Abstract

A forward-viewing resonant fiber-optic endoscope of a scanning speed appropriate for a high-speed Fourier-domain optical coherence tomography (FD-OCT) system was developed to enable real-time, three-dimensional endoscopic OCT imaging. A new method was explored to conveniently tune the scanning frequency of a resonant fiber-optic scanner, by properly selecting the fiber-optic cantilever length, partially changing the mechanical property of the cantilever, and adding a weight to the cantilever tip. Systematic analyses indicated the resonant scanning frequency can be tuned over two orders of magnitude spanning from ~10Hz to ~kHz. Such a flexible scanning frequency range makes it possible to set an appropriate scanning speed of the endoscope to match the different A-scan rates of a variety of FD-OCT systems. A 2.4-mm diameter, 62.5-Hz scanning endoscope appropriate to work with a 40-kHz swept-source OCT (SS-OCT) system was developed and demonstrated for 3D OCT imaging of biological tissues.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. Choma, M. V. Sarunic, C. H. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11(18), 2183–2189 (2003).
    [CrossRef] [PubMed]
  2. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
    [CrossRef] [PubMed]
  3. R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
    [CrossRef] [PubMed]
  4. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
    [CrossRef]
  5. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. L. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16(19), 15149–15169 (2008).
    [CrossRef] [PubMed]
  6. S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
    [CrossRef] [PubMed]
  7. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006).
    [CrossRef] [PubMed]
  8. M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact Ultrafast Reflective Fabry-Perot Tunable Lasers For OCT Imaging Applications,” Proc. SPIE 7554, 75541F (2010).
    [CrossRef]
  9. J. F. Xi, L. Huo, Y. C. Wu, M. J. Cobb, J. H. Hwang, and X. D. Li, “High-resolution OCT balloon imaging catheter with astigmatism correction,” Opt. Lett. 34(13), 1943–1945 (2009).
    [CrossRef] [PubMed]
  10. X. D. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Opt. Lett. 25(20), 1520–1522 (2000).
    [CrossRef]
  11. X. M. Liu, M. J. Cobb, Y. C. Chen, M. B. Kimmey, and X. D. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29(15), 1763–1765 (2004).
    [CrossRef] [PubMed]
  12. Y. L. Wang, M. Bachman, G. P. Li, S. G. Guo, B. J. F. Wong, and Z. P. Chen, “Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography,” Opt. Lett. 30(1), 53–55 (2005).
    [CrossRef] [PubMed]
  13. Y. T. Pan, H. K. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26(24), 1966–1968 (2001).
    [CrossRef]
  14. J. M. Zara, S. Yazdanfar, K. D. Rao, J. A. Izatt, and S. W. Smith, “Electrostatic micromachine scanning mirror for optical coherence tomography,” Opt. Lett. 28(8), 628–630 (2003).
    [CrossRef] [PubMed]
  15. J. G. Wu, M. Conry, C. H. Gu, F. Wang, Z. Yaqoob, and C. H. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31(9), 1265–1267 (2006).
    [CrossRef] [PubMed]
  16. M. T. Myaing, D. J. MacDonald, and X. D. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 31(8), 1076–1078 (2006).
    [CrossRef] [PubMed]
  17. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, in Fundamentals of Acoustics(Wiley, New York, 1982).
  18. D. L. Wang, B. V. Hunter, M. J. Cobb, and X. D. Li, “Super-achromatic rapid scanning microendoscope for ultrahigh-resolution OCT imaging,” IEEE J. Sel. Top. Quantum Electron. 13(6), 1596–1601 (2007).
    [CrossRef]

2010 (1)

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact Ultrafast Reflective Fabry-Perot Tunable Lasers For OCT Imaging Applications,” Proc. SPIE 7554, 75541F (2010).
[CrossRef]

2009 (1)

2008 (1)

2007 (1)

D. L. Wang, B. V. Hunter, M. J. Cobb, and X. D. Li, “Super-achromatic rapid scanning microendoscope for ultrahigh-resolution OCT imaging,” IEEE J. Sel. Top. Quantum Electron. 13(6), 1596–1601 (2007).
[CrossRef]

2006 (3)

2005 (1)

2004 (1)

2003 (4)

2001 (1)

2000 (1)

1997 (1)

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Adler, D. C.

Atia, W.

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact Ultrafast Reflective Fabry-Perot Tunable Lasers For OCT Imaging Applications,” Proc. SPIE 7554, 75541F (2010).
[CrossRef]

Bachman, M.

Bouma, B. E.

Cable, A.

Cense, B.

Chen, Y. C.

Chen, Y. L.

Chen, Z. P.

Chinn, S. R.

Choma, M. A.

Chudoba, C.

Cobb, M. J.

Conry, M.

de Boer, J. F.

Elzaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Fedder, G. K.

Fercher, A. F.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Flanders, D.

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact Ultrafast Reflective Fabry-Perot Tunable Lasers For OCT Imaging Applications,” Proc. SPIE 7554, 75541F (2010).
[CrossRef]

Fujimoto, J. G.

Gorczynska, I.

Gu, C. H.

Guo, S. G.

Hitzenberger, C. K.

R. Leitgeb, C. K. Hitzenberger, and A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11(8), 889–894 (2003).
[CrossRef] [PubMed]

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Huber, R.

Hunter, B. V.

D. L. Wang, B. V. Hunter, M. J. Cobb, and X. D. Li, “Super-achromatic rapid scanning microendoscope for ultrahigh-resolution OCT imaging,” IEEE J. Sel. Top. Quantum Electron. 13(6), 1596–1601 (2007).
[CrossRef]

Huo, L.

Hwang, J. H.

Izatt, J. A.

Jiang, J.

Johnson, B.

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact Ultrafast Reflective Fabry-Perot Tunable Lasers For OCT Imaging Applications,” Proc. SPIE 7554, 75541F (2010).
[CrossRef]

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Kimmey, M. B.

Ko, T.

Kuznetsov, M.

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact Ultrafast Reflective Fabry-Perot Tunable Lasers For OCT Imaging Applications,” Proc. SPIE 7554, 75541F (2010).
[CrossRef]

Leitgeb, R.

Li, G. P.

Li, X. D.

Liu, X. M.

MacDonald, D. J.

Myaing, M. T.

Pan, Y. T.

Park, B. H.

Pierce, M. C.

Pitris, C.

Potsaid, B.

Rao, K. D.

Sarunic, M. V.

Smith, S. W.

Srinivasan, V. J.

Swanson, E. A.

Tearney, G. J.

Wang, D. L.

D. L. Wang, B. V. Hunter, M. J. Cobb, and X. D. Li, “Super-achromatic rapid scanning microendoscope for ultrahigh-resolution OCT imaging,” IEEE J. Sel. Top. Quantum Electron. 13(6), 1596–1601 (2007).
[CrossRef]

Wang, F.

Wang, Y. L.

Wong, B. J. F.

Wu, J. G.

Wu, Y. C.

Xi, J. F.

Xie, H. K.

Yang, C. H.

Yaqoob, Z.

Yazdanfar, S.

Zara, J. M.

IEEE J. Sel. Top. Quantum Electron. (1)

D. L. Wang, B. V. Hunter, M. J. Cobb, and X. D. Li, “Super-achromatic rapid scanning microendoscope for ultrahigh-resolution OCT imaging,” IEEE J. Sel. Top. Quantum Electron. 13(6), 1596–1601 (2007).
[CrossRef]

Opt. Commun. (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. Elzaiat, “Measurement of Intraocular Distances by Backscattering Spectral Interferometry,” Opt. Commun. 117(1-2), 43–48 (1995).
[CrossRef]

Opt. Express (3)

Opt. Lett. (11)

J. F. Xi, L. Huo, Y. C. Wu, M. J. Cobb, J. H. Hwang, and X. D. Li, “High-resolution OCT balloon imaging catheter with astigmatism correction,” Opt. Lett. 34(13), 1943–1945 (2009).
[CrossRef] [PubMed]

X. M. Liu, M. J. Cobb, Y. C. Chen, M. B. Kimmey, and X. D. Li, “Rapid-scanning forward-imaging miniature endoscope for real-time optical coherence tomography,” Opt. Lett. 29(15), 1763–1765 (2004).
[CrossRef] [PubMed]

Y. L. Wang, M. Bachman, G. P. Li, S. G. Guo, B. J. F. Wong, and Z. P. Chen, “Low-voltage polymer-based scanning cantilever for in vivo optical coherence tomography,” Opt. Lett. 30(1), 53–55 (2005).
[CrossRef] [PubMed]

M. T. Myaing, D. J. MacDonald, and X. D. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 31(8), 1076–1078 (2006).
[CrossRef] [PubMed]

J. G. Wu, M. Conry, C. H. Gu, F. Wang, Z. Yaqoob, and C. H. Yang, “Paired-angle-rotation scanning optical coherence tomography forward-imaging probe,” Opt. Lett. 31(9), 1265–1267 (2006).
[CrossRef] [PubMed]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: Unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31(20), 2975–2977 (2006).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, and B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28(21), 2067–2069 (2003).
[CrossRef] [PubMed]

S. R. Chinn, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22(5), 340–342 (1997).
[CrossRef] [PubMed]

X. D. Li, C. Chudoba, T. Ko, C. Pitris, and J. G. Fujimoto, “Imaging needle for optical coherence tomography,” Opt. Lett. 25(20), 1520–1522 (2000).
[CrossRef]

Y. T. Pan, H. K. Xie, and G. K. Fedder, “Endoscopic optical coherence tomography based on a microelectromechanical mirror,” Opt. Lett. 26(24), 1966–1968 (2001).
[CrossRef]

J. M. Zara, S. Yazdanfar, K. D. Rao, J. A. Izatt, and S. W. Smith, “Electrostatic micromachine scanning mirror for optical coherence tomography,” Opt. Lett. 28(8), 628–630 (2003).
[CrossRef] [PubMed]

Proc. SPIE (1)

M. Kuznetsov, W. Atia, B. Johnson, and D. Flanders, “Compact Ultrafast Reflective Fabry-Perot Tunable Lasers For OCT Imaging Applications,” Proc. SPIE 7554, 75541F (2010).
[CrossRef]

Other (1)

L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, in Fundamentals of Acoustics(Wiley, New York, 1982).

Supplementary Material (2)

» Media 1: MOV (3951 KB)     
» Media 2: MOV (1194 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

The schematic of the hybrid fiber cantilever with a hypodermic metal tube covering the free end of the cantilever.

Fig. 2
Fig. 2

Contour plot of the resonant frequency as a function of the total SMF cantilever length and the percentage of the cantilever covered by a stainless hypodermic tube. Frequency units: kHz

Fig. 3
Fig. 3

(A) Schematic of the forward-viewing endoscope of an appropriate scanning frequency for a 40-kHz SS-OCT system. SMF: single-mode fiber, MT: metal tube. (B) Photo of a resonating hybrid fiber-optic cantilever at a frequency of 62.5 Hz. (C) Photo of the assembled forward-viewing endoscope of a 2.4-mm diameter.

Fig. 4
Fig. 4

Schematic of the SS-OCT system based on a 40-kHz FDML source

Fig. 5
Fig. 5

En face images of a segment of SMF embedded in a scattering phantom. (A) The endoscope was static. The bright area shows the SMF. (B) The endoscope was tapped during imaging. The red box includes part of the disrupted area due to tapping. (C) Zoom-in view of the region indicated by the red box in (B). Motion artifact is indicated by the red arrow.

Fig. 6
Fig. 6

In vivo human finger OCT images. (A) A reconstructed diametric cross-sectional image. (B) 4 reconstructed en face images at different depths 320-μm apart as indicated by the red arrows in Fig. 6(A). (C) A reconstructed 3D image with a cut-away view from the layer as shown in Fig. 6(B)-2. SC: stratum corneum, SD: sweat duct, SS: stratum spinosum.

Fig. 7
Fig. 7

Reconstructed 3D view of human finger in vivo captured with the endoscope. The movie shows the rotation of the sample, followed by a fly-through along the axial direction (Media 1) (3.9MB).

Fig. 8
Fig. 8

OCT images of different oral cavity tissues in vivo. (A) A reconstructed diametric cross-sectional image of the mucosa at the lower lip. (B) Reconstructed en face image of the tongue. (C) A reconstructed diametric cross-sectional image of the tooth. (D) Reconstructed 3D image of the tooth with a cut-away view from the depth as indicated in Fig. 8(C). EP: epithelium, LP: lamina propria, E: facial enamel, D: dentin, DEJ: dentin-enamel junction, F: fault

Fig. 9
Fig. 9

Reconstructed 3D view of human canine tooth in vivo captured with the endoscope from the side of the tooth. The movie shows the rotation of the sample, followed by a fly-through in the axial direction (Media 2). (1.2MB)

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ω = β ( E ρ ) 1 2 R L 2 ,
y i ( x ) = C i 1 sin K i x + C i 2 sin h K i x + C i 3 cos K i x + C i 4 cos h K i x ,
K i 2 = ( ρ A E I i ) 1 2 ω .
| sin q 1 sin h q 1 cos q 1 cos h q 1 sin q 2 sin h q 2 cos q 2 cos h q 2 cos q 1 cos h q 1 sin q 1 sin h q 1 K 2 K 1 ( cos q 2 + cos h q 2 ) K 2 K 1 ( sin h q 2 sin q 2 ) sin q 1 sin h q 1 cos q 1 cos h q 1 ( K 2 K 1 ) 2 I 2 I 1 ( sin q 2 sin h q 2 ) ( K 2 K 1 ) 2 I 2 I 1 ( cos q 2 cos h q 2 ) cos q 1 cos h q 1 sin q 1 sin h q 1 ( K 2 K 1 ) 3 I 2 I 1 ( cos h q 2 cos q 2 ) ( K 2 K 1 ) 3 I 2 I 1 ( sin q 2 + sin h q 2 ) | = 0 ,

Metrics