, C. Zhan, W. R. Chen, W. Xiong, S. L. Jacques, and Q. Luo, “Simultaneous compensation for spatial and temporal dispersion of acousto-optical deflectors for two-dimensional scanning with a single prism,” Opt. Lett. 31(8), 1091–1093 (2006).
[CrossRef] [PubMed]

S. W. Clark, F. Ö. Ilday, and F. W. Wise, “Fiber delivery of femtosecond pulses from a Ti:sapphire laser,” Opt. Lett. 26(17), 1320–1322 (2001).
[CrossRef]

E. Zeek, K. Maginnis, S. Backus, U. Russek, M. Murnane, G. Mourou, H. Kapteyn, and G. Vdovin, “Pulse compression by use of deformable mirrors,” Opt. Lett. 24(7), 493–495 (1999).
[CrossRef]

F. Verluise, V. Laude, Z. Cheng, C. Spielmann, and P. Tournois, “Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping,” Opt. Lett. 25(8), 575–577 (2000).
[CrossRef]

K. König, T. W. Becker, P. Fischer, I. Riemann, and K.-J. Halbhuber, “Pulse-length dependence of cellular response to intense near-infrared laser pulses in multiphoton microscopes,” Opt. Lett. 24(2), 113–115 (1999).
[CrossRef]

D. Li, S. Zeng, Q. Luo, P. Bowlan, V. Chauahan, and R. Trebino, “Propagation dependence of chirp in Gaussian pulses and beams due to angular dispersion,” Opt. Lett. 34(7), 962–964 (2009).
[CrossRef] [PubMed]

Science (2)

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990).
[CrossRef] [PubMed]

Other (2)

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic Press, 2001).

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).

Supplementary Material (1)

» Media 1: AVI (441 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Experimental setup of pulse compression in TPEF microscopy. The optical pulses are coupled into a HNPCF and then propagate through a grating pair and a two-photon microscope system. Pulse compression is achieved by chirping and subsequently recombining the frequency components.

Fig. 2
Fig. 2

The calculated optimum pulse width (blue, hollow square) and pulse quality factor (red, hollow circle) by using HNPCFs with various ZDWs. The insets are corresponding pulse shape and spectral pattern of compressed pulses at the given 160 mW, 94 fs input pulses at 790 nm.

Fig. 3
Fig. 3

The calculated pulse width of optimum compression as a function of fiber length for transmitted powers of 100, 200, and 300 mW, respectively. Insets: Temporal shapes and QFs of 19.5-fs compressed pulses achieved by using different powers in the compressor.

Fig. 4
Fig. 4

Effect of transmitted powers of the HNPCF on pulse compression. (a) Measured and calculated spectrum of pulses exiting a 20-mm-long HNPCF at transmitted powers of 100, 160, and 220 mW; (b) The pulse width and spectral width of compressed shortest pulses as a function of fiber transmitted powers.

Fig. 5
Fig. 5

Pulse compression of 160 mW, 94 fs pulses at 790 nm. (a) Calculated temporal intensity profiles of the fiber input, fiber output, and compressed pulses. (b) Measured compressed pulse width as a function of GDD provided by the grating pair. (c) The intensity autocorrelation trace of a compressed 23.6-fs pulse compared with the corresponding calculated result.

Fig. 6
Fig. 6

The compressed pulses at the focal plane of a 60 × /1.2NA objective. (a) Pulse width as a function of GDD provided by the grating pair. (b)-(c) The autocorrelation signals of the compressed pulse and the uncompressed pulse at 740 nm and 800 nm, respectively.

Fig. 7
Fig. 7

(Media 1) TPEF imaging of NAD(P)H in Nasopharyngeal carcinoma cells. (a)-(d) Autofluorescence images obtained by uncompressed and compressed pulses at 740 nm and 800 nm. (e) Histogram of signal intensity in (a)-(d).

Tables (1)

Tables Icon

Table 1 The HNPCFs with various ZDWs

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

A z + α 2 A k 2 i k + 1 k ! β k k A T k = i γ ( | A | 2 A + i ω 0 T ( | A | 2 A ) T R A | A | 2 T ) ,
γ = 2 π n 2 λ A eff .
A compressed ( z , T ) = F 1 { exp ( i 2 ϕ 2 ω 2 + i 6 ϕ 3 ω 3 ) F ( A ( z , T ) ) } ,
Q F = a b | A ( z , T ) | 2 d T | A ( z , T ) | 2 d T ,

Metrics