Abstract

Scales on the elytra of longhorn beetle Anoplophora graafi display diverse non-iridescent colors ranging from blue, green, yellow, and red to purple. By structural characterizations, optical measurements, and theoretical calculations, we found that the scale colors stem from an amorphous photonic structure possessing only short-range order: random close-packing of chitin nanoparticles. Our results showed that direction-independent photonic pseudogaps found in the photon density of states of the random close-packing photonic structure are the ultimate physical origin for non-iridescent coloration of scales. The color steering strategy of scales is ingenious, simply by varying the size of chitin nanoparticles. Revealed natural random close-packing photonic structures and the color steering strategy of scales could render valuable inspiration for the artificial fabrication and design of photonic structures and devices as well.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. H. Stillinger and T. A. Weber, “Packing structures and transitions in liquids and solids,” Science 225(4666), 983–989 (1984).
    [CrossRef] [PubMed]
  2. H. M. Jaeger and S. R. Nagel, “Physics of the granular state,” Science 255(5051), 1523–1531 (1992).
    [CrossRef] [PubMed]
  3. R. Zallen, The Physics of Amorphous Solids (Wiley, New York, 1983).
  4. K. J. Rao, Structural Chemistry of Glasses (Elsevier, Amsterdam, 2002).
  5. P. Häussler, “Interrelations between atomic and electronic-structures – liquid and amorphous metals as model systems,” Phys. Rep. 222(2), 65–143 (1992).
    [CrossRef]
  6. Bulk Metallic Glasses, edited by M. Miller and P. Liaw (Springer, New York, 2007).
  7. Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. 12(10), 693–713 (2000).
    [CrossRef]
  8. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  9. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
    [CrossRef] [PubMed]
  10. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed., (Princeton University Press, Princeton, NJ, 2008).
  11. L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93(7), 073903 (2004).
    [CrossRef] [PubMed]
  12. P. D. García, R. Sapienza, Á. Blanco, and C. López, “Photonic glass: A novel random material for light,” Adv. Mater. 19(18), 2597–2602 (2007).
    [CrossRef]
  13. R. Sapienza, P. D. García, J. Bertolotti, M. D. Martín, Á. Blanco, L. Viña, C. López, and D. S. Wiersma, “Observation of resonant behavior in the energy velocity of diffused light,” Phys. Rev. Lett. 99(23), 233902 (2007).
    [CrossRef]
  14. K. Edagawa, S. Kanoko, and M. Notomi, “Photonic amorphous diamond structure with a 3D photonic band gap,” Phys. Rev. Lett. 100(1), 013901 (2008).
    [CrossRef] [PubMed]
  15. K. Ueno, A. Inaba, Y. Sano, M. Kondoh, and M. Watanabe, “A soft glassy colloidal array in ionic liquid, which exhibits homogeneous, non-brilliant and angle-independent structural colours,” Chem. Commun. (Camb.) (24), 3603–3605 (2009).
    [CrossRef]
  16. A. R. Parker, “515 million years of structural colour,” J. Opt. A, Pure Appl. Opt. 2(6), 201–213 (2000).
    [CrossRef]
  17. P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
    [CrossRef] [PubMed]
  18. S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
    [CrossRef]
  19. H. Ghiradella, “Light and color on the wing - structural colors in butterflies and moths,” Appl. Opt. 30(24), 3492–3500 (1991).
    [CrossRef] [PubMed]
  20. A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, and N. A. P. Nicorovici, “Photonic engineering. Aphrodite’s iridescence,” Nature 409(6816), 36–37 (2001).
    [CrossRef] [PubMed]
  21. J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
    [CrossRef] [PubMed]
  22. J. Dyck, “Structure and colour-production of the blue barbs of Agapornis roseicollis and Cotinga maynana,” Z. Zellforsch. Mikrosk. Anat. 115(1), 17–29 (1971).
    [CrossRef] [PubMed]
  23. R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998).
    [CrossRef]
  24. R. O. Prum, J. A. Cole, and R. H. Torres, “Blue integumentary structural colours in dragonflies (Odonata) are not produced by incoherent Tyndall scattering,” J. Exp. Biol. 207(22), 3999–4009 (2004).
    [CrossRef] [PubMed]
  25. M. D. Shawkey, V. Saranathan, H. Pálsdóttir, J. Crum, M. H. Ellisman, M. Auer, and R. O. Prum, “Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure,” J. R. Soc. Interface 6(Suppl 2), S213–S220 (2009).
    [PubMed]
  26. E. R. Dufresne, H. Noh, V. Saranathan, S. G. J. Mochrie, H. Cao, and R. O. Prum, “Self-assembly of amorphous biophotonic nanostructures by phase separation,” Soft Matter 5(9), 1792–1795 (2009).
    [CrossRef]
  27. W. S. Jodrey and E. M. Tory, “Computer simulation of close random packing of equal spheres,” Phys. Rev. A 32(4), 2347–2351 (1985).
    [CrossRef] [PubMed]
  28. A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).
  29. C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B Condens. Matter 51(23), 16635–16642 (1995).
    [CrossRef] [PubMed]
  30. J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114(2), 185–200 (1994).
    [CrossRef]
  31. CVRL Color & Vision database, http://www.cvrl.org .
  32. F. W. Billmeyer and M. Saltzman, Principles of Color Technology, 2nd edn. (Wiley, New York, 1981).
  33. Commission internationale de l'Eclairage proceedings, 1931 (Cambridge University Press, Cambridge, 1932).
  34. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  35. Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, “Existence of a photonic pseudogap for visible light in synthetic opals,” Phys. Rev. B 55(20), R13357–R13360 (1997).
    [CrossRef]

2009 (3)

K. Ueno, A. Inaba, Y. Sano, M. Kondoh, and M. Watanabe, “A soft glassy colloidal array in ionic liquid, which exhibits homogeneous, non-brilliant and angle-independent structural colours,” Chem. Commun. (Camb.) (24), 3603–3605 (2009).
[CrossRef]

M. D. Shawkey, V. Saranathan, H. Pálsdóttir, J. Crum, M. H. Ellisman, M. Auer, and R. O. Prum, “Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure,” J. R. Soc. Interface 6(Suppl 2), S213–S220 (2009).
[PubMed]

E. R. Dufresne, H. Noh, V. Saranathan, S. G. J. Mochrie, H. Cao, and R. O. Prum, “Self-assembly of amorphous biophotonic nanostructures by phase separation,” Soft Matter 5(9), 1792–1795 (2009).
[CrossRef]

2008 (2)

K. Edagawa, S. Kanoko, and M. Notomi, “Photonic amorphous diamond structure with a 3D photonic band gap,” Phys. Rev. Lett. 100(1), 013901 (2008).
[CrossRef] [PubMed]

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[CrossRef]

2007 (2)

P. D. García, R. Sapienza, Á. Blanco, and C. López, “Photonic glass: A novel random material for light,” Adv. Mater. 19(18), 2597–2602 (2007).
[CrossRef]

R. Sapienza, P. D. García, J. Bertolotti, M. D. Martín, Á. Blanco, L. Viña, C. López, and D. S. Wiersma, “Observation of resonant behavior in the energy velocity of diffused light,” Phys. Rev. Lett. 99(23), 233902 (2007).
[CrossRef]

2004 (2)

L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93(7), 073903 (2004).
[CrossRef] [PubMed]

R. O. Prum, J. A. Cole, and R. H. Torres, “Blue integumentary structural colours in dragonflies (Odonata) are not produced by incoherent Tyndall scattering,” J. Exp. Biol. 207(22), 3999–4009 (2004).
[CrossRef] [PubMed]

2003 (2)

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

2001 (1)

A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, and N. A. P. Nicorovici, “Photonic engineering. Aphrodite’s iridescence,” Nature 409(6816), 36–37 (2001).
[CrossRef] [PubMed]

2000 (2)

A. R. Parker, “515 million years of structural colour,” J. Opt. A, Pure Appl. Opt. 2(6), 201–213 (2000).
[CrossRef]

Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. 12(10), 693–713 (2000).
[CrossRef]

1998 (1)

R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998).
[CrossRef]

1997 (1)

Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, “Existence of a photonic pseudogap for visible light in synthetic opals,” Phys. Rev. B 55(20), R13357–R13360 (1997).
[CrossRef]

1995 (1)

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B Condens. Matter 51(23), 16635–16642 (1995).
[CrossRef] [PubMed]

1994 (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

1992 (2)

H. M. Jaeger and S. R. Nagel, “Physics of the granular state,” Science 255(5051), 1523–1531 (1992).
[CrossRef] [PubMed]

P. Häussler, “Interrelations between atomic and electronic-structures – liquid and amorphous metals as model systems,” Phys. Rep. 222(2), 65–143 (1992).
[CrossRef]

1991 (1)

1987 (2)

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

1985 (1)

W. S. Jodrey and E. M. Tory, “Computer simulation of close random packing of equal spheres,” Phys. Rev. A 32(4), 2347–2351 (1985).
[CrossRef] [PubMed]

1984 (1)

F. H. Stillinger and T. A. Weber, “Packing structures and transitions in liquids and solids,” Science 225(4666), 983–989 (1984).
[CrossRef] [PubMed]

1971 (1)

J. Dyck, “Structure and colour-production of the blue barbs of Agapornis roseicollis and Cotinga maynana,” Z. Zellforsch. Mikrosk. Anat. 115(1), 17–29 (1971).
[CrossRef] [PubMed]

Astratov, V. N.

Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, “Existence of a photonic pseudogap for visible light in synthetic opals,” Phys. Rev. B 55(20), R13357–R13360 (1997).
[CrossRef]

Auer, M.

M. D. Shawkey, V. Saranathan, H. Pálsdóttir, J. Crum, M. H. Ellisman, M. Auer, and R. O. Prum, “Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure,” J. R. Soc. Interface 6(Suppl 2), S213–S220 (2009).
[PubMed]

Berenger, J. P.

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

Bertolotti, J.

R. Sapienza, P. D. García, J. Bertolotti, M. D. Martín, Á. Blanco, L. Viña, C. López, and D. S. Wiersma, “Observation of resonant behavior in the energy velocity of diffused light,” Phys. Rev. Lett. 99(23), 233902 (2007).
[CrossRef]

Blanco, Á.

R. Sapienza, P. D. García, J. Bertolotti, M. D. Martín, Á. Blanco, L. Viña, C. López, and D. S. Wiersma, “Observation of resonant behavior in the energy velocity of diffused light,” Phys. Rev. Lett. 99(23), 233902 (2007).
[CrossRef]

P. D. García, R. Sapienza, Á. Blanco, and C. López, “Photonic glass: A novel random material for light,” Adv. Mater. 19(18), 2597–2602 (2007).
[CrossRef]

Bogomolov, V. N.

Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, “Existence of a photonic pseudogap for visible light in synthetic opals,” Phys. Rev. B 55(20), R13357–R13360 (1997).
[CrossRef]

Botten, L. C.

A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, and N. A. P. Nicorovici, “Photonic engineering. Aphrodite’s iridescence,” Nature 409(6816), 36–37 (2001).
[CrossRef] [PubMed]

Cao, H.

E. R. Dufresne, H. Noh, V. Saranathan, S. G. J. Mochrie, H. Cao, and R. O. Prum, “Self-assembly of amorphous biophotonic nanostructures by phase separation,” Soft Matter 5(9), 1792–1795 (2009).
[CrossRef]

Chan, C. T.

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B Condens. Matter 51(23), 16635–16642 (1995).
[CrossRef] [PubMed]

Cole, J. A.

R. O. Prum, J. A. Cole, and R. H. Torres, “Blue integumentary structural colours in dragonflies (Odonata) are not produced by incoherent Tyndall scattering,” J. Exp. Biol. 207(22), 3999–4009 (2004).
[CrossRef] [PubMed]

Crum, J.

M. D. Shawkey, V. Saranathan, H. Pálsdóttir, J. Crum, M. H. Ellisman, M. Auer, and R. O. Prum, “Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure,” J. R. Soc. Interface 6(Suppl 2), S213–S220 (2009).
[PubMed]

Dufresne, E. R.

E. R. Dufresne, H. Noh, V. Saranathan, S. G. J. Mochrie, H. Cao, and R. O. Prum, “Self-assembly of amorphous biophotonic nanostructures by phase separation,” Soft Matter 5(9), 1792–1795 (2009).
[CrossRef]

Dyck, J.

R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998).
[CrossRef]

J. Dyck, “Structure and colour-production of the blue barbs of Agapornis roseicollis and Cotinga maynana,” Z. Zellforsch. Mikrosk. Anat. 115(1), 17–29 (1971).
[CrossRef] [PubMed]

Edagawa, K.

K. Edagawa, S. Kanoko, and M. Notomi, “Photonic amorphous diamond structure with a 3D photonic band gap,” Phys. Rev. Lett. 100(1), 013901 (2008).
[CrossRef] [PubMed]

Ellisman, M. H.

M. D. Shawkey, V. Saranathan, H. Pálsdóttir, J. Crum, M. H. Ellisman, M. Auer, and R. O. Prum, “Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure,” J. R. Soc. Interface 6(Suppl 2), S213–S220 (2009).
[PubMed]

Fu, R.

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

García, P. D.

R. Sapienza, P. D. García, J. Bertolotti, M. D. Martín, Á. Blanco, L. Viña, C. López, and D. S. Wiersma, “Observation of resonant behavior in the energy velocity of diffused light,” Phys. Rev. Lett. 99(23), 233902 (2007).
[CrossRef]

P. D. García, R. Sapienza, Á. Blanco, and C. López, “Photonic glass: A novel random material for light,” Adv. Mater. 19(18), 2597–2602 (2007).
[CrossRef]

Gates, B.

Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. 12(10), 693–713 (2000).
[CrossRef]

Ghiradella, H.

Häussler, P.

P. Häussler, “Interrelations between atomic and electronic-structures – liquid and amorphous metals as model systems,” Phys. Rep. 222(2), 65–143 (1992).
[CrossRef]

Ho, K. M.

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B Condens. Matter 51(23), 16635–16642 (1995).
[CrossRef] [PubMed]

Hu, X.

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Inaba, A.

K. Ueno, A. Inaba, Y. Sano, M. Kondoh, and M. Watanabe, “A soft glassy colloidal array in ionic liquid, which exhibits homogeneous, non-brilliant and angle-independent structural colours,” Chem. Commun. (Camb.) (24), 3603–3605 (2009).
[CrossRef]

Jaeger, H. M.

H. M. Jaeger and S. R. Nagel, “Physics of the granular state,” Science 255(5051), 1523–1531 (1992).
[CrossRef] [PubMed]

Jodrey, W. S.

W. S. Jodrey and E. M. Tory, “Computer simulation of close random packing of equal spheres,” Phys. Rev. A 32(4), 2347–2351 (1985).
[CrossRef] [PubMed]

John, S.

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Kanoko, S.

K. Edagawa, S. Kanoko, and M. Notomi, “Photonic amorphous diamond structure with a 3D photonic band gap,” Phys. Rev. Lett. 100(1), 013901 (2008).
[CrossRef] [PubMed]

Kaplyanskii, A. A.

Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, “Existence of a photonic pseudogap for visible light in synthetic opals,” Phys. Rev. B 55(20), R13357–R13360 (1997).
[CrossRef]

Karimov, O. Z.

Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, “Existence of a photonic pseudogap for visible light in synthetic opals,” Phys. Rev. B 55(20), R13357–R13360 (1997).
[CrossRef]

Kinoshita, S.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[CrossRef]

Kondoh, M.

K. Ueno, A. Inaba, Y. Sano, M. Kondoh, and M. Watanabe, “A soft glassy colloidal array in ionic liquid, which exhibits homogeneous, non-brilliant and angle-independent structural colours,” Chem. Commun. (Camb.) (24), 3603–3605 (2009).
[CrossRef]

Li, Y.

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Liu, X.

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

López, C.

R. Sapienza, P. D. García, J. Bertolotti, M. D. Martín, Á. Blanco, L. Viña, C. López, and D. S. Wiersma, “Observation of resonant behavior in the energy velocity of diffused light,” Phys. Rev. Lett. 99(23), 233902 (2007).
[CrossRef]

P. D. García, R. Sapienza, Á. Blanco, and C. López, “Photonic glass: A novel random material for light,” Adv. Mater. 19(18), 2597–2602 (2007).
[CrossRef]

Lu, Y.

Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. 12(10), 693–713 (2000).
[CrossRef]

Martín, M. D.

R. Sapienza, P. D. García, J. Bertolotti, M. D. Martín, Á. Blanco, L. Viña, C. López, and D. S. Wiersma, “Observation of resonant behavior in the energy velocity of diffused light,” Phys. Rev. Lett. 99(23), 233902 (2007).
[CrossRef]

McKenzie, D. R.

A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, and N. A. P. Nicorovici, “Photonic engineering. Aphrodite’s iridescence,” Nature 409(6816), 36–37 (2001).
[CrossRef] [PubMed]

McPhedran, R. C.

A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, and N. A. P. Nicorovici, “Photonic engineering. Aphrodite’s iridescence,” Nature 409(6816), 36–37 (2001).
[CrossRef] [PubMed]

Mendez-Alcaraz, J. M.

L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93(7), 073903 (2004).
[CrossRef] [PubMed]

Miyazaki, J.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[CrossRef]

Mochrie, S. G. J.

E. R. Dufresne, H. Noh, V. Saranathan, S. G. J. Mochrie, H. Cao, and R. O. Prum, “Self-assembly of amorphous biophotonic nanostructures by phase separation,” Soft Matter 5(9), 1792–1795 (2009).
[CrossRef]

Nagel, S. R.

H. M. Jaeger and S. R. Nagel, “Physics of the granular state,” Science 255(5051), 1523–1531 (1992).
[CrossRef] [PubMed]

Nicorovici, N. A. P.

A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, and N. A. P. Nicorovici, “Photonic engineering. Aphrodite’s iridescence,” Nature 409(6816), 36–37 (2001).
[CrossRef] [PubMed]

Noh, H.

E. R. Dufresne, H. Noh, V. Saranathan, S. G. J. Mochrie, H. Cao, and R. O. Prum, “Self-assembly of amorphous biophotonic nanostructures by phase separation,” Soft Matter 5(9), 1792–1795 (2009).
[CrossRef]

Notomi, M.

K. Edagawa, S. Kanoko, and M. Notomi, “Photonic amorphous diamond structure with a 3D photonic band gap,” Phys. Rev. Lett. 100(1), 013901 (2008).
[CrossRef] [PubMed]

Pálsdóttir, H.

M. D. Shawkey, V. Saranathan, H. Pálsdóttir, J. Crum, M. H. Ellisman, M. Auer, and R. O. Prum, “Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure,” J. R. Soc. Interface 6(Suppl 2), S213–S220 (2009).
[PubMed]

Parker, A. R.

A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, and N. A. P. Nicorovici, “Photonic engineering. Aphrodite’s iridescence,” Nature 409(6816), 36–37 (2001).
[CrossRef] [PubMed]

A. R. Parker, “515 million years of structural colour,” J. Opt. A, Pure Appl. Opt. 2(6), 201–213 (2000).
[CrossRef]

Prokofiev, A. V.

Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, “Existence of a photonic pseudogap for visible light in synthetic opals,” Phys. Rev. B 55(20), R13357–R13360 (1997).
[CrossRef]

Prum, R. O.

E. R. Dufresne, H. Noh, V. Saranathan, S. G. J. Mochrie, H. Cao, and R. O. Prum, “Self-assembly of amorphous biophotonic nanostructures by phase separation,” Soft Matter 5(9), 1792–1795 (2009).
[CrossRef]

M. D. Shawkey, V. Saranathan, H. Pálsdóttir, J. Crum, M. H. Ellisman, M. Auer, and R. O. Prum, “Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure,” J. R. Soc. Interface 6(Suppl 2), S213–S220 (2009).
[PubMed]

R. O. Prum, J. A. Cole, and R. H. Torres, “Blue integumentary structural colours in dragonflies (Odonata) are not produced by incoherent Tyndall scattering,” J. Exp. Biol. 207(22), 3999–4009 (2004).
[CrossRef] [PubMed]

R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998).
[CrossRef]

Rojas-Ochoa, L. F.

L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93(7), 073903 (2004).
[CrossRef] [PubMed]

Sáenz, J. J.

L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93(7), 073903 (2004).
[CrossRef] [PubMed]

Sambles, J. R.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

Sano, Y.

K. Ueno, A. Inaba, Y. Sano, M. Kondoh, and M. Watanabe, “A soft glassy colloidal array in ionic liquid, which exhibits homogeneous, non-brilliant and angle-independent structural colours,” Chem. Commun. (Camb.) (24), 3603–3605 (2009).
[CrossRef]

Sapienza, R.

R. Sapienza, P. D. García, J. Bertolotti, M. D. Martín, Á. Blanco, L. Viña, C. López, and D. S. Wiersma, “Observation of resonant behavior in the energy velocity of diffused light,” Phys. Rev. Lett. 99(23), 233902 (2007).
[CrossRef]

P. D. García, R. Sapienza, Á. Blanco, and C. López, “Photonic glass: A novel random material for light,” Adv. Mater. 19(18), 2597–2602 (2007).
[CrossRef]

Saranathan, V.

M. D. Shawkey, V. Saranathan, H. Pálsdóttir, J. Crum, M. H. Ellisman, M. Auer, and R. O. Prum, “Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure,” J. R. Soc. Interface 6(Suppl 2), S213–S220 (2009).
[PubMed]

E. R. Dufresne, H. Noh, V. Saranathan, S. G. J. Mochrie, H. Cao, and R. O. Prum, “Self-assembly of amorphous biophotonic nanostructures by phase separation,” Soft Matter 5(9), 1792–1795 (2009).
[CrossRef]

Scheffold, F.

L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93(7), 073903 (2004).
[CrossRef] [PubMed]

Schurtenberger, P.

L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93(7), 073903 (2004).
[CrossRef] [PubMed]

Shawkey, M. D.

M. D. Shawkey, V. Saranathan, H. Pálsdóttir, J. Crum, M. H. Ellisman, M. Auer, and R. O. Prum, “Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure,” J. R. Soc. Interface 6(Suppl 2), S213–S220 (2009).
[PubMed]

Stillinger, F. H.

F. H. Stillinger and T. A. Weber, “Packing structures and transitions in liquids and solids,” Science 225(4666), 983–989 (1984).
[CrossRef] [PubMed]

Torres, R. H.

R. O. Prum, J. A. Cole, and R. H. Torres, “Blue integumentary structural colours in dragonflies (Odonata) are not produced by incoherent Tyndall scattering,” J. Exp. Biol. 207(22), 3999–4009 (2004).
[CrossRef] [PubMed]

R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998).
[CrossRef]

Tory, E. M.

W. S. Jodrey and E. M. Tory, “Computer simulation of close random packing of equal spheres,” Phys. Rev. A 32(4), 2347–2351 (1985).
[CrossRef] [PubMed]

Ueno, K.

K. Ueno, A. Inaba, Y. Sano, M. Kondoh, and M. Watanabe, “A soft glassy colloidal array in ionic liquid, which exhibits homogeneous, non-brilliant and angle-independent structural colours,” Chem. Commun. (Camb.) (24), 3603–3605 (2009).
[CrossRef]

Viña, L.

R. Sapienza, P. D. García, J. Bertolotti, M. D. Martín, Á. Blanco, L. Viña, C. López, and D. S. Wiersma, “Observation of resonant behavior in the energy velocity of diffused light,” Phys. Rev. Lett. 99(23), 233902 (2007).
[CrossRef]

Vlasov, Y. A.

Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, “Existence of a photonic pseudogap for visible light in synthetic opals,” Phys. Rev. B 55(20), R13357–R13360 (1997).
[CrossRef]

Vukusic, P.

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

Wang, X.

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Watanabe, M.

K. Ueno, A. Inaba, Y. Sano, M. Kondoh, and M. Watanabe, “A soft glassy colloidal array in ionic liquid, which exhibits homogeneous, non-brilliant and angle-independent structural colours,” Chem. Commun. (Camb.) (24), 3603–3605 (2009).
[CrossRef]

Weber, T. A.

F. H. Stillinger and T. A. Weber, “Packing structures and transitions in liquids and solids,” Science 225(4666), 983–989 (1984).
[CrossRef] [PubMed]

Wiersma, D. S.

R. Sapienza, P. D. García, J. Bertolotti, M. D. Martín, Á. Blanco, L. Viña, C. López, and D. S. Wiersma, “Observation of resonant behavior in the energy velocity of diffused light,” Phys. Rev. Lett. 99(23), 233902 (2007).
[CrossRef]

Williamson, S.

R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998).
[CrossRef]

Xia, Y.

Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. 12(10), 693–713 (2000).
[CrossRef]

Xu, C.

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yin, Y.

Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. 12(10), 693–713 (2000).
[CrossRef]

Yoshioka, S.

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[CrossRef]

Yu, Q. L.

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B Condens. Matter 51(23), 16635–16642 (1995).
[CrossRef] [PubMed]

Yu, X.

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Zi, J.

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Adv. Mater. (2)

Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed colloidal spheres: old materials with new applications,” Adv. Mater. 12(10), 693–713 (2000).
[CrossRef]

P. D. García, R. Sapienza, Á. Blanco, and C. López, “Photonic glass: A novel random material for light,” Adv. Mater. 19(18), 2597–2602 (2007).
[CrossRef]

Appl. Opt. (1)

Chem. Commun. (Camb.) (1)

K. Ueno, A. Inaba, Y. Sano, M. Kondoh, and M. Watanabe, “A soft glassy colloidal array in ionic liquid, which exhibits homogeneous, non-brilliant and angle-independent structural colours,” Chem. Commun. (Camb.) (24), 3603–3605 (2009).
[CrossRef]

J. Comput. Phys. (1)

J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic-waves,” J. Comput. Phys. 114(2), 185–200 (1994).
[CrossRef]

J. Exp. Biol. (1)

R. O. Prum, J. A. Cole, and R. H. Torres, “Blue integumentary structural colours in dragonflies (Odonata) are not produced by incoherent Tyndall scattering,” J. Exp. Biol. 207(22), 3999–4009 (2004).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

A. R. Parker, “515 million years of structural colour,” J. Opt. A, Pure Appl. Opt. 2(6), 201–213 (2000).
[CrossRef]

J. R. Soc. Interface (1)

M. D. Shawkey, V. Saranathan, H. Pálsdóttir, J. Crum, M. H. Ellisman, M. Auer, and R. O. Prum, “Electron tomography, three-dimensional Fourier analysis and colour prediction of a three-dimensional amorphous biophotonic nanostructure,” J. R. Soc. Interface 6(Suppl 2), S213–S220 (2009).
[PubMed]

Nature (3)

A. R. Parker, R. C. McPhedran, D. R. McKenzie, L. C. Botten, and N. A. P. Nicorovici, “Photonic engineering. Aphrodite’s iridescence,” Nature 409(6816), 36–37 (2001).
[CrossRef] [PubMed]

R. O. Prum, R. H. Torres, S. Williamson, and J. Dyck, “Coherent light scattering by blue feather barbs,” Nature 396(6706), 28–29 (1998).
[CrossRef]

P. Vukusic and J. R. Sambles, “Photonic structures in biology,” Nature 424(6950), 852–855 (2003).
[CrossRef] [PubMed]

Phys. Rep. (1)

P. Häussler, “Interrelations between atomic and electronic-structures – liquid and amorphous metals as model systems,” Phys. Rep. 222(2), 65–143 (1992).
[CrossRef]

Phys. Rev. A (1)

W. S. Jodrey and E. M. Tory, “Computer simulation of close random packing of equal spheres,” Phys. Rev. A 32(4), 2347–2351 (1985).
[CrossRef] [PubMed]

Phys. Rev. B (1)

Y. A. Vlasov, V. N. Astratov, O. Z. Karimov, A. A. Kaplyanskii, V. N. Bogomolov, and A. V. Prokofiev, “Existence of a photonic pseudogap for visible light in synthetic opals,” Phys. Rev. B 55(20), R13357–R13360 (1997).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B Condens. Matter 51(23), 16635–16642 (1995).
[CrossRef] [PubMed]

Phys. Rev. Lett. (5)

L. F. Rojas-Ochoa, J. M. Mendez-Alcaraz, J. J. Sáenz, P. Schurtenberger, and F. Scheffold, “Photonic properties of strongly correlated colloidal liquids,” Phys. Rev. Lett. 93(7), 073903 (2004).
[CrossRef] [PubMed]

R. Sapienza, P. D. García, J. Bertolotti, M. D. Martín, Á. Blanco, L. Viña, C. López, and D. S. Wiersma, “Observation of resonant behavior in the energy velocity of diffused light,” Phys. Rev. Lett. 99(23), 233902 (2007).
[CrossRef]

K. Edagawa, S. Kanoko, and M. Notomi, “Photonic amorphous diamond structure with a 3D photonic band gap,” Phys. Rev. Lett. 100(1), 013901 (2008).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

J. Zi, X. Yu, Y. Li, X. Hu, C. Xu, X. Wang, X. Liu, and R. Fu, “Coloration strategies in peacock feathers,” Proc. Natl. Acad. Sci. U.S.A. 100(22), 12576–12578 (2003).
[CrossRef] [PubMed]

Rep. Prog. Phys. (1)

S. Kinoshita, S. Yoshioka, and J. Miyazaki, “Physics of structural colors,” Rep. Prog. Phys. 71(7), 076401 (2008).
[CrossRef]

Science (2)

F. H. Stillinger and T. A. Weber, “Packing structures and transitions in liquids and solids,” Science 225(4666), 983–989 (1984).
[CrossRef] [PubMed]

H. M. Jaeger and S. R. Nagel, “Physics of the granular state,” Science 255(5051), 1523–1531 (1992).
[CrossRef] [PubMed]

Soft Matter (1)

E. R. Dufresne, H. Noh, V. Saranathan, S. G. J. Mochrie, H. Cao, and R. O. Prum, “Self-assembly of amorphous biophotonic nanostructures by phase separation,” Soft Matter 5(9), 1792–1795 (2009).
[CrossRef]

Z. Zellforsch. Mikrosk. Anat. (1)

J. Dyck, “Structure and colour-production of the blue barbs of Agapornis roseicollis and Cotinga maynana,” Z. Zellforsch. Mikrosk. Anat. 115(1), 17–29 (1971).
[CrossRef] [PubMed]

Other (9)

A. Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1995).

CVRL Color & Vision database, http://www.cvrl.org .

F. W. Billmeyer and M. Saltzman, Principles of Color Technology, 2nd edn. (Wiley, New York, 1981).

Commission internationale de l'Eclairage proceedings, 1931 (Cambridge University Press, Cambridge, 1932).

H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).

R. Zallen, The Physics of Amorphous Solids (Wiley, New York, 1983).

K. J. Rao, Structural Chemistry of Glasses (Elsevier, Amsterdam, 2002).

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd ed., (Princeton University Press, Princeton, NJ, 2008).

Bulk Metallic Glasses, edited by M. Miller and P. Liaw (Springer, New York, 2007).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Optical images and reflection spectra. (a) Optical image of beetle A. graafi. (b) Optical microscopic image of a greenish white stripe under 500 × magnification. (c) Normalized reflectance spectra of differently colored single scales measured by micro-optical spectroscopy under normal incidence.

Fig. 3
Fig. 3

Calculated (solid line) and measured (dashed line) reflection spectra. Measured reflection spectrum for green scales was obtained by macro-optical spectroscopy.

Fig. 2
Fig. 2

(a) SEM cross-section image of a green scale. (b) Optical cross-section micrograph of the green scale. (c) Close-up SEM cross-section image of the interior of the green scale. (d) Cross-section of a generated RCP structure of equal spheres with surfaces roughened arbitrarily. (e) and (f) Histogram of two-dimensional RDF with (e) for the RCP photonic structure in the green scale and (f) for the generated one.

Fig. 4
Fig. 4

Calculated PDOS of a model RCP photonic structure (inset) as a function of reduced frequency d/λ. The PDOS of a homogeneous medium with a refractive index of 1.38 (dashed line) is given for comparison. Photonic pseudogaps are indicated by arrows.

Fig. 5
Fig. 5

CIE chromaticity values for the model RCP photonic structures with different nanoparticle size (solid line), converted from the corresponding calculated reflection spectra. Dots are the converted data for single scales from the measured spectra in Fig. 1(c). Labels are in units of nanometers representing the nanoparticle size.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

X = 1 k D ( λ ) R ( λ ) x ¯ ( λ ) d λ , Y = 1 k D ( λ ) R ( λ ) y ¯ ( λ ) d λ , Z = 1 k D ( λ ) R ( λ ) z ¯ ( λ ) d λ ,
k = D ( λ ) R ( λ ) y ¯ ( λ ) d λ
x = X X + Y + Z , y = Y X + Y + Z , z = Z X + Y + Z = 1 x y .

Metrics