Abstract

Skin autofluorescence (AF) for the non-invasive assessment of the amount of accumulated tissue Advanced Glycation Endproducts (AGEs) increases with aging. In subjects with darker skin colors, measurements typically result in lower AF values than in subjects with fair skin colors, e.g. due to selective absorption by skin compounds. Our aim was to provide a new method for calculating skin AF, yielding values that are independent of skin color. The deviation of skin AF of healthy subjects with various darker skin types (N = 99) compared to reference values from Caucasians showed to be a function of various parameters that were derived from reflectance and emission spectra in the UV and visible range (adjusted R2 = 80%). Validation of the new algorithm, based on these findings, in a separate dataset (N = 141) showed that results of skin AF can now be obtained to assess skin AGEs independently of skin color.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Meerwaldt, R. Graaff, P. H. N. Oomen, T. P. Links, J. J. Jager, N. L. Alderson, S. R. Thorpe, J. W. Baynes, R. O. B. Gans, and A. J. Smit, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia 47, 1324–1330 (2004).
    [CrossRef] [PubMed]
  2. R. Meerwaldt, J. W. L. Hartog, R. Graaff, R. J. Huisman, T. P. Links, N. C. den Hollander, S. R. Thorpe, J. W. Baynes, G. Navis, R. O. B. Gans, and A. J. Smit, “Skin autofluorescence, a measure of cumulative metabolic stress and advanced glycation end products, predicts mortality in hemodialysis patients,” J. Am. Soc. Nephrol. 16, 3687–3693 (2005).
    [CrossRef] [PubMed]
  3. N. C. den Hollander, D. J. Mulder, R. Graaff, S. R. Thorpe, J. W. Baynes, G. P. A. Smit, and A. J. Smit, “Advanced glycation end products and the absence of premature atherosclerosis in glycogen storage disease Ia,” J. Inherit. Metab. Dis. 30, 916–923 (2007).
    [CrossRef] [PubMed]
  4. D. J. Mulder, P. L. van Haelst, S. Gross, K. de Leeuw, J. Bijzet, R. Graaff, R. O. Gans, F. Zijlstra, and A. J. Smit, “Skin autofluorescence is elevated in patients with stable coronary artery disease and is associated with serum levels of neopterin and the soluble receptor for advanced glycation end products,” Atherosclerosis 197, 217–223 (2008).
    [CrossRef]
  5. H. L. Lutgers, E. G. Gerrits, R. Graaff, T. P. Links, W. J. Sluiter, R. O. Gans, H. J. Bilo, and A. J. Smit, “Skin autofluorescence provides additional information to the UK Prospective Diabetes Study (UKPDS) risk score for the estimation of cardiovascular prognosis in type 2 diabetes mellitus,” Diabetologia 52, 789–797 (2009).
    [CrossRef] [PubMed]
  6. T. Matsumoto, T. Tsurumoto, H. Baba, M. Osaki, H. Enomoto, A. Yonekura, H. Shindo, and T. Miyata, “Measurement of advanced glycation endproducts in skin of patients with rheumatoid arthritis, osteoarthritis, and dialysisrelated spondyloarthropathy using non-invasive methods,” Rheumatol. Int. 28, 157–160 (2007).
    [CrossRef] [PubMed]
  7. H. Ueno, H. Koyama, S. Tanaka, S. Fukumoto, K. Shinohara, T. Shoji,M. Emoto, H. Tahara, R. Kakiya, T. Tabata, T. Miyata, and Y. Nishizawa, “Skin autofluorescence, a marker for advanced glycation end product accumulation, is associated with arterial stiffness in patients with end-stage renal disease,” Metabolism 57, 1452–1457 (2008).
    [CrossRef] [PubMed]
  8. M. Monami, C. Lamanna, F. Gori, F. Bartalucci, N. Marchionni, and E. Mannucci, “Skin autofluorescence in type 2 diabetes: beyond blood glucose,” Diabetes Res. Clin. Pract. 79, 56–60 (2008).
    [CrossRef]
  9. D. J. Mulder, T. van deWater, H. L. Lutgers, R. Graaff, R. O. Gans, F. Zijlstra, and A. J. Smit, “Skin autofluorescence, a novel marker for glycemic and oxidative stress-derived advanced glycation endproducts: an overview of current clinical studies, evidence, and limitations,” Diabetes Technol. Ther. 8, 523–535 (2006).
    [CrossRef] [PubMed]
  10. N. Kollias and A. H. Baqer, “Absorption mechanisms of human melanin in the visible, 400–720 nm,” J. Invest. Dermatol. 89, 384–388 (1987).
    [CrossRef] [PubMed]
  11. I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation,” J. Biomed. Opt. 9, 700–710 (2004).
    [CrossRef] [PubMed]
  12. G. Zonios and A. Dimou, “Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties,” Opt. Express 14, 8661–8674 (2006).
    [CrossRef] [PubMed]
  13. J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Influence of epidermal thickness, pigmentation and redness on skin autofluorescence,” Photochem. Photobiol. 77, 616–620 (2003).
    [CrossRef] [PubMed]
  14. M. Koetsier, H. L. Lutgers, C. de Jonge, T. P. Links, A. J. Smit, and R. Graaff, “Reference values of skin autofluorescence,” Diabetes Technol. Ther. 12, 399–403 (2010).
    [CrossRef] [PubMed]
  15. Y. P. Sinichkin, N. Kollias, G. I. Zonios, S. R. Utz, and V. V. Tuchin, “Reflectance and fluorescence spectroscopy of human skin in vivo,” in Handbook of optical biomedical diagnostics, V. V. Tuchin, ed., (SPIE Press, Bellingham, WA, USA, 2002), chap. 13, pp. 725–785.
  16. N. Kollias and A. Baqer, “Spectroscopic characteristics of human melanin in vivo,” J. Invest. Dermatol. 85, 38–42 (1985).
    [CrossRef] [PubMed]
  17. J. B. Dawson, D. J. Barker, D. J. Ellis, E. Grassam, J. A. Cotterill, G. W. Fisher, and J. W. Feather, “A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol. 25, 695–709 (1980).
    [CrossRef] [PubMed]
  18. W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and near infrared absorption spectra of human and animal haemoglobin, (VSP BV, Zeist, The Netherlands, 2000).
  19. J. W. Feather, M. Hajizadeh-Saffar, G. Leslie, and J. B. Dawson, “A portable scanning reflectance spectrophotometer using visible wavelengths for the rapid measurement of skin pigments,” Phys. Med. Biol. 34, 807–820 (1989).
    [CrossRef] [PubMed]
  20. R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
    [CrossRef] [PubMed]
  21. J. M. Coremans, C. Ince, H. A. Bruining, and G. J. Puppels, “(Semi-)quantitative analysis of reduced nicotinamide adenine dinucleotide fluorescence images of blood-perfused rat heart,” Biophys. J. 72, 1849–1860 (1997).
    [CrossRef] [PubMed]
  22. G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,” Br. J. Dermatol. 154, 125–132 (2006).
    [CrossRef] [PubMed]
  23. L. Bachmann, D. M. Zezell, A. da Costa Ribeiro, L. Gomes, and A. S. Ito, “Fluorescence spectroscopy of biological tissues—A review,” Appl. Spectrosc. Rev. 41, 575–590 (2006).
    [CrossRef]
  24. M. Koetsier, H. L. Lutgers, A. J. Smit, T. P. Links, R. de Vries, R. O. B. Gans, G. Rakhorst, and R. Graaff, “Skin autofluorescence for the risk assessment of chronic complications in diabetes: a broad excitation range is sufficient,” Opt. Express 17, 509–519 (2009).
    [CrossRef] [PubMed]
  25. N. Kollias, G. Zonios, and G. N. Stamatas, “Fluorescence spectroscopy of skin,” Vib. Spectrosc. 28, 17–23 (2002).
    [CrossRef]
  26. G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13, 14017 (2008).
    [CrossRef]
  27. S. Alaluf, D. Atkins, K. Barrett, M. Blount, N. Carter, and A. Heath, “Ethnic variation in melanin content and composition in photoexposed and photoprotected human skin,” Pigment Cell Res. 15, 112–118 (2002).
    [CrossRef] [PubMed]
  28. G. S. Barsh, “What controls variation in human skin color?” PLoS Biol. 1, 19–22 (2003).
    [CrossRef]
  29. G. Zonios and A. Dimou, “Melanin optical properties provide evidence for chemical and structural disorder in vivo,” Opt. Express 16, 8263–8268 (2008).
    [CrossRef] [PubMed]
  30. R. Na, I.-M. Stender, M. Henriksen, and H. C. Wulf, “Autofluorescence of human skin is age-related after correction for skin pigmentation and redness,” J. Invest. Dermatol. 116, 536–540 (2001).
    [CrossRef] [PubMed]
  31. C. Magnain, M. Elias, and J.-M. Frigerio, “Skin color modeling using the radiative transfer equation solved by the auxiliary function method,” J. Opt. Soc. Am. A. 24, 2196–2205 (2007).
    [CrossRef]
  32. K. P. Nielsen, L. Zhao, G. A. Ryzhikov, M. S. Biryulina, E. R. Sommersten, J. J. Stamnes, K. Stamnes, and J. Moan, “Retrieval of the physiological state of human skin from UV–Vis reflectance spectra – a feasibility study,” J. Photochem. Photobiol. B. 93, 23–31 (2008).
    [CrossRef] [PubMed]
  33. K. M. Katika and L. Pilon, “Steady-state directional diffuse reflectance and fluorescence of human skin,” Appl. Opt. 45, 4174–4183 (2006).
    [CrossRef] [PubMed]
  34. R. Chen, Z. Huang, H. Lui, I. Hamzavi, D. I. McLean, S. Xie, and H. Zeng, “Monte Carlo simulation of cutaneous reflectance and fluorescence measurements – The effect of melanin contents and localization,” J. Photochem. Photobiol. B. 86, 219–226 (2007).
    [CrossRef]

2010

M. Koetsier, H. L. Lutgers, C. de Jonge, T. P. Links, A. J. Smit, and R. Graaff, “Reference values of skin autofluorescence,” Diabetes Technol. Ther. 12, 399–403 (2010).
[CrossRef] [PubMed]

2009

H. L. Lutgers, E. G. Gerrits, R. Graaff, T. P. Links, W. J. Sluiter, R. O. Gans, H. J. Bilo, and A. J. Smit, “Skin autofluorescence provides additional information to the UK Prospective Diabetes Study (UKPDS) risk score for the estimation of cardiovascular prognosis in type 2 diabetes mellitus,” Diabetologia 52, 789–797 (2009).
[CrossRef] [PubMed]

M. Koetsier, H. L. Lutgers, A. J. Smit, T. P. Links, R. de Vries, R. O. B. Gans, G. Rakhorst, and R. Graaff, “Skin autofluorescence for the risk assessment of chronic complications in diabetes: a broad excitation range is sufficient,” Opt. Express 17, 509–519 (2009).
[CrossRef] [PubMed]

2008

G. Zonios and A. Dimou, “Melanin optical properties provide evidence for chemical and structural disorder in vivo,” Opt. Express 16, 8263–8268 (2008).
[CrossRef] [PubMed]

K. P. Nielsen, L. Zhao, G. A. Ryzhikov, M. S. Biryulina, E. R. Sommersten, J. J. Stamnes, K. Stamnes, and J. Moan, “Retrieval of the physiological state of human skin from UV–Vis reflectance spectra – a feasibility study,” J. Photochem. Photobiol. B. 93, 23–31 (2008).
[CrossRef] [PubMed]

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13, 14017 (2008).
[CrossRef]

D. J. Mulder, P. L. van Haelst, S. Gross, K. de Leeuw, J. Bijzet, R. Graaff, R. O. Gans, F. Zijlstra, and A. J. Smit, “Skin autofluorescence is elevated in patients with stable coronary artery disease and is associated with serum levels of neopterin and the soluble receptor for advanced glycation end products,” Atherosclerosis 197, 217–223 (2008).
[CrossRef]

H. Ueno, H. Koyama, S. Tanaka, S. Fukumoto, K. Shinohara, T. Shoji,M. Emoto, H. Tahara, R. Kakiya, T. Tabata, T. Miyata, and Y. Nishizawa, “Skin autofluorescence, a marker for advanced glycation end product accumulation, is associated with arterial stiffness in patients with end-stage renal disease,” Metabolism 57, 1452–1457 (2008).
[CrossRef] [PubMed]

M. Monami, C. Lamanna, F. Gori, F. Bartalucci, N. Marchionni, and E. Mannucci, “Skin autofluorescence in type 2 diabetes: beyond blood glucose,” Diabetes Res. Clin. Pract. 79, 56–60 (2008).
[CrossRef]

2007

N. C. den Hollander, D. J. Mulder, R. Graaff, S. R. Thorpe, J. W. Baynes, G. P. A. Smit, and A. J. Smit, “Advanced glycation end products and the absence of premature atherosclerosis in glycogen storage disease Ia,” J. Inherit. Metab. Dis. 30, 916–923 (2007).
[CrossRef] [PubMed]

T. Matsumoto, T. Tsurumoto, H. Baba, M. Osaki, H. Enomoto, A. Yonekura, H. Shindo, and T. Miyata, “Measurement of advanced glycation endproducts in skin of patients with rheumatoid arthritis, osteoarthritis, and dialysisrelated spondyloarthropathy using non-invasive methods,” Rheumatol. Int. 28, 157–160 (2007).
[CrossRef] [PubMed]

C. Magnain, M. Elias, and J.-M. Frigerio, “Skin color modeling using the radiative transfer equation solved by the auxiliary function method,” J. Opt. Soc. Am. A. 24, 2196–2205 (2007).
[CrossRef]

R. Chen, Z. Huang, H. Lui, I. Hamzavi, D. I. McLean, S. Xie, and H. Zeng, “Monte Carlo simulation of cutaneous reflectance and fluorescence measurements – The effect of melanin contents and localization,” J. Photochem. Photobiol. B. 86, 219–226 (2007).
[CrossRef]

2006

K. M. Katika and L. Pilon, “Steady-state directional diffuse reflectance and fluorescence of human skin,” Appl. Opt. 45, 4174–4183 (2006).
[CrossRef] [PubMed]

G. Zonios and A. Dimou, “Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties,” Opt. Express 14, 8661–8674 (2006).
[CrossRef] [PubMed]

G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,” Br. J. Dermatol. 154, 125–132 (2006).
[CrossRef] [PubMed]

L. Bachmann, D. M. Zezell, A. da Costa Ribeiro, L. Gomes, and A. S. Ito, “Fluorescence spectroscopy of biological tissues—A review,” Appl. Spectrosc. Rev. 41, 575–590 (2006).
[CrossRef]

D. J. Mulder, T. van deWater, H. L. Lutgers, R. Graaff, R. O. Gans, F. Zijlstra, and A. J. Smit, “Skin autofluorescence, a novel marker for glycemic and oxidative stress-derived advanced glycation endproducts: an overview of current clinical studies, evidence, and limitations,” Diabetes Technol. Ther. 8, 523–535 (2006).
[CrossRef] [PubMed]

2005

R. Meerwaldt, J. W. L. Hartog, R. Graaff, R. J. Huisman, T. P. Links, N. C. den Hollander, S. R. Thorpe, J. W. Baynes, G. Navis, R. O. B. Gans, and A. J. Smit, “Skin autofluorescence, a measure of cumulative metabolic stress and advanced glycation end products, predicts mortality in hemodialysis patients,” J. Am. Soc. Nephrol. 16, 3687–3693 (2005).
[CrossRef] [PubMed]

2004

R. Meerwaldt, R. Graaff, P. H. N. Oomen, T. P. Links, J. J. Jager, N. L. Alderson, S. R. Thorpe, J. W. Baynes, R. O. B. Gans, and A. J. Smit, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia 47, 1324–1330 (2004).
[CrossRef] [PubMed]

I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation,” J. Biomed. Opt. 9, 700–710 (2004).
[CrossRef] [PubMed]

2003

J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Influence of epidermal thickness, pigmentation and redness on skin autofluorescence,” Photochem. Photobiol. 77, 616–620 (2003).
[CrossRef] [PubMed]

G. S. Barsh, “What controls variation in human skin color?” PLoS Biol. 1, 19–22 (2003).
[CrossRef]

2002

N. Kollias, G. Zonios, and G. N. Stamatas, “Fluorescence spectroscopy of skin,” Vib. Spectrosc. 28, 17–23 (2002).
[CrossRef]

S. Alaluf, D. Atkins, K. Barrett, M. Blount, N. Carter, and A. Heath, “Ethnic variation in melanin content and composition in photoexposed and photoprotected human skin,” Pigment Cell Res. 15, 112–118 (2002).
[CrossRef] [PubMed]

2001

R. Na, I.-M. Stender, M. Henriksen, and H. C. Wulf, “Autofluorescence of human skin is age-related after correction for skin pigmentation and redness,” J. Invest. Dermatol. 116, 536–540 (2001).
[CrossRef] [PubMed]

1997

J. M. Coremans, C. Ince, H. A. Bruining, and G. J. Puppels, “(Semi-)quantitative analysis of reduced nicotinamide adenine dinucleotide fluorescence images of blood-perfused rat heart,” Biophys. J. 72, 1849–1860 (1997).
[CrossRef] [PubMed]

1989

J. W. Feather, M. Hajizadeh-Saffar, G. Leslie, and J. B. Dawson, “A portable scanning reflectance spectrophotometer using visible wavelengths for the rapid measurement of skin pigments,” Phys. Med. Biol. 34, 807–820 (1989).
[CrossRef] [PubMed]

1987

N. Kollias and A. H. Baqer, “Absorption mechanisms of human melanin in the visible, 400–720 nm,” J. Invest. Dermatol. 89, 384–388 (1987).
[CrossRef] [PubMed]

1985

N. Kollias and A. Baqer, “Spectroscopic characteristics of human melanin in vivo,” J. Invest. Dermatol. 85, 38–42 (1985).
[CrossRef] [PubMed]

1981

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[CrossRef] [PubMed]

1980

J. B. Dawson, D. J. Barker, D. J. Ellis, E. Grassam, J. A. Cotterill, G. W. Fisher, and J. W. Feather, “A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol. 25, 695–709 (1980).
[CrossRef] [PubMed]

Aizu, Y.

I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation,” J. Biomed. Opt. 9, 700–710 (2004).
[CrossRef] [PubMed]

Alaluf, S.

S. Alaluf, D. Atkins, K. Barrett, M. Blount, N. Carter, and A. Heath, “Ethnic variation in melanin content and composition in photoexposed and photoprotected human skin,” Pigment Cell Res. 15, 112–118 (2002).
[CrossRef] [PubMed]

Alderson, N. L.

R. Meerwaldt, R. Graaff, P. H. N. Oomen, T. P. Links, J. J. Jager, N. L. Alderson, S. R. Thorpe, J. W. Baynes, R. O. B. Gans, and A. J. Smit, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia 47, 1324–1330 (2004).
[CrossRef] [PubMed]

Anderson, R. R.

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[CrossRef] [PubMed]

Atkins, D.

S. Alaluf, D. Atkins, K. Barrett, M. Blount, N. Carter, and A. Heath, “Ethnic variation in melanin content and composition in photoexposed and photoprotected human skin,” Pigment Cell Res. 15, 112–118 (2002).
[CrossRef] [PubMed]

Baba, H.

T. Matsumoto, T. Tsurumoto, H. Baba, M. Osaki, H. Enomoto, A. Yonekura, H. Shindo, and T. Miyata, “Measurement of advanced glycation endproducts in skin of patients with rheumatoid arthritis, osteoarthritis, and dialysisrelated spondyloarthropathy using non-invasive methods,” Rheumatol. Int. 28, 157–160 (2007).
[CrossRef] [PubMed]

Bachmann, L.

L. Bachmann, D. M. Zezell, A. da Costa Ribeiro, L. Gomes, and A. S. Ito, “Fluorescence spectroscopy of biological tissues—A review,” Appl. Spectrosc. Rev. 41, 575–590 (2006).
[CrossRef]

Baqer, A.

N. Kollias and A. Baqer, “Spectroscopic characteristics of human melanin in vivo,” J. Invest. Dermatol. 85, 38–42 (1985).
[CrossRef] [PubMed]

Baqer, A. H.

N. Kollias and A. H. Baqer, “Absorption mechanisms of human melanin in the visible, 400–720 nm,” J. Invest. Dermatol. 89, 384–388 (1987).
[CrossRef] [PubMed]

Barker, D. J.

J. B. Dawson, D. J. Barker, D. J. Ellis, E. Grassam, J. A. Cotterill, G. W. Fisher, and J. W. Feather, “A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol. 25, 695–709 (1980).
[CrossRef] [PubMed]

Barrett, K.

S. Alaluf, D. Atkins, K. Barrett, M. Blount, N. Carter, and A. Heath, “Ethnic variation in melanin content and composition in photoexposed and photoprotected human skin,” Pigment Cell Res. 15, 112–118 (2002).
[CrossRef] [PubMed]

Barsh, G. S.

G. S. Barsh, “What controls variation in human skin color?” PLoS Biol. 1, 19–22 (2003).
[CrossRef]

Bartalucci, F.

M. Monami, C. Lamanna, F. Gori, F. Bartalucci, N. Marchionni, and E. Mannucci, “Skin autofluorescence in type 2 diabetes: beyond blood glucose,” Diabetes Res. Clin. Pract. 79, 56–60 (2008).
[CrossRef]

Bassukas, I.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13, 14017 (2008).
[CrossRef]

Baynes, J. W.

N. C. den Hollander, D. J. Mulder, R. Graaff, S. R. Thorpe, J. W. Baynes, G. P. A. Smit, and A. J. Smit, “Advanced glycation end products and the absence of premature atherosclerosis in glycogen storage disease Ia,” J. Inherit. Metab. Dis. 30, 916–923 (2007).
[CrossRef] [PubMed]

R. Meerwaldt, J. W. L. Hartog, R. Graaff, R. J. Huisman, T. P. Links, N. C. den Hollander, S. R. Thorpe, J. W. Baynes, G. Navis, R. O. B. Gans, and A. J. Smit, “Skin autofluorescence, a measure of cumulative metabolic stress and advanced glycation end products, predicts mortality in hemodialysis patients,” J. Am. Soc. Nephrol. 16, 3687–3693 (2005).
[CrossRef] [PubMed]

R. Meerwaldt, R. Graaff, P. H. N. Oomen, T. P. Links, J. J. Jager, N. L. Alderson, S. R. Thorpe, J. W. Baynes, R. O. B. Gans, and A. J. Smit, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia 47, 1324–1330 (2004).
[CrossRef] [PubMed]

Bijzet, J.

D. J. Mulder, P. L. van Haelst, S. Gross, K. de Leeuw, J. Bijzet, R. Graaff, R. O. Gans, F. Zijlstra, and A. J. Smit, “Skin autofluorescence is elevated in patients with stable coronary artery disease and is associated with serum levels of neopterin and the soluble receptor for advanced glycation end products,” Atherosclerosis 197, 217–223 (2008).
[CrossRef]

Bilo, H. J.

H. L. Lutgers, E. G. Gerrits, R. Graaff, T. P. Links, W. J. Sluiter, R. O. Gans, H. J. Bilo, and A. J. Smit, “Skin autofluorescence provides additional information to the UK Prospective Diabetes Study (UKPDS) risk score for the estimation of cardiovascular prognosis in type 2 diabetes mellitus,” Diabetologia 52, 789–797 (2009).
[CrossRef] [PubMed]

Biryulina, M. S.

K. P. Nielsen, L. Zhao, G. A. Ryzhikov, M. S. Biryulina, E. R. Sommersten, J. J. Stamnes, K. Stamnes, and J. Moan, “Retrieval of the physiological state of human skin from UV–Vis reflectance spectra – a feasibility study,” J. Photochem. Photobiol. B. 93, 23–31 (2008).
[CrossRef] [PubMed]

Blount, M.

S. Alaluf, D. Atkins, K. Barrett, M. Blount, N. Carter, and A. Heath, “Ethnic variation in melanin content and composition in photoexposed and photoprotected human skin,” Pigment Cell Res. 15, 112–118 (2002).
[CrossRef] [PubMed]

Bruining, H. A.

J. M. Coremans, C. Ince, H. A. Bruining, and G. J. Puppels, “(Semi-)quantitative analysis of reduced nicotinamide adenine dinucleotide fluorescence images of blood-perfused rat heart,” Biophys. J. 72, 1849–1860 (1997).
[CrossRef] [PubMed]

Carter, N.

S. Alaluf, D. Atkins, K. Barrett, M. Blount, N. Carter, and A. Heath, “Ethnic variation in melanin content and composition in photoexposed and photoprotected human skin,” Pigment Cell Res. 15, 112–118 (2002).
[CrossRef] [PubMed]

Chen, R.

R. Chen, Z. Huang, H. Lui, I. Hamzavi, D. I. McLean, S. Xie, and H. Zeng, “Monte Carlo simulation of cutaneous reflectance and fluorescence measurements – The effect of melanin contents and localization,” J. Photochem. Photobiol. B. 86, 219–226 (2007).
[CrossRef]

Coremans, J. M.

J. M. Coremans, C. Ince, H. A. Bruining, and G. J. Puppels, “(Semi-)quantitative analysis of reduced nicotinamide adenine dinucleotide fluorescence images of blood-perfused rat heart,” Biophys. J. 72, 1849–1860 (1997).
[CrossRef] [PubMed]

Cotterill, J. A.

J. B. Dawson, D. J. Barker, D. J. Ellis, E. Grassam, J. A. Cotterill, G. W. Fisher, and J. W. Feather, “A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol. 25, 695–709 (1980).
[CrossRef] [PubMed]

da Costa Ribeiro, A.

L. Bachmann, D. M. Zezell, A. da Costa Ribeiro, L. Gomes, and A. S. Ito, “Fluorescence spectroscopy of biological tissues—A review,” Appl. Spectrosc. Rev. 41, 575–590 (2006).
[CrossRef]

Dawson, J. B.

J. W. Feather, M. Hajizadeh-Saffar, G. Leslie, and J. B. Dawson, “A portable scanning reflectance spectrophotometer using visible wavelengths for the rapid measurement of skin pigments,” Phys. Med. Biol. 34, 807–820 (1989).
[CrossRef] [PubMed]

J. B. Dawson, D. J. Barker, D. J. Ellis, E. Grassam, J. A. Cotterill, G. W. Fisher, and J. W. Feather, “A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol. 25, 695–709 (1980).
[CrossRef] [PubMed]

de Jonge, C.

M. Koetsier, H. L. Lutgers, C. de Jonge, T. P. Links, A. J. Smit, and R. Graaff, “Reference values of skin autofluorescence,” Diabetes Technol. Ther. 12, 399–403 (2010).
[CrossRef] [PubMed]

de Leeuw, K.

D. J. Mulder, P. L. van Haelst, S. Gross, K. de Leeuw, J. Bijzet, R. Graaff, R. O. Gans, F. Zijlstra, and A. J. Smit, “Skin autofluorescence is elevated in patients with stable coronary artery disease and is associated with serum levels of neopterin and the soluble receptor for advanced glycation end products,” Atherosclerosis 197, 217–223 (2008).
[CrossRef]

de Vries, R.

den Hollander, N. C.

N. C. den Hollander, D. J. Mulder, R. Graaff, S. R. Thorpe, J. W. Baynes, G. P. A. Smit, and A. J. Smit, “Advanced glycation end products and the absence of premature atherosclerosis in glycogen storage disease Ia,” J. Inherit. Metab. Dis. 30, 916–923 (2007).
[CrossRef] [PubMed]

R. Meerwaldt, J. W. L. Hartog, R. Graaff, R. J. Huisman, T. P. Links, N. C. den Hollander, S. R. Thorpe, J. W. Baynes, G. Navis, R. O. B. Gans, and A. J. Smit, “Skin autofluorescence, a measure of cumulative metabolic stress and advanced glycation end products, predicts mortality in hemodialysis patients,” J. Am. Soc. Nephrol. 16, 3687–3693 (2005).
[CrossRef] [PubMed]

Dimou, A.

Elias, M.

C. Magnain, M. Elias, and J.-M. Frigerio, “Skin color modeling using the radiative transfer equation solved by the auxiliary function method,” J. Opt. Soc. Am. A. 24, 2196–2205 (2007).
[CrossRef]

Ellis, D. J.

J. B. Dawson, D. J. Barker, D. J. Ellis, E. Grassam, J. A. Cotterill, G. W. Fisher, and J. W. Feather, “A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol. 25, 695–709 (1980).
[CrossRef] [PubMed]

Emoto, M.

H. Ueno, H. Koyama, S. Tanaka, S. Fukumoto, K. Shinohara, T. Shoji,M. Emoto, H. Tahara, R. Kakiya, T. Tabata, T. Miyata, and Y. Nishizawa, “Skin autofluorescence, a marker for advanced glycation end product accumulation, is associated with arterial stiffness in patients with end-stage renal disease,” Metabolism 57, 1452–1457 (2008).
[CrossRef] [PubMed]

Enomoto, H.

T. Matsumoto, T. Tsurumoto, H. Baba, M. Osaki, H. Enomoto, A. Yonekura, H. Shindo, and T. Miyata, “Measurement of advanced glycation endproducts in skin of patients with rheumatoid arthritis, osteoarthritis, and dialysisrelated spondyloarthropathy using non-invasive methods,” Rheumatol. Int. 28, 157–160 (2007).
[CrossRef] [PubMed]

Estanislao, R. B.

G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,” Br. J. Dermatol. 154, 125–132 (2006).
[CrossRef] [PubMed]

Feather, J. W.

J. W. Feather, M. Hajizadeh-Saffar, G. Leslie, and J. B. Dawson, “A portable scanning reflectance spectrophotometer using visible wavelengths for the rapid measurement of skin pigments,” Phys. Med. Biol. 34, 807–820 (1989).
[CrossRef] [PubMed]

J. B. Dawson, D. J. Barker, D. J. Ellis, E. Grassam, J. A. Cotterill, G. W. Fisher, and J. W. Feather, “A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol. 25, 695–709 (1980).
[CrossRef] [PubMed]

Fisher, G. W.

J. B. Dawson, D. J. Barker, D. J. Ellis, E. Grassam, J. A. Cotterill, G. W. Fisher, and J. W. Feather, “A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol. 25, 695–709 (1980).
[CrossRef] [PubMed]

Frigerio, J.-M.

C. Magnain, M. Elias, and J.-M. Frigerio, “Skin color modeling using the radiative transfer equation solved by the auxiliary function method,” J. Opt. Soc. Am. A. 24, 2196–2205 (2007).
[CrossRef]

Fukumoto, S.

H. Ueno, H. Koyama, S. Tanaka, S. Fukumoto, K. Shinohara, T. Shoji,M. Emoto, H. Tahara, R. Kakiya, T. Tabata, T. Miyata, and Y. Nishizawa, “Skin autofluorescence, a marker for advanced glycation end product accumulation, is associated with arterial stiffness in patients with end-stage renal disease,” Metabolism 57, 1452–1457 (2008).
[CrossRef] [PubMed]

Galaris, D.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13, 14017 (2008).
[CrossRef]

Gans, R. O.

H. L. Lutgers, E. G. Gerrits, R. Graaff, T. P. Links, W. J. Sluiter, R. O. Gans, H. J. Bilo, and A. J. Smit, “Skin autofluorescence provides additional information to the UK Prospective Diabetes Study (UKPDS) risk score for the estimation of cardiovascular prognosis in type 2 diabetes mellitus,” Diabetologia 52, 789–797 (2009).
[CrossRef] [PubMed]

D. J. Mulder, P. L. van Haelst, S. Gross, K. de Leeuw, J. Bijzet, R. Graaff, R. O. Gans, F. Zijlstra, and A. J. Smit, “Skin autofluorescence is elevated in patients with stable coronary artery disease and is associated with serum levels of neopterin and the soluble receptor for advanced glycation end products,” Atherosclerosis 197, 217–223 (2008).
[CrossRef]

D. J. Mulder, T. van deWater, H. L. Lutgers, R. Graaff, R. O. Gans, F. Zijlstra, and A. J. Smit, “Skin autofluorescence, a novel marker for glycemic and oxidative stress-derived advanced glycation endproducts: an overview of current clinical studies, evidence, and limitations,” Diabetes Technol. Ther. 8, 523–535 (2006).
[CrossRef] [PubMed]

Gans, R. O. B.

M. Koetsier, H. L. Lutgers, A. J. Smit, T. P. Links, R. de Vries, R. O. B. Gans, G. Rakhorst, and R. Graaff, “Skin autofluorescence for the risk assessment of chronic complications in diabetes: a broad excitation range is sufficient,” Opt. Express 17, 509–519 (2009).
[CrossRef] [PubMed]

R. Meerwaldt, J. W. L. Hartog, R. Graaff, R. J. Huisman, T. P. Links, N. C. den Hollander, S. R. Thorpe, J. W. Baynes, G. Navis, R. O. B. Gans, and A. J. Smit, “Skin autofluorescence, a measure of cumulative metabolic stress and advanced glycation end products, predicts mortality in hemodialysis patients,” J. Am. Soc. Nephrol. 16, 3687–3693 (2005).
[CrossRef] [PubMed]

R. Meerwaldt, R. Graaff, P. H. N. Oomen, T. P. Links, J. J. Jager, N. L. Alderson, S. R. Thorpe, J. W. Baynes, R. O. B. Gans, and A. J. Smit, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia 47, 1324–1330 (2004).
[CrossRef] [PubMed]

Gerrits, E. G.

H. L. Lutgers, E. G. Gerrits, R. Graaff, T. P. Links, W. J. Sluiter, R. O. Gans, H. J. Bilo, and A. J. Smit, “Skin autofluorescence provides additional information to the UK Prospective Diabetes Study (UKPDS) risk score for the estimation of cardiovascular prognosis in type 2 diabetes mellitus,” Diabetologia 52, 789–797 (2009).
[CrossRef] [PubMed]

Gomes, L.

L. Bachmann, D. M. Zezell, A. da Costa Ribeiro, L. Gomes, and A. S. Ito, “Fluorescence spectroscopy of biological tissues—A review,” Appl. Spectrosc. Rev. 41, 575–590 (2006).
[CrossRef]

Gori, F.

M. Monami, C. Lamanna, F. Gori, F. Bartalucci, N. Marchionni, and E. Mannucci, “Skin autofluorescence in type 2 diabetes: beyond blood glucose,” Diabetes Res. Clin. Pract. 79, 56–60 (2008).
[CrossRef]

Graaff, R.

M. Koetsier, H. L. Lutgers, C. de Jonge, T. P. Links, A. J. Smit, and R. Graaff, “Reference values of skin autofluorescence,” Diabetes Technol. Ther. 12, 399–403 (2010).
[CrossRef] [PubMed]

H. L. Lutgers, E. G. Gerrits, R. Graaff, T. P. Links, W. J. Sluiter, R. O. Gans, H. J. Bilo, and A. J. Smit, “Skin autofluorescence provides additional information to the UK Prospective Diabetes Study (UKPDS) risk score for the estimation of cardiovascular prognosis in type 2 diabetes mellitus,” Diabetologia 52, 789–797 (2009).
[CrossRef] [PubMed]

M. Koetsier, H. L. Lutgers, A. J. Smit, T. P. Links, R. de Vries, R. O. B. Gans, G. Rakhorst, and R. Graaff, “Skin autofluorescence for the risk assessment of chronic complications in diabetes: a broad excitation range is sufficient,” Opt. Express 17, 509–519 (2009).
[CrossRef] [PubMed]

D. J. Mulder, P. L. van Haelst, S. Gross, K. de Leeuw, J. Bijzet, R. Graaff, R. O. Gans, F. Zijlstra, and A. J. Smit, “Skin autofluorescence is elevated in patients with stable coronary artery disease and is associated with serum levels of neopterin and the soluble receptor for advanced glycation end products,” Atherosclerosis 197, 217–223 (2008).
[CrossRef]

N. C. den Hollander, D. J. Mulder, R. Graaff, S. R. Thorpe, J. W. Baynes, G. P. A. Smit, and A. J. Smit, “Advanced glycation end products and the absence of premature atherosclerosis in glycogen storage disease Ia,” J. Inherit. Metab. Dis. 30, 916–923 (2007).
[CrossRef] [PubMed]

D. J. Mulder, T. van deWater, H. L. Lutgers, R. Graaff, R. O. Gans, F. Zijlstra, and A. J. Smit, “Skin autofluorescence, a novel marker for glycemic and oxidative stress-derived advanced glycation endproducts: an overview of current clinical studies, evidence, and limitations,” Diabetes Technol. Ther. 8, 523–535 (2006).
[CrossRef] [PubMed]

R. Meerwaldt, J. W. L. Hartog, R. Graaff, R. J. Huisman, T. P. Links, N. C. den Hollander, S. R. Thorpe, J. W. Baynes, G. Navis, R. O. B. Gans, and A. J. Smit, “Skin autofluorescence, a measure of cumulative metabolic stress and advanced glycation end products, predicts mortality in hemodialysis patients,” J. Am. Soc. Nephrol. 16, 3687–3693 (2005).
[CrossRef] [PubMed]

R. Meerwaldt, R. Graaff, P. H. N. Oomen, T. P. Links, J. J. Jager, N. L. Alderson, S. R. Thorpe, J. W. Baynes, R. O. B. Gans, and A. J. Smit, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia 47, 1324–1330 (2004).
[CrossRef] [PubMed]

Grassam, E.

J. B. Dawson, D. J. Barker, D. J. Ellis, E. Grassam, J. A. Cotterill, G. W. Fisher, and J. W. Feather, “A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol. 25, 695–709 (1980).
[CrossRef] [PubMed]

Gross, S.

D. J. Mulder, P. L. van Haelst, S. Gross, K. de Leeuw, J. Bijzet, R. Graaff, R. O. Gans, F. Zijlstra, and A. J. Smit, “Skin autofluorescence is elevated in patients with stable coronary artery disease and is associated with serum levels of neopterin and the soluble receptor for advanced glycation end products,” Atherosclerosis 197, 217–223 (2008).
[CrossRef]

Hajizadeh-Saffar, M.

J. W. Feather, M. Hajizadeh-Saffar, G. Leslie, and J. B. Dawson, “A portable scanning reflectance spectrophotometer using visible wavelengths for the rapid measurement of skin pigments,” Phys. Med. Biol. 34, 807–820 (1989).
[CrossRef] [PubMed]

Hamzavi, I.

R. Chen, Z. Huang, H. Lui, I. Hamzavi, D. I. McLean, S. Xie, and H. Zeng, “Monte Carlo simulation of cutaneous reflectance and fluorescence measurements – The effect of melanin contents and localization,” J. Photochem. Photobiol. B. 86, 219–226 (2007).
[CrossRef]

Hartog, J. W. L.

R. Meerwaldt, J. W. L. Hartog, R. Graaff, R. J. Huisman, T. P. Links, N. C. den Hollander, S. R. Thorpe, J. W. Baynes, G. Navis, R. O. B. Gans, and A. J. Smit, “Skin autofluorescence, a measure of cumulative metabolic stress and advanced glycation end products, predicts mortality in hemodialysis patients,” J. Am. Soc. Nephrol. 16, 3687–3693 (2005).
[CrossRef] [PubMed]

Heath, A.

S. Alaluf, D. Atkins, K. Barrett, M. Blount, N. Carter, and A. Heath, “Ethnic variation in melanin content and composition in photoexposed and photoprotected human skin,” Pigment Cell Res. 15, 112–118 (2002).
[CrossRef] [PubMed]

Henriksen, M.

R. Na, I.-M. Stender, M. Henriksen, and H. C. Wulf, “Autofluorescence of human skin is age-related after correction for skin pigmentation and redness,” J. Invest. Dermatol. 116, 536–540 (2001).
[CrossRef] [PubMed]

Huang, Z.

R. Chen, Z. Huang, H. Lui, I. Hamzavi, D. I. McLean, S. Xie, and H. Zeng, “Monte Carlo simulation of cutaneous reflectance and fluorescence measurements – The effect of melanin contents and localization,” J. Photochem. Photobiol. B. 86, 219–226 (2007).
[CrossRef]

Huisman, R. J.

R. Meerwaldt, J. W. L. Hartog, R. Graaff, R. J. Huisman, T. P. Links, N. C. den Hollander, S. R. Thorpe, J. W. Baynes, G. Navis, R. O. B. Gans, and A. J. Smit, “Skin autofluorescence, a measure of cumulative metabolic stress and advanced glycation end products, predicts mortality in hemodialysis patients,” J. Am. Soc. Nephrol. 16, 3687–3693 (2005).
[CrossRef] [PubMed]

Ince, C.

J. M. Coremans, C. Ince, H. A. Bruining, and G. J. Puppels, “(Semi-)quantitative analysis of reduced nicotinamide adenine dinucleotide fluorescence images of blood-perfused rat heart,” Biophys. J. 72, 1849–1860 (1997).
[CrossRef] [PubMed]

Ito, A. S.

L. Bachmann, D. M. Zezell, A. da Costa Ribeiro, L. Gomes, and A. S. Ito, “Fluorescence spectroscopy of biological tissues—A review,” Appl. Spectrosc. Rev. 41, 575–590 (2006).
[CrossRef]

Jager, J. J.

R. Meerwaldt, R. Graaff, P. H. N. Oomen, T. P. Links, J. J. Jager, N. L. Alderson, S. R. Thorpe, J. W. Baynes, R. O. B. Gans, and A. J. Smit, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia 47, 1324–1330 (2004).
[CrossRef] [PubMed]

Kakiya, R.

H. Ueno, H. Koyama, S. Tanaka, S. Fukumoto, K. Shinohara, T. Shoji,M. Emoto, H. Tahara, R. Kakiya, T. Tabata, T. Miyata, and Y. Nishizawa, “Skin autofluorescence, a marker for advanced glycation end product accumulation, is associated with arterial stiffness in patients with end-stage renal disease,” Metabolism 57, 1452–1457 (2008).
[CrossRef] [PubMed]

Katika, K. M.

Kaxiras, E.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13, 14017 (2008).
[CrossRef]

Khaiat, A.

G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,” Br. J. Dermatol. 154, 125–132 (2006).
[CrossRef] [PubMed]

Koetsier, M.

Kollias, N.

G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,” Br. J. Dermatol. 154, 125–132 (2006).
[CrossRef] [PubMed]

N. Kollias, G. Zonios, and G. N. Stamatas, “Fluorescence spectroscopy of skin,” Vib. Spectrosc. 28, 17–23 (2002).
[CrossRef]

N. Kollias and A. H. Baqer, “Absorption mechanisms of human melanin in the visible, 400–720 nm,” J. Invest. Dermatol. 89, 384–388 (1987).
[CrossRef] [PubMed]

N. Kollias and A. Baqer, “Spectroscopic characteristics of human melanin in vivo,” J. Invest. Dermatol. 85, 38–42 (1985).
[CrossRef] [PubMed]

Koyama, H.

H. Ueno, H. Koyama, S. Tanaka, S. Fukumoto, K. Shinohara, T. Shoji,M. Emoto, H. Tahara, R. Kakiya, T. Tabata, T. Miyata, and Y. Nishizawa, “Skin autofluorescence, a marker for advanced glycation end product accumulation, is associated with arterial stiffness in patients with end-stage renal disease,” Metabolism 57, 1452–1457 (2008).
[CrossRef] [PubMed]

Lamanna, C.

M. Monami, C. Lamanna, F. Gori, F. Bartalucci, N. Marchionni, and E. Mannucci, “Skin autofluorescence in type 2 diabetes: beyond blood glucose,” Diabetes Res. Clin. Pract. 79, 56–60 (2008).
[CrossRef]

Leslie, G.

J. W. Feather, M. Hajizadeh-Saffar, G. Leslie, and J. B. Dawson, “A portable scanning reflectance spectrophotometer using visible wavelengths for the rapid measurement of skin pigments,” Phys. Med. Biol. 34, 807–820 (1989).
[CrossRef] [PubMed]

Li, J.

G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,” Br. J. Dermatol. 154, 125–132 (2006).
[CrossRef] [PubMed]

Links, T. P.

M. Koetsier, H. L. Lutgers, C. de Jonge, T. P. Links, A. J. Smit, and R. Graaff, “Reference values of skin autofluorescence,” Diabetes Technol. Ther. 12, 399–403 (2010).
[CrossRef] [PubMed]

H. L. Lutgers, E. G. Gerrits, R. Graaff, T. P. Links, W. J. Sluiter, R. O. Gans, H. J. Bilo, and A. J. Smit, “Skin autofluorescence provides additional information to the UK Prospective Diabetes Study (UKPDS) risk score for the estimation of cardiovascular prognosis in type 2 diabetes mellitus,” Diabetologia 52, 789–797 (2009).
[CrossRef] [PubMed]

M. Koetsier, H. L. Lutgers, A. J. Smit, T. P. Links, R. de Vries, R. O. B. Gans, G. Rakhorst, and R. Graaff, “Skin autofluorescence for the risk assessment of chronic complications in diabetes: a broad excitation range is sufficient,” Opt. Express 17, 509–519 (2009).
[CrossRef] [PubMed]

R. Meerwaldt, J. W. L. Hartog, R. Graaff, R. J. Huisman, T. P. Links, N. C. den Hollander, S. R. Thorpe, J. W. Baynes, G. Navis, R. O. B. Gans, and A. J. Smit, “Skin autofluorescence, a measure of cumulative metabolic stress and advanced glycation end products, predicts mortality in hemodialysis patients,” J. Am. Soc. Nephrol. 16, 3687–3693 (2005).
[CrossRef] [PubMed]

R. Meerwaldt, R. Graaff, P. H. N. Oomen, T. P. Links, J. J. Jager, N. L. Alderson, S. R. Thorpe, J. W. Baynes, R. O. B. Gans, and A. J. Smit, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia 47, 1324–1330 (2004).
[CrossRef] [PubMed]

Lui, H.

R. Chen, Z. Huang, H. Lui, I. Hamzavi, D. I. McLean, S. Xie, and H. Zeng, “Monte Carlo simulation of cutaneous reflectance and fluorescence measurements – The effect of melanin contents and localization,” J. Photochem. Photobiol. B. 86, 219–226 (2007).
[CrossRef]

Lutgers, H. L.

M. Koetsier, H. L. Lutgers, C. de Jonge, T. P. Links, A. J. Smit, and R. Graaff, “Reference values of skin autofluorescence,” Diabetes Technol. Ther. 12, 399–403 (2010).
[CrossRef] [PubMed]

H. L. Lutgers, E. G. Gerrits, R. Graaff, T. P. Links, W. J. Sluiter, R. O. Gans, H. J. Bilo, and A. J. Smit, “Skin autofluorescence provides additional information to the UK Prospective Diabetes Study (UKPDS) risk score for the estimation of cardiovascular prognosis in type 2 diabetes mellitus,” Diabetologia 52, 789–797 (2009).
[CrossRef] [PubMed]

M. Koetsier, H. L. Lutgers, A. J. Smit, T. P. Links, R. de Vries, R. O. B. Gans, G. Rakhorst, and R. Graaff, “Skin autofluorescence for the risk assessment of chronic complications in diabetes: a broad excitation range is sufficient,” Opt. Express 17, 509–519 (2009).
[CrossRef] [PubMed]

D. J. Mulder, T. van deWater, H. L. Lutgers, R. Graaff, R. O. Gans, F. Zijlstra, and A. J. Smit, “Skin autofluorescence, a novel marker for glycemic and oxidative stress-derived advanced glycation endproducts: an overview of current clinical studies, evidence, and limitations,” Diabetes Technol. Ther. 8, 523–535 (2006).
[CrossRef] [PubMed]

Magnain, C.

C. Magnain, M. Elias, and J.-M. Frigerio, “Skin color modeling using the radiative transfer equation solved by the auxiliary function method,” J. Opt. Soc. Am. A. 24, 2196–2205 (2007).
[CrossRef]

Mannucci, E.

M. Monami, C. Lamanna, F. Gori, F. Bartalucci, N. Marchionni, and E. Mannucci, “Skin autofluorescence in type 2 diabetes: beyond blood glucose,” Diabetes Res. Clin. Pract. 79, 56–60 (2008).
[CrossRef]

Marchionni, N.

M. Monami, C. Lamanna, F. Gori, F. Bartalucci, N. Marchionni, and E. Mannucci, “Skin autofluorescence in type 2 diabetes: beyond blood glucose,” Diabetes Res. Clin. Pract. 79, 56–60 (2008).
[CrossRef]

Matsumoto, T.

T. Matsumoto, T. Tsurumoto, H. Baba, M. Osaki, H. Enomoto, A. Yonekura, H. Shindo, and T. Miyata, “Measurement of advanced glycation endproducts in skin of patients with rheumatoid arthritis, osteoarthritis, and dialysisrelated spondyloarthropathy using non-invasive methods,” Rheumatol. Int. 28, 157–160 (2007).
[CrossRef] [PubMed]

McLean, D. I.

R. Chen, Z. Huang, H. Lui, I. Hamzavi, D. I. McLean, S. Xie, and H. Zeng, “Monte Carlo simulation of cutaneous reflectance and fluorescence measurements – The effect of melanin contents and localization,” J. Photochem. Photobiol. B. 86, 219–226 (2007).
[CrossRef]

Meerwaldt, R.

R. Meerwaldt, J. W. L. Hartog, R. Graaff, R. J. Huisman, T. P. Links, N. C. den Hollander, S. R. Thorpe, J. W. Baynes, G. Navis, R. O. B. Gans, and A. J. Smit, “Skin autofluorescence, a measure of cumulative metabolic stress and advanced glycation end products, predicts mortality in hemodialysis patients,” J. Am. Soc. Nephrol. 16, 3687–3693 (2005).
[CrossRef] [PubMed]

R. Meerwaldt, R. Graaff, P. H. N. Oomen, T. P. Links, J. J. Jager, N. L. Alderson, S. R. Thorpe, J. W. Baynes, R. O. B. Gans, and A. J. Smit, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia 47, 1324–1330 (2004).
[CrossRef] [PubMed]

Mishina, H.

I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation,” J. Biomed. Opt. 9, 700–710 (2004).
[CrossRef] [PubMed]

Miyata, T.

H. Ueno, H. Koyama, S. Tanaka, S. Fukumoto, K. Shinohara, T. Shoji,M. Emoto, H. Tahara, R. Kakiya, T. Tabata, T. Miyata, and Y. Nishizawa, “Skin autofluorescence, a marker for advanced glycation end product accumulation, is associated with arterial stiffness in patients with end-stage renal disease,” Metabolism 57, 1452–1457 (2008).
[CrossRef] [PubMed]

T. Matsumoto, T. Tsurumoto, H. Baba, M. Osaki, H. Enomoto, A. Yonekura, H. Shindo, and T. Miyata, “Measurement of advanced glycation endproducts in skin of patients with rheumatoid arthritis, osteoarthritis, and dialysisrelated spondyloarthropathy using non-invasive methods,” Rheumatol. Int. 28, 157–160 (2007).
[CrossRef] [PubMed]

Moan, J.

K. P. Nielsen, L. Zhao, G. A. Ryzhikov, M. S. Biryulina, E. R. Sommersten, J. J. Stamnes, K. Stamnes, and J. Moan, “Retrieval of the physiological state of human skin from UV–Vis reflectance spectra – a feasibility study,” J. Photochem. Photobiol. B. 93, 23–31 (2008).
[CrossRef] [PubMed]

Monami, M.

M. Monami, C. Lamanna, F. Gori, F. Bartalucci, N. Marchionni, and E. Mannucci, “Skin autofluorescence in type 2 diabetes: beyond blood glucose,” Diabetes Res. Clin. Pract. 79, 56–60 (2008).
[CrossRef]

Mulder, D. J.

D. J. Mulder, P. L. van Haelst, S. Gross, K. de Leeuw, J. Bijzet, R. Graaff, R. O. Gans, F. Zijlstra, and A. J. Smit, “Skin autofluorescence is elevated in patients with stable coronary artery disease and is associated with serum levels of neopterin and the soluble receptor for advanced glycation end products,” Atherosclerosis 197, 217–223 (2008).
[CrossRef]

N. C. den Hollander, D. J. Mulder, R. Graaff, S. R. Thorpe, J. W. Baynes, G. P. A. Smit, and A. J. Smit, “Advanced glycation end products and the absence of premature atherosclerosis in glycogen storage disease Ia,” J. Inherit. Metab. Dis. 30, 916–923 (2007).
[CrossRef] [PubMed]

D. J. Mulder, T. van deWater, H. L. Lutgers, R. Graaff, R. O. Gans, F. Zijlstra, and A. J. Smit, “Skin autofluorescence, a novel marker for glycemic and oxidative stress-derived advanced glycation endproducts: an overview of current clinical studies, evidence, and limitations,” Diabetes Technol. Ther. 8, 523–535 (2006).
[CrossRef] [PubMed]

Na, R.

R. Na, I.-M. Stender, M. Henriksen, and H. C. Wulf, “Autofluorescence of human skin is age-related after correction for skin pigmentation and redness,” J. Invest. Dermatol. 116, 536–540 (2001).
[CrossRef] [PubMed]

Navis, G.

R. Meerwaldt, J. W. L. Hartog, R. Graaff, R. J. Huisman, T. P. Links, N. C. den Hollander, S. R. Thorpe, J. W. Baynes, G. Navis, R. O. B. Gans, and A. J. Smit, “Skin autofluorescence, a measure of cumulative metabolic stress and advanced glycation end products, predicts mortality in hemodialysis patients,” J. Am. Soc. Nephrol. 16, 3687–3693 (2005).
[CrossRef] [PubMed]

Nielsen, K. P.

K. P. Nielsen, L. Zhao, G. A. Ryzhikov, M. S. Biryulina, E. R. Sommersten, J. J. Stamnes, K. Stamnes, and J. Moan, “Retrieval of the physiological state of human skin from UV–Vis reflectance spectra – a feasibility study,” J. Photochem. Photobiol. B. 93, 23–31 (2008).
[CrossRef] [PubMed]

Nishidate, I.

I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation,” J. Biomed. Opt. 9, 700–710 (2004).
[CrossRef] [PubMed]

Nishizawa, Y.

H. Ueno, H. Koyama, S. Tanaka, S. Fukumoto, K. Shinohara, T. Shoji,M. Emoto, H. Tahara, R. Kakiya, T. Tabata, T. Miyata, and Y. Nishizawa, “Skin autofluorescence, a marker for advanced glycation end product accumulation, is associated with arterial stiffness in patients with end-stage renal disease,” Metabolism 57, 1452–1457 (2008).
[CrossRef] [PubMed]

Oomen, P. H. N.

R. Meerwaldt, R. Graaff, P. H. N. Oomen, T. P. Links, J. J. Jager, N. L. Alderson, S. R. Thorpe, J. W. Baynes, R. O. B. Gans, and A. J. Smit, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia 47, 1324–1330 (2004).
[CrossRef] [PubMed]

Osaki, M.

T. Matsumoto, T. Tsurumoto, H. Baba, M. Osaki, H. Enomoto, A. Yonekura, H. Shindo, and T. Miyata, “Measurement of advanced glycation endproducts in skin of patients with rheumatoid arthritis, osteoarthritis, and dialysisrelated spondyloarthropathy using non-invasive methods,” Rheumatol. Int. 28, 157–160 (2007).
[CrossRef] [PubMed]

Parrish, J. A.

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[CrossRef] [PubMed]

Pilon, L.

Poulsen, T.

J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Influence of epidermal thickness, pigmentation and redness on skin autofluorescence,” Photochem. Photobiol. 77, 616–620 (2003).
[CrossRef] [PubMed]

Puppels, G. J.

J. M. Coremans, C. Ince, H. A. Bruining, and G. J. Puppels, “(Semi-)quantitative analysis of reduced nicotinamide adenine dinucleotide fluorescence images of blood-perfused rat heart,” Biophys. J. 72, 1849–1860 (1997).
[CrossRef] [PubMed]

Rakhorst, G.

Rivera, Z. S.

G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,” Br. J. Dermatol. 154, 125–132 (2006).
[CrossRef] [PubMed]

Ryzhikov, G. A.

K. P. Nielsen, L. Zhao, G. A. Ryzhikov, M. S. Biryulina, E. R. Sommersten, J. J. Stamnes, K. Stamnes, and J. Moan, “Retrieval of the physiological state of human skin from UV–Vis reflectance spectra – a feasibility study,” J. Photochem. Photobiol. B. 93, 23–31 (2008).
[CrossRef] [PubMed]

Sandby-Møller, J.

J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Influence of epidermal thickness, pigmentation and redness on skin autofluorescence,” Photochem. Photobiol. 77, 616–620 (2003).
[CrossRef] [PubMed]

Shindo, H.

T. Matsumoto, T. Tsurumoto, H. Baba, M. Osaki, H. Enomoto, A. Yonekura, H. Shindo, and T. Miyata, “Measurement of advanced glycation endproducts in skin of patients with rheumatoid arthritis, osteoarthritis, and dialysisrelated spondyloarthropathy using non-invasive methods,” Rheumatol. Int. 28, 157–160 (2007).
[CrossRef] [PubMed]

Shinohara, K.

H. Ueno, H. Koyama, S. Tanaka, S. Fukumoto, K. Shinohara, T. Shoji,M. Emoto, H. Tahara, R. Kakiya, T. Tabata, T. Miyata, and Y. Nishizawa, “Skin autofluorescence, a marker for advanced glycation end product accumulation, is associated with arterial stiffness in patients with end-stage renal disease,” Metabolism 57, 1452–1457 (2008).
[CrossRef] [PubMed]

Shoji, T.

H. Ueno, H. Koyama, S. Tanaka, S. Fukumoto, K. Shinohara, T. Shoji,M. Emoto, H. Tahara, R. Kakiya, T. Tabata, T. Miyata, and Y. Nishizawa, “Skin autofluorescence, a marker for advanced glycation end product accumulation, is associated with arterial stiffness in patients with end-stage renal disease,” Metabolism 57, 1452–1457 (2008).
[CrossRef] [PubMed]

Sluiter, W. J.

H. L. Lutgers, E. G. Gerrits, R. Graaff, T. P. Links, W. J. Sluiter, R. O. Gans, H. J. Bilo, and A. J. Smit, “Skin autofluorescence provides additional information to the UK Prospective Diabetes Study (UKPDS) risk score for the estimation of cardiovascular prognosis in type 2 diabetes mellitus,” Diabetologia 52, 789–797 (2009).
[CrossRef] [PubMed]

Smit, A. J.

M. Koetsier, H. L. Lutgers, C. de Jonge, T. P. Links, A. J. Smit, and R. Graaff, “Reference values of skin autofluorescence,” Diabetes Technol. Ther. 12, 399–403 (2010).
[CrossRef] [PubMed]

H. L. Lutgers, E. G. Gerrits, R. Graaff, T. P. Links, W. J. Sluiter, R. O. Gans, H. J. Bilo, and A. J. Smit, “Skin autofluorescence provides additional information to the UK Prospective Diabetes Study (UKPDS) risk score for the estimation of cardiovascular prognosis in type 2 diabetes mellitus,” Diabetologia 52, 789–797 (2009).
[CrossRef] [PubMed]

M. Koetsier, H. L. Lutgers, A. J. Smit, T. P. Links, R. de Vries, R. O. B. Gans, G. Rakhorst, and R. Graaff, “Skin autofluorescence for the risk assessment of chronic complications in diabetes: a broad excitation range is sufficient,” Opt. Express 17, 509–519 (2009).
[CrossRef] [PubMed]

D. J. Mulder, P. L. van Haelst, S. Gross, K. de Leeuw, J. Bijzet, R. Graaff, R. O. Gans, F. Zijlstra, and A. J. Smit, “Skin autofluorescence is elevated in patients with stable coronary artery disease and is associated with serum levels of neopterin and the soluble receptor for advanced glycation end products,” Atherosclerosis 197, 217–223 (2008).
[CrossRef]

N. C. den Hollander, D. J. Mulder, R. Graaff, S. R. Thorpe, J. W. Baynes, G. P. A. Smit, and A. J. Smit, “Advanced glycation end products and the absence of premature atherosclerosis in glycogen storage disease Ia,” J. Inherit. Metab. Dis. 30, 916–923 (2007).
[CrossRef] [PubMed]

D. J. Mulder, T. van deWater, H. L. Lutgers, R. Graaff, R. O. Gans, F. Zijlstra, and A. J. Smit, “Skin autofluorescence, a novel marker for glycemic and oxidative stress-derived advanced glycation endproducts: an overview of current clinical studies, evidence, and limitations,” Diabetes Technol. Ther. 8, 523–535 (2006).
[CrossRef] [PubMed]

R. Meerwaldt, J. W. L. Hartog, R. Graaff, R. J. Huisman, T. P. Links, N. C. den Hollander, S. R. Thorpe, J. W. Baynes, G. Navis, R. O. B. Gans, and A. J. Smit, “Skin autofluorescence, a measure of cumulative metabolic stress and advanced glycation end products, predicts mortality in hemodialysis patients,” J. Am. Soc. Nephrol. 16, 3687–3693 (2005).
[CrossRef] [PubMed]

R. Meerwaldt, R. Graaff, P. H. N. Oomen, T. P. Links, J. J. Jager, N. L. Alderson, S. R. Thorpe, J. W. Baynes, R. O. B. Gans, and A. J. Smit, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia 47, 1324–1330 (2004).
[CrossRef] [PubMed]

Smit, G. P. A.

N. C. den Hollander, D. J. Mulder, R. Graaff, S. R. Thorpe, J. W. Baynes, G. P. A. Smit, and A. J. Smit, “Advanced glycation end products and the absence of premature atherosclerosis in glycogen storage disease Ia,” J. Inherit. Metab. Dis. 30, 916–923 (2007).
[CrossRef] [PubMed]

Sommersten, E. R.

K. P. Nielsen, L. Zhao, G. A. Ryzhikov, M. S. Biryulina, E. R. Sommersten, J. J. Stamnes, K. Stamnes, and J. Moan, “Retrieval of the physiological state of human skin from UV–Vis reflectance spectra – a feasibility study,” J. Photochem. Photobiol. B. 93, 23–31 (2008).
[CrossRef] [PubMed]

Stamatas, G. N.

G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,” Br. J. Dermatol. 154, 125–132 (2006).
[CrossRef] [PubMed]

N. Kollias, G. Zonios, and G. N. Stamatas, “Fluorescence spectroscopy of skin,” Vib. Spectrosc. 28, 17–23 (2002).
[CrossRef]

Stamnes, J. J.

K. P. Nielsen, L. Zhao, G. A. Ryzhikov, M. S. Biryulina, E. R. Sommersten, J. J. Stamnes, K. Stamnes, and J. Moan, “Retrieval of the physiological state of human skin from UV–Vis reflectance spectra – a feasibility study,” J. Photochem. Photobiol. B. 93, 23–31 (2008).
[CrossRef] [PubMed]

Stamnes, K.

K. P. Nielsen, L. Zhao, G. A. Ryzhikov, M. S. Biryulina, E. R. Sommersten, J. J. Stamnes, K. Stamnes, and J. Moan, “Retrieval of the physiological state of human skin from UV–Vis reflectance spectra – a feasibility study,” J. Photochem. Photobiol. B. 93, 23–31 (2008).
[CrossRef] [PubMed]

Stender, I.-M.

R. Na, I.-M. Stender, M. Henriksen, and H. C. Wulf, “Autofluorescence of human skin is age-related after correction for skin pigmentation and redness,” J. Invest. Dermatol. 116, 536–540 (2001).
[CrossRef] [PubMed]

Suero, M.

G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,” Br. J. Dermatol. 154, 125–132 (2006).
[CrossRef] [PubMed]

Tabata, T.

H. Ueno, H. Koyama, S. Tanaka, S. Fukumoto, K. Shinohara, T. Shoji,M. Emoto, H. Tahara, R. Kakiya, T. Tabata, T. Miyata, and Y. Nishizawa, “Skin autofluorescence, a marker for advanced glycation end product accumulation, is associated with arterial stiffness in patients with end-stage renal disease,” Metabolism 57, 1452–1457 (2008).
[CrossRef] [PubMed]

Tahara, H.

H. Ueno, H. Koyama, S. Tanaka, S. Fukumoto, K. Shinohara, T. Shoji,M. Emoto, H. Tahara, R. Kakiya, T. Tabata, T. Miyata, and Y. Nishizawa, “Skin autofluorescence, a marker for advanced glycation end product accumulation, is associated with arterial stiffness in patients with end-stage renal disease,” Metabolism 57, 1452–1457 (2008).
[CrossRef] [PubMed]

Tanaka, S.

H. Ueno, H. Koyama, S. Tanaka, S. Fukumoto, K. Shinohara, T. Shoji,M. Emoto, H. Tahara, R. Kakiya, T. Tabata, T. Miyata, and Y. Nishizawa, “Skin autofluorescence, a marker for advanced glycation end product accumulation, is associated with arterial stiffness in patients with end-stage renal disease,” Metabolism 57, 1452–1457 (2008).
[CrossRef] [PubMed]

Thorpe, S. R.

N. C. den Hollander, D. J. Mulder, R. Graaff, S. R. Thorpe, J. W. Baynes, G. P. A. Smit, and A. J. Smit, “Advanced glycation end products and the absence of premature atherosclerosis in glycogen storage disease Ia,” J. Inherit. Metab. Dis. 30, 916–923 (2007).
[CrossRef] [PubMed]

R. Meerwaldt, J. W. L. Hartog, R. Graaff, R. J. Huisman, T. P. Links, N. C. den Hollander, S. R. Thorpe, J. W. Baynes, G. Navis, R. O. B. Gans, and A. J. Smit, “Skin autofluorescence, a measure of cumulative metabolic stress and advanced glycation end products, predicts mortality in hemodialysis patients,” J. Am. Soc. Nephrol. 16, 3687–3693 (2005).
[CrossRef] [PubMed]

R. Meerwaldt, R. Graaff, P. H. N. Oomen, T. P. Links, J. J. Jager, N. L. Alderson, S. R. Thorpe, J. W. Baynes, R. O. B. Gans, and A. J. Smit, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia 47, 1324–1330 (2004).
[CrossRef] [PubMed]

Tsolakidis, A.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13, 14017 (2008).
[CrossRef]

Tsurumoto, T.

T. Matsumoto, T. Tsurumoto, H. Baba, M. Osaki, H. Enomoto, A. Yonekura, H. Shindo, and T. Miyata, “Measurement of advanced glycation endproducts in skin of patients with rheumatoid arthritis, osteoarthritis, and dialysisrelated spondyloarthropathy using non-invasive methods,” Rheumatol. Int. 28, 157–160 (2007).
[CrossRef] [PubMed]

Ueno, H.

H. Ueno, H. Koyama, S. Tanaka, S. Fukumoto, K. Shinohara, T. Shoji,M. Emoto, H. Tahara, R. Kakiya, T. Tabata, T. Miyata, and Y. Nishizawa, “Skin autofluorescence, a marker for advanced glycation end product accumulation, is associated with arterial stiffness in patients with end-stage renal disease,” Metabolism 57, 1452–1457 (2008).
[CrossRef] [PubMed]

van deWater, T.

D. J. Mulder, T. van deWater, H. L. Lutgers, R. Graaff, R. O. Gans, F. Zijlstra, and A. J. Smit, “Skin autofluorescence, a novel marker for glycemic and oxidative stress-derived advanced glycation endproducts: an overview of current clinical studies, evidence, and limitations,” Diabetes Technol. Ther. 8, 523–535 (2006).
[CrossRef] [PubMed]

van Haelst, P. L.

D. J. Mulder, P. L. van Haelst, S. Gross, K. de Leeuw, J. Bijzet, R. Graaff, R. O. Gans, F. Zijlstra, and A. J. Smit, “Skin autofluorescence is elevated in patients with stable coronary artery disease and is associated with serum levels of neopterin and the soluble receptor for advanced glycation end products,” Atherosclerosis 197, 217–223 (2008).
[CrossRef]

Wulf, H. C.

J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Influence of epidermal thickness, pigmentation and redness on skin autofluorescence,” Photochem. Photobiol. 77, 616–620 (2003).
[CrossRef] [PubMed]

R. Na, I.-M. Stender, M. Henriksen, and H. C. Wulf, “Autofluorescence of human skin is age-related after correction for skin pigmentation and redness,” J. Invest. Dermatol. 116, 536–540 (2001).
[CrossRef] [PubMed]

Xie, S.

R. Chen, Z. Huang, H. Lui, I. Hamzavi, D. I. McLean, S. Xie, and H. Zeng, “Monte Carlo simulation of cutaneous reflectance and fluorescence measurements – The effect of melanin contents and localization,” J. Photochem. Photobiol. B. 86, 219–226 (2007).
[CrossRef]

Yonekura, A.

T. Matsumoto, T. Tsurumoto, H. Baba, M. Osaki, H. Enomoto, A. Yonekura, H. Shindo, and T. Miyata, “Measurement of advanced glycation endproducts in skin of patients with rheumatoid arthritis, osteoarthritis, and dialysisrelated spondyloarthropathy using non-invasive methods,” Rheumatol. Int. 28, 157–160 (2007).
[CrossRef] [PubMed]

Zeng, H.

R. Chen, Z. Huang, H. Lui, I. Hamzavi, D. I. McLean, S. Xie, and H. Zeng, “Monte Carlo simulation of cutaneous reflectance and fluorescence measurements – The effect of melanin contents and localization,” J. Photochem. Photobiol. B. 86, 219–226 (2007).
[CrossRef]

Zezell, D. M.

L. Bachmann, D. M. Zezell, A. da Costa Ribeiro, L. Gomes, and A. S. Ito, “Fluorescence spectroscopy of biological tissues—A review,” Appl. Spectrosc. Rev. 41, 575–590 (2006).
[CrossRef]

Zhao, L.

K. P. Nielsen, L. Zhao, G. A. Ryzhikov, M. S. Biryulina, E. R. Sommersten, J. J. Stamnes, K. Stamnes, and J. Moan, “Retrieval of the physiological state of human skin from UV–Vis reflectance spectra – a feasibility study,” J. Photochem. Photobiol. B. 93, 23–31 (2008).
[CrossRef] [PubMed]

Zijlstra, F.

D. J. Mulder, P. L. van Haelst, S. Gross, K. de Leeuw, J. Bijzet, R. Graaff, R. O. Gans, F. Zijlstra, and A. J. Smit, “Skin autofluorescence is elevated in patients with stable coronary artery disease and is associated with serum levels of neopterin and the soluble receptor for advanced glycation end products,” Atherosclerosis 197, 217–223 (2008).
[CrossRef]

D. J. Mulder, T. van deWater, H. L. Lutgers, R. Graaff, R. O. Gans, F. Zijlstra, and A. J. Smit, “Skin autofluorescence, a novel marker for glycemic and oxidative stress-derived advanced glycation endproducts: an overview of current clinical studies, evidence, and limitations,” Diabetes Technol. Ther. 8, 523–535 (2006).
[CrossRef] [PubMed]

Zonios, G.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13, 14017 (2008).
[CrossRef]

G. Zonios and A. Dimou, “Melanin optical properties provide evidence for chemical and structural disorder in vivo,” Opt. Express 16, 8263–8268 (2008).
[CrossRef] [PubMed]

G. Zonios and A. Dimou, “Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties,” Opt. Express 14, 8661–8674 (2006).
[CrossRef] [PubMed]

N. Kollias, G. Zonios, and G. N. Stamatas, “Fluorescence spectroscopy of skin,” Vib. Spectrosc. 28, 17–23 (2002).
[CrossRef]

Appl. Opt.

Appl. Spectrosc. Rev.

L. Bachmann, D. M. Zezell, A. da Costa Ribeiro, L. Gomes, and A. S. Ito, “Fluorescence spectroscopy of biological tissues—A review,” Appl. Spectrosc. Rev. 41, 575–590 (2006).
[CrossRef]

Atherosclerosis

D. J. Mulder, P. L. van Haelst, S. Gross, K. de Leeuw, J. Bijzet, R. Graaff, R. O. Gans, F. Zijlstra, and A. J. Smit, “Skin autofluorescence is elevated in patients with stable coronary artery disease and is associated with serum levels of neopterin and the soluble receptor for advanced glycation end products,” Atherosclerosis 197, 217–223 (2008).
[CrossRef]

Biophys. J.

J. M. Coremans, C. Ince, H. A. Bruining, and G. J. Puppels, “(Semi-)quantitative analysis of reduced nicotinamide adenine dinucleotide fluorescence images of blood-perfused rat heart,” Biophys. J. 72, 1849–1860 (1997).
[CrossRef] [PubMed]

Br. J. Dermatol.

G. N. Stamatas, R. B. Estanislao, M. Suero, Z. S. Rivera, J. Li, A. Khaiat, and N. Kollias, “Facial skin fluorescence as a marker of the skin’s response to chronic environmental insults and its dependence on age,” Br. J. Dermatol. 154, 125–132 (2006).
[CrossRef] [PubMed]

Diabetes Res. Clin. Pract.

M. Monami, C. Lamanna, F. Gori, F. Bartalucci, N. Marchionni, and E. Mannucci, “Skin autofluorescence in type 2 diabetes: beyond blood glucose,” Diabetes Res. Clin. Pract. 79, 56–60 (2008).
[CrossRef]

Diabetes Technol. Ther.

D. J. Mulder, T. van deWater, H. L. Lutgers, R. Graaff, R. O. Gans, F. Zijlstra, and A. J. Smit, “Skin autofluorescence, a novel marker for glycemic and oxidative stress-derived advanced glycation endproducts: an overview of current clinical studies, evidence, and limitations,” Diabetes Technol. Ther. 8, 523–535 (2006).
[CrossRef] [PubMed]

M. Koetsier, H. L. Lutgers, C. de Jonge, T. P. Links, A. J. Smit, and R. Graaff, “Reference values of skin autofluorescence,” Diabetes Technol. Ther. 12, 399–403 (2010).
[CrossRef] [PubMed]

Diabetologia

H. L. Lutgers, E. G. Gerrits, R. Graaff, T. P. Links, W. J. Sluiter, R. O. Gans, H. J. Bilo, and A. J. Smit, “Skin autofluorescence provides additional information to the UK Prospective Diabetes Study (UKPDS) risk score for the estimation of cardiovascular prognosis in type 2 diabetes mellitus,” Diabetologia 52, 789–797 (2009).
[CrossRef] [PubMed]

R. Meerwaldt, R. Graaff, P. H. N. Oomen, T. P. Links, J. J. Jager, N. L. Alderson, S. R. Thorpe, J. W. Baynes, R. O. B. Gans, and A. J. Smit, “Simple non-invasive assessment of advanced glycation endproduct accumulation,” Diabetologia 47, 1324–1330 (2004).
[CrossRef] [PubMed]

J. Am. Soc. Nephrol.

R. Meerwaldt, J. W. L. Hartog, R. Graaff, R. J. Huisman, T. P. Links, N. C. den Hollander, S. R. Thorpe, J. W. Baynes, G. Navis, R. O. B. Gans, and A. J. Smit, “Skin autofluorescence, a measure of cumulative metabolic stress and advanced glycation end products, predicts mortality in hemodialysis patients,” J. Am. Soc. Nephrol. 16, 3687–3693 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt.

I. Nishidate, Y. Aizu, and H. Mishina, “Estimation of melanin and hemoglobin in skin tissue using multiple regression analysis aided by Monte Carlo simulation,” J. Biomed. Opt. 9, 700–710 (2004).
[CrossRef] [PubMed]

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13, 14017 (2008).
[CrossRef]

J. Inherit. Metab. Dis.

N. C. den Hollander, D. J. Mulder, R. Graaff, S. R. Thorpe, J. W. Baynes, G. P. A. Smit, and A. J. Smit, “Advanced glycation end products and the absence of premature atherosclerosis in glycogen storage disease Ia,” J. Inherit. Metab. Dis. 30, 916–923 (2007).
[CrossRef] [PubMed]

J. Invest. Dermatol.

N. Kollias and A. H. Baqer, “Absorption mechanisms of human melanin in the visible, 400–720 nm,” J. Invest. Dermatol. 89, 384–388 (1987).
[CrossRef] [PubMed]

N. Kollias and A. Baqer, “Spectroscopic characteristics of human melanin in vivo,” J. Invest. Dermatol. 85, 38–42 (1985).
[CrossRef] [PubMed]

R. Na, I.-M. Stender, M. Henriksen, and H. C. Wulf, “Autofluorescence of human skin is age-related after correction for skin pigmentation and redness,” J. Invest. Dermatol. 116, 536–540 (2001).
[CrossRef] [PubMed]

R. R. Anderson and J. A. Parrish, “The optics of human skin,” J. Invest. Dermatol. 77, 13–19 (1981).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A.

C. Magnain, M. Elias, and J.-M. Frigerio, “Skin color modeling using the radiative transfer equation solved by the auxiliary function method,” J. Opt. Soc. Am. A. 24, 2196–2205 (2007).
[CrossRef]

J. Photochem. Photobiol. B.

K. P. Nielsen, L. Zhao, G. A. Ryzhikov, M. S. Biryulina, E. R. Sommersten, J. J. Stamnes, K. Stamnes, and J. Moan, “Retrieval of the physiological state of human skin from UV–Vis reflectance spectra – a feasibility study,” J. Photochem. Photobiol. B. 93, 23–31 (2008).
[CrossRef] [PubMed]

R. Chen, Z. Huang, H. Lui, I. Hamzavi, D. I. McLean, S. Xie, and H. Zeng, “Monte Carlo simulation of cutaneous reflectance and fluorescence measurements – The effect of melanin contents and localization,” J. Photochem. Photobiol. B. 86, 219–226 (2007).
[CrossRef]

Metabolism

H. Ueno, H. Koyama, S. Tanaka, S. Fukumoto, K. Shinohara, T. Shoji,M. Emoto, H. Tahara, R. Kakiya, T. Tabata, T. Miyata, and Y. Nishizawa, “Skin autofluorescence, a marker for advanced glycation end product accumulation, is associated with arterial stiffness in patients with end-stage renal disease,” Metabolism 57, 1452–1457 (2008).
[CrossRef] [PubMed]

Opt. Express

Photochem. Photobiol.

J. Sandby-Møller, T. Poulsen, and H. C. Wulf, “Influence of epidermal thickness, pigmentation and redness on skin autofluorescence,” Photochem. Photobiol. 77, 616–620 (2003).
[CrossRef] [PubMed]

Phys. Med. Biol.

J. W. Feather, M. Hajizadeh-Saffar, G. Leslie, and J. B. Dawson, “A portable scanning reflectance spectrophotometer using visible wavelengths for the rapid measurement of skin pigments,” Phys. Med. Biol. 34, 807–820 (1989).
[CrossRef] [PubMed]

J. B. Dawson, D. J. Barker, D. J. Ellis, E. Grassam, J. A. Cotterill, G. W. Fisher, and J. W. Feather, “A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol. 25, 695–709 (1980).
[CrossRef] [PubMed]

Pigment Cell Res.

S. Alaluf, D. Atkins, K. Barrett, M. Blount, N. Carter, and A. Heath, “Ethnic variation in melanin content and composition in photoexposed and photoprotected human skin,” Pigment Cell Res. 15, 112–118 (2002).
[CrossRef] [PubMed]

PLoS Biol.

G. S. Barsh, “What controls variation in human skin color?” PLoS Biol. 1, 19–22 (2003).
[CrossRef]

Rheumatol. Int.

T. Matsumoto, T. Tsurumoto, H. Baba, M. Osaki, H. Enomoto, A. Yonekura, H. Shindo, and T. Miyata, “Measurement of advanced glycation endproducts in skin of patients with rheumatoid arthritis, osteoarthritis, and dialysisrelated spondyloarthropathy using non-invasive methods,” Rheumatol. Int. 28, 157–160 (2007).
[CrossRef] [PubMed]

Vib. Spectrosc.

N. Kollias, G. Zonios, and G. N. Stamatas, “Fluorescence spectroscopy of skin,” Vib. Spectrosc. 28, 17–23 (2002).
[CrossRef]

Other

W. G. Zijlstra, A. Buursma, and O. W. van Assendelft, Visible and near infrared absorption spectra of human and animal haemoglobin, (VSP BV, Zeist, The Netherlands, 2000).

Y. P. Sinichkin, N. Kollias, G. I. Zonios, S. R. Utz, and V. V. Tuchin, “Reflectance and fluorescence spectroscopy of human skin in vivo,” in Handbook of optical biomedical diagnostics, V. V. Tuchin, ed., (SPIE Press, Bellingham, WA, USA, 2002), chap. 13, pp. 725–785.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Spectra of the UV blacklight tube (solid line) and the white LED (dashed line) as used in the AGE Reader. The LED spectrum was magnified to fit on the same scale as the spectrum of the UV tube.

Fig. 2.
Fig. 2.

Typical reflectance spectra of three subjects with varying values of UV-reflectance, showing different intensities of absorption bands. The gap around 410 nm is caused by insufficient intensity of the two light sources (blacklight tube and white LED) in that range. The apparent offset between the reflectance from both light sources is probably due to geometrical differences between the two light sources.

Fig. 3.
Fig. 3.

Typical emission spectra of the same three subjects as shown in Figure 2. The spectra are normalized to the average intensity in the 300 – 420 nm region. The sharp peaks around 436 nm and 546 nm are caused by mercury emission from the UV light source. The subjects with 11.4% and 8.0% UV-reflectance have similar emission peaks, whereas the subject with 4.4% UV-reflectance has a lower emission peak.

Fig. 4.
Fig. 4.

Reflectance in the UV-A range (in arbitrary units, AU) of subjects with a light skin color and with a dark skin color. The lines represent the average reflectance of six healthy subjects with UV-reflectance of approximately 18% or 6% respectively. For comparison of the shapes, both spectra have been normalized such that average reflectance in the 350 – 400 nm range is 1. Subjects with a light skin color have a convex reflectance spectrum, subjects with a dark skin color have a concave reflectance spectrum.

Fig. 5.
Fig. 5.

Age-adjusted skin AFAF) as a function of UV-reflectance as calculated without correction for skin color (a) and with the new algorithm (b).

Fig. 6.
Fig. 6.

AF values as a function of subject age as calculated without correction for skin color (a) and with the new algorithm (b). The dashed line represents the reference values for Caucasian subjects, AF = 0.024age+0.83 [14].

Tables (3)

Tables Icon

Table 1. Group characteristics of the datasets used.

Tables Icon

Table 2. Results from univariate linear correlations. For each parameter in the model, the square of Pearson’s coefficient of correlation is presented (R2). Normality is assessed using a one-sample Kolmogorov–Smirnov test. Values of p above 0.05 indicate a normal distribution.

Tables Icon

Table 3. Resulting parameters of the multiple regression analysis. The three-parameter model (p <0.01 threshold) had an adjusted R2 of 0.804.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

Δ A F = A F m A F ( age ) = A F m 0.024 age 0.83 ,
A F corr = A F m Δ A F pred .
M I 1 = R 390 R 360 ,
MI 2 = 100 ( OD 650 OD 675 )
MI 3 = 100 ( OD 620 OD 675 )
UV shape = R 360 + R 390 2 R 375 .
dUVshape = UVshape + 0.407 R 390 1.036 .
EI 1 = 100 [ OD 560 + 1.5 ( OD 545 + OD 575 ) 2.0 ( OD 510 + OD 610 ) ] ,
EI 2 = 100 ( OD 560 OD 650 ) .
HI = 100 ( OD 544 OD 527.5 16.5 OD 573 OD 544 29 )
OI = 5100 HI × ( OD 573 OD 558.5 14.5 OD 558.5 OD 544 14.5 ) + 42 .
BI = R 470 R 500 .
AF corr = AF m + α 1 MI 1 + α 2 RedLnSlope + α 3 Age ,

Metrics