Abstract

We propose a new method for reconstruction of emitting source distributions by use of a spatial filte and a successive updating process of the forward model for fluorescence/bioluminescenc diffuse optical tomography. The spatial filte transforms a set of the measurement data to a single source strength at a position of interest, and the forward model is updated by use of the estimated source strengths. This updating process ignores the dispensable source positions from reconstruction according to the reconstructed source distribution, and the spatial resolution of the reconstructed image is improved. The estimated sources are also used for the reduction of artifacts induced by noises based on the singular value decomposition. Some numerical experiments show the advantages of the proposed method by comparing the present results with those obtained by the conventional methods of the least squares method and Algebraic Reconstruction Technique. Finally the criteria for practical use of the method are quantitatively presented by the simulations for 2D and 3D geometries.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, C-H. Yung, C. Bremerand, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8 (7), 757-760 (2002).
    [CrossRef] [PubMed]
  2. V. Ntziachristos, J. Ripoll, L. V. Wang, R. Weissleder, "Looking and listening to light: the evolution of wholebody photonic imaging," Nat. Biotechnol. 23 (3), 313-320 (2005).
    [CrossRef] [PubMed]
  3. S. R. Arridge, "Optical tomography in medical imaging," Inverse Prob. 15, R41-R93 (1999).
    [CrossRef]
  4. A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-R43 (2005).
    [CrossRef] [PubMed]
  5. M. S. Patterson and B. W. Pogue, "Mathematical model for time-resolved and frequency-domain fluorescence spectroscopy in biological tissues," Appl. Opt. 33(10), 1963-1974 (1994).
    [CrossRef] [PubMed]
  6. D. Grosenick, H. Wabnitz, H. H. Rinneberg, T. Moesta, and P. M. Schlag, "Development of a time-domain optical mammography and first in vivo applications," Appl. Opt. 38(13), 2927-2943 (1999).
    [CrossRef]
  7. D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients," Phys. Med. Biol. 50, 2429-2449 (2005).
    [CrossRef] [PubMed]
  8. D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, "Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas," Phys. Med. Biol. 50, 2451-2468 (2005).
    [CrossRef] [PubMed]
  9. J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, "Three-dimensional time-resolved optical tomography of a conical breast phantom," Appl. Opt. 40(19), 3278-3288 (2001).
    [CrossRef]
  10. T. Yates, C. Hebdan, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
    [CrossRef] [PubMed]
  11. G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas "Quantitative spectroscopic optical tomography of the breast guided by imperfect a priori structural information," Phys. Med. Biol. 50, 3941-3956 (2005).
    [CrossRef] [PubMed]
  12. R. Weissleder, "Molecular Imaging in Cancer," Science 321, 1168-1171 (2006).
    [CrossRef]
  13. D. J. Hawrysz, and E. M. Sevick-Muraca, "Developments toward Diagnostic Breast Cancer Imaging using Near-Infrared Optical Measurements and Fluorescent Contrast Agents," Neoplasia 2 (5), 388-417 (2000).
    [CrossRef]
  14. L. Bakker, M. van der Mark, M van Beek, M. van der Voort, G. Hooft, T. Nielsen, T. Koehler, R. Ziegler, K. Licha, and M. Pessel, "Optical Fluorescence Imaging of Breast Cancer," in Proceedings of Biomedical Optics Topical Meeting (OSA, Miami, Florida, 2006) SH56.
  15. K. Vishwanath, B. Pogue, and M-A. Mycek, "Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational method," Phys. Med. Biol. 47, 3387-3405 (2002).
    [CrossRef] [PubMed]
  16. J. Wu, Y. Wang, L. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, "Time-resolved imaging of fluorescent objects embedded in turbid media," Opt. Lett. 20(5), 489-491 (1995).
    [CrossRef] [PubMed]
  17. R. Roy, A. Godavarty, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical tomography using referenced measurements of heterogeneous media," IEEE Trans. Med. Imaging. 22(7), 824-836 (2003).
    [CrossRef] [PubMed]
  18. A. B. Milstein, J. J. Scott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, "Fluorescence optical diffuse tomography using multiple-frequency data," J. Opt. Soc. Am. A 21(6), 1035-1049 (2004).
    [CrossRef]
  19. D. Y. Paithankar, U. A. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, "Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random medium," Appl. Opt. 36(10), 2260-2272 (1997).
    [CrossRef] [PubMed]
  20. F. Gao, H. Zhao, L. Zhang, Y. Tanikawa, A. Marjono, and Y. Yamada, "A self-normalized, full time-resolved method for fluorescence diffuse optical tomography," Opt. Express 16(17), 13104-13121 (2008).
    [CrossRef] [PubMed]
  21. A. Marjono, A. Yano, S. Okawa, F. Gao, and Y. Yamada, "Total light approach of time-domain fluorescence diffuse optical tomography," Opt. Express 16(19), 15268-15285 (2008).
    [CrossRef] [PubMed]
  22. L. Zhang, F. Gao, H. He, and H Zhao, "Three-dimensional scheme for time-domain fluorescence molecular tomography based on Laplace transforms with noise-robust factors," Opt. Express 16(10), 7214-7223 (2008).
    [CrossRef] [PubMed]
  23. F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, "A linear, featured-data scheme for image reconstruction in timedomain fluorescence molecular tomography," Opt. Express,  14(16), 7109-7124 (2006).
    [CrossRef] [PubMed]
  24. M. J. Eppstein, D. E. Doughety, D. J. Hawrysz, and E. M. Sevick-Muraka, "Three-Dimensional Baysian Optical Image Reconstruction with Domain Decomposition," IEEE Trans. Med. Imaging 20(3), 147-163 (2001).
    [CrossRef] [PubMed]
  25. M. A. O’Leary, D. A. Boas, X. D. Li, B. Chance and A. G. Yodh, "Fluorescence lifetime imaging in turbid media," Opt. Lett. 21(2), 158-160 (1996).
    [CrossRef] [PubMed]
  26. A. Soubret, J. Ripoll, D. Yessayan, and V. Ntziachristos, "Three-dimensional fluorescent tomography in presence of absorption: Study of the normalized Born approximation," in 2004 Biomedical Optics Topical Meeting Technical Digest (OSA, Miami, Florida, 2004) WB6.
  27. A. X. Cong and G. Wang, "A finite-element reconstruction method for 3D fluorescence tomography," Opt. Express 13(24), 9847-9857 (2006).
    [CrossRef]
  28. G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, "In vivo mouse studies with bioluminescence tomography," Opt. Express 14(17), 7801-7809 (2006).
    [CrossRef] [PubMed]
  29. B. D. van Veen and K. M. Buckly, "Beamforming: A versatile approach to spatial filtering," IEEE ASSP Mag. 15, 4-23 (1988).
    [CrossRef]
  30. S. Baillet, J. C. Mosher and R. M. Leahy, "Electromagnetic brain mapping," IEEE Signal Process Mag. 18, 14-30 (2001).
    [CrossRef]
  31. B. D. van Veen, W. van Drongelen, M. Yuchtman, and A. Suzuki, "Localization of brain electrical activity via linear constrained minimum variance spatial filter," IEEE Trans. Biomed. Eng. 44(9), 867-880 (1997).
    [CrossRef] [PubMed]
  32. S. Okawa, and S. Honda, "MEG Analysis with Spatial Filtered Reconstruction," IEICE Trans. on Fundam.Electron. Commun. Comput. Sci. 89-A(5), 1428-1436 (2006).
    [CrossRef]
  33. S. Okawa, and S. Honda, "Dipole estimation with a combination of noise reduction and spatial filter," International Congress Series 1300, 249-252 (2007).
    [CrossRef]
  34. S. Okawa, and Y. Yamada, "Source estimation with spatial filter for fluorescence diffuse optical tomography," in Biomedical Optics Topical Meeting Technical Digest (OSA, Miami, Florida, 2008) BSuE41.
  35. C. Kuo, O. Coquoz, T. L. Troy, H. Xu and B. W. Rice, "Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging," J. Biomed. Opt. 12, 024007 (2007).
    [CrossRef] [PubMed]
  36. M. Schweiger, S. R. Arridge, and D. T. Delpy, "Application of the Finite-Element Method for the Forward and Inverse Model in Optical Tomography," J. Math. Imaging Vis. 3, 263-283 (1993).
    [CrossRef]
  37. C. R. Vogel,Computational Methods for Inverse Problems (Frontiers in Applied Mathematics) (SIAM, Philadelphia, 2002).
    [CrossRef]
  38. C. C. Paige and M. A. Saunders, "LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares," ACM trans. on Math. Software 8(1), 43-71 (1982).
    [CrossRef]
  39. C. W. Groetsch, Inverse Problems in the Mathematical Sciences 1. Auflage (Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden, 1993).
  40. C. W. Groetsch, Inverse Problem (the Mathematical Association of America, Washington, 1999).
  41. S. Holder, Electrical Impedance Tomography: Methods, History and Applications (Institute of Physics Publishing, Bristol and Philadelphia, 2005).
  42. S. Okawa and Y. Yamada, "3D Light Source Reconstruction with Spatial Filter for Fluorescence/ Bioluminescence Diffuse Optical Tomography,ffin Diffuse Optical Imaging II, R. Cubeddu and A. H. Hielscher, eds., Proc. SPIE 7369, 736916.
  43. Y. Lv, J. Yian, W. Cong, G. Wang, W. Yang, C. Qin and M. Xu, "Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation," Phys. Med. Biol. 52, 4497-4512 (2007).
    [CrossRef] [PubMed]

2008 (3)

2007 (3)

Y. Lv, J. Yian, W. Cong, G. Wang, W. Yang, C. Qin and M. Xu, "Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation," Phys. Med. Biol. 52, 4497-4512 (2007).
[CrossRef] [PubMed]

S. Okawa, and S. Honda, "Dipole estimation with a combination of noise reduction and spatial filter," International Congress Series 1300, 249-252 (2007).
[CrossRef]

C. Kuo, O. Coquoz, T. L. Troy, H. Xu and B. W. Rice, "Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging," J. Biomed. Opt. 12, 024007 (2007).
[CrossRef] [PubMed]

2006 (5)

2005 (6)

V. Ntziachristos, J. Ripoll, L. V. Wang, R. Weissleder, "Looking and listening to light: the evolution of wholebody photonic imaging," Nat. Biotechnol. 23 (3), 313-320 (2005).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-R43 (2005).
[CrossRef] [PubMed]

T. Yates, C. Hebdan, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas "Quantitative spectroscopic optical tomography of the breast guided by imperfect a priori structural information," Phys. Med. Biol. 50, 3941-3956 (2005).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients," Phys. Med. Biol. 50, 2429-2449 (2005).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, "Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas," Phys. Med. Biol. 50, 2451-2468 (2005).
[CrossRef] [PubMed]

2004 (1)

2003 (1)

R. Roy, A. Godavarty, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical tomography using referenced measurements of heterogeneous media," IEEE Trans. Med. Imaging. 22(7), 824-836 (2003).
[CrossRef] [PubMed]

2002 (2)

V. Ntziachristos, C-H. Yung, C. Bremerand, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8 (7), 757-760 (2002).
[CrossRef] [PubMed]

K. Vishwanath, B. Pogue, and M-A. Mycek, "Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational method," Phys. Med. Biol. 47, 3387-3405 (2002).
[CrossRef] [PubMed]

2001 (3)

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, "Three-dimensional time-resolved optical tomography of a conical breast phantom," Appl. Opt. 40(19), 3278-3288 (2001).
[CrossRef]

S. Baillet, J. C. Mosher and R. M. Leahy, "Electromagnetic brain mapping," IEEE Signal Process Mag. 18, 14-30 (2001).
[CrossRef]

M. J. Eppstein, D. E. Doughety, D. J. Hawrysz, and E. M. Sevick-Muraka, "Three-Dimensional Baysian Optical Image Reconstruction with Domain Decomposition," IEEE Trans. Med. Imaging 20(3), 147-163 (2001).
[CrossRef] [PubMed]

2000 (1)

D. J. Hawrysz, and E. M. Sevick-Muraca, "Developments toward Diagnostic Breast Cancer Imaging using Near-Infrared Optical Measurements and Fluorescent Contrast Agents," Neoplasia 2 (5), 388-417 (2000).
[CrossRef]

1999 (2)

1997 (2)

D. Y. Paithankar, U. A. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, "Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random medium," Appl. Opt. 36(10), 2260-2272 (1997).
[CrossRef] [PubMed]

B. D. van Veen, W. van Drongelen, M. Yuchtman, and A. Suzuki, "Localization of brain electrical activity via linear constrained minimum variance spatial filter," IEEE Trans. Biomed. Eng. 44(9), 867-880 (1997).
[CrossRef] [PubMed]

1996 (1)

1995 (1)

1994 (1)

1993 (1)

M. Schweiger, S. R. Arridge, and D. T. Delpy, "Application of the Finite-Element Method for the Forward and Inverse Model in Optical Tomography," J. Math. Imaging Vis. 3, 263-283 (1993).
[CrossRef]

1988 (1)

B. D. van Veen and K. M. Buckly, "Beamforming: A versatile approach to spatial filtering," IEEE ASSP Mag. 15, 4-23 (1988).
[CrossRef]

1982 (1)

C. C. Paige and M. A. Saunders, "LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares," ACM trans. on Math. Software 8(1), 43-71 (1982).
[CrossRef]

Arridge, S. R.

T. Yates, C. Hebdan, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-R43 (2005).
[CrossRef] [PubMed]

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, "Three-dimensional time-resolved optical tomography of a conical breast phantom," Appl. Opt. 40(19), 3278-3288 (2001).
[CrossRef]

S. R. Arridge, "Optical tomography in medical imaging," Inverse Prob. 15, R41-R93 (1999).
[CrossRef]

M. Schweiger, S. R. Arridge, and D. T. Delpy, "Application of the Finite-Element Method for the Forward and Inverse Model in Optical Tomography," J. Math. Imaging Vis. 3, 263-283 (1993).
[CrossRef]

Baillet, S.

S. Baillet, J. C. Mosher and R. M. Leahy, "Electromagnetic brain mapping," IEEE Signal Process Mag. 18, 14-30 (2001).
[CrossRef]

Boas, D. A.

Bouman, C. A.

Boverman, G.

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas "Quantitative spectroscopic optical tomography of the breast guided by imperfect a priori structural information," Phys. Med. Biol. 50, 3941-3956 (2005).
[CrossRef] [PubMed]

Bremerand, C.

V. Ntziachristos, C-H. Yung, C. Bremerand, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8 (7), 757-760 (2002).
[CrossRef] [PubMed]

Brooks, D. H.

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas "Quantitative spectroscopic optical tomography of the breast guided by imperfect a priori structural information," Phys. Med. Biol. 50, 3941-3956 (2005).
[CrossRef] [PubMed]

Buckly, K. M.

B. D. van Veen and K. M. Buckly, "Beamforming: A versatile approach to spatial filtering," IEEE ASSP Mag. 15, 4-23 (1988).
[CrossRef]

Chance, B.

Chaves, T.

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas "Quantitative spectroscopic optical tomography of the breast guided by imperfect a priori structural information," Phys. Med. Biol. 50, 3941-3956 (2005).
[CrossRef] [PubMed]

Chen, U. A.

Cong, A. X.

Cong, W.

Y. Lv, J. Yian, W. Cong, G. Wang, W. Yang, C. Qin and M. Xu, "Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation," Phys. Med. Biol. 52, 4497-4512 (2007).
[CrossRef] [PubMed]

G. Wang, W. Cong, K. Durairaj, X. Qian, H. Shen, P. Sinn, E. Hoffman, G. McLennan, and M. Henry, "In vivo mouse studies with bioluminescence tomography," Opt. Express 14(17), 7801-7809 (2006).
[CrossRef] [PubMed]

Coquoz, O.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu and B. W. Rice, "Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging," J. Biomed. Opt. 12, 024007 (2007).
[CrossRef] [PubMed]

Dasari, R. R.

Dehghani, H.

Delpy, D. T.

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, "Three-dimensional time-resolved optical tomography of a conical breast phantom," Appl. Opt. 40(19), 3278-3288 (2001).
[CrossRef]

M. Schweiger, S. R. Arridge, and D. T. Delpy, "Application of the Finite-Element Method for the Forward and Inverse Model in Optical Tomography," J. Math. Imaging Vis. 3, 263-283 (1993).
[CrossRef]

Douek, M.

T. Yates, C. Hebdan, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

Doughety, D. E.

M. J. Eppstein, D. E. Doughety, D. J. Hawrysz, and E. M. Sevick-Muraka, "Three-Dimensional Baysian Optical Image Reconstruction with Domain Decomposition," IEEE Trans. Med. Imaging 20(3), 147-163 (2001).
[CrossRef] [PubMed]

Durairaj, K.

Eppstein, M. J.

M. J. Eppstein, D. E. Doughety, D. J. Hawrysz, and E. M. Sevick-Muraka, "Three-Dimensional Baysian Optical Image Reconstruction with Domain Decomposition," IEEE Trans. Med. Imaging 20(3), 147-163 (2001).
[CrossRef] [PubMed]

Everdell, N.

T. Yates, C. Hebdan, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

Feld, M. S.

Gao, F.

Gebauer, B.

D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients," Phys. Med. Biol. 50, 2429-2449 (2005).
[CrossRef] [PubMed]

Gibson, A.

T. Yates, C. Hebdan, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

Gibson, A. P.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-R43 (2005).
[CrossRef] [PubMed]

Godavarty, A.

R. Roy, A. Godavarty, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical tomography using referenced measurements of heterogeneous media," IEEE Trans. Med. Imaging. 22(7), 824-836 (2003).
[CrossRef] [PubMed]

Grosenick, D.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, "Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas," Phys. Med. Biol. 50, 2451-2468 (2005).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients," Phys. Med. Biol. 50, 2429-2449 (2005).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, H. H. Rinneberg, T. Moesta, and P. M. Schlag, "Development of a time-domain optical mammography and first in vivo applications," Appl. Opt. 38(13), 2927-2943 (1999).
[CrossRef]

Hawrysz, D. J.

M. J. Eppstein, D. E. Doughety, D. J. Hawrysz, and E. M. Sevick-Muraka, "Three-Dimensional Baysian Optical Image Reconstruction with Domain Decomposition," IEEE Trans. Med. Imaging 20(3), 147-163 (2001).
[CrossRef] [PubMed]

D. J. Hawrysz, and E. M. Sevick-Muraca, "Developments toward Diagnostic Breast Cancer Imaging using Near-Infrared Optical Measurements and Fluorescent Contrast Agents," Neoplasia 2 (5), 388-417 (2000).
[CrossRef]

He, H.

Hebdan, C.

T. Yates, C. Hebdan, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

Hebden, J. C.

Henry, M.

Hillman, E. M. C.

Hoffman, E.

Honda, S.

S. Okawa, and S. Honda, "Dipole estimation with a combination of noise reduction and spatial filter," International Congress Series 1300, 249-252 (2007).
[CrossRef]

S. Okawa, and S. Honda, "MEG Analysis with Spatial Filtered Reconstruction," IEICE Trans. on Fundam.Electron. Commun. Comput. Sci. 89-A(5), 1428-1436 (2006).
[CrossRef]

Itzkan, I.

Kuo, C.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu and B. W. Rice, "Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging," J. Biomed. Opt. 12, 024007 (2007).
[CrossRef] [PubMed]

Leahy, R. M.

S. Baillet, J. C. Mosher and R. M. Leahy, "Electromagnetic brain mapping," IEEE Signal Process Mag. 18, 14-30 (2001).
[CrossRef]

Li, A.

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas "Quantitative spectroscopic optical tomography of the breast guided by imperfect a priori structural information," Phys. Med. Biol. 50, 3941-3956 (2005).
[CrossRef] [PubMed]

Li, X. D.

Lv, Y.

Y. Lv, J. Yian, W. Cong, G. Wang, W. Yang, C. Qin and M. Xu, "Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation," Phys. Med. Biol. 52, 4497-4512 (2007).
[CrossRef] [PubMed]

Marjono, A.

McLennan, G.

Millane, R. P.

Miller, E. L.

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas "Quantitative spectroscopic optical tomography of the breast guided by imperfect a priori structural information," Phys. Med. Biol. 50, 3941-3956 (2005).
[CrossRef] [PubMed]

Milstein, A. B.

Moesta, K. T.

D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients," Phys. Med. Biol. 50, 2429-2449 (2005).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, "Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas," Phys. Med. Biol. 50, 2451-2468 (2005).
[CrossRef] [PubMed]

Moesta, T.

Moller, M.

D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients," Phys. Med. Biol. 50, 2429-2449 (2005).
[CrossRef] [PubMed]

Mosher, J. C.

S. Baillet, J. C. Mosher and R. M. Leahy, "Electromagnetic brain mapping," IEEE Signal Process Mag. 18, 14-30 (2001).
[CrossRef]

Mucke, J.

D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients," Phys. Med. Biol. 50, 2429-2449 (2005).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, "Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas," Phys. Med. Biol. 50, 2451-2468 (2005).
[CrossRef] [PubMed]

Mycek, M-A.

K. Vishwanath, B. Pogue, and M-A. Mycek, "Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational method," Phys. Med. Biol. 47, 3387-3405 (2002).
[CrossRef] [PubMed]

Ntziachristos, V.

V. Ntziachristos, J. Ripoll, L. V. Wang, R. Weissleder, "Looking and listening to light: the evolution of wholebody photonic imaging," Nat. Biotechnol. 23 (3), 313-320 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, C-H. Yung, C. Bremerand, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8 (7), 757-760 (2002).
[CrossRef] [PubMed]

O’Leary, M. A.

Oh, S.

Okawa, S.

A. Marjono, A. Yano, S. Okawa, F. Gao, and Y. Yamada, "Total light approach of time-domain fluorescence diffuse optical tomography," Opt. Express 16(19), 15268-15285 (2008).
[CrossRef] [PubMed]

S. Okawa, and S. Honda, "Dipole estimation with a combination of noise reduction and spatial filter," International Congress Series 1300, 249-252 (2007).
[CrossRef]

S. Okawa, and S. Honda, "MEG Analysis with Spatial Filtered Reconstruction," IEICE Trans. on Fundam.Electron. Commun. Comput. Sci. 89-A(5), 1428-1436 (2006).
[CrossRef]

Paige, C. C.

C. C. Paige and M. A. Saunders, "LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares," ACM trans. on Math. Software 8(1), 43-71 (1982).
[CrossRef]

Paithankar, D. Y.

Patterson, M. S.

Perelman, L.

Pogue, B.

K. Vishwanath, B. Pogue, and M-A. Mycek, "Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational method," Phys. Med. Biol. 47, 3387-3405 (2002).
[CrossRef] [PubMed]

Pogue, B. W.

Qian, X.

Rice, B. W.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu and B. W. Rice, "Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging," J. Biomed. Opt. 12, 024007 (2007).
[CrossRef] [PubMed]

Rinneberg, H.

D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients," Phys. Med. Biol. 50, 2429-2449 (2005).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, "Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas," Phys. Med. Biol. 50, 2451-2468 (2005).
[CrossRef] [PubMed]

Rinneberg, H. H.

Ripoll, J.

V. Ntziachristos, J. Ripoll, L. V. Wang, R. Weissleder, "Looking and listening to light: the evolution of wholebody photonic imaging," Nat. Biotechnol. 23 (3), 313-320 (2005).
[CrossRef] [PubMed]

Roy, R.

R. Roy, A. Godavarty, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical tomography using referenced measurements of heterogeneous media," IEEE Trans. Med. Imaging. 22(7), 824-836 (2003).
[CrossRef] [PubMed]

Saunders, M. A.

C. C. Paige and M. A. Saunders, "LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares," ACM trans. on Math. Software 8(1), 43-71 (1982).
[CrossRef]

Schlag, P. M.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, "Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas," Phys. Med. Biol. 50, 2451-2468 (2005).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients," Phys. Med. Biol. 50, 2429-2449 (2005).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, H. H. Rinneberg, T. Moesta, and P. M. Schlag, "Development of a time-domain optical mammography and first in vivo applications," Appl. Opt. 38(13), 2927-2943 (1999).
[CrossRef]

Schweiger, M.

J. C. Hebden, H. Veenstra, H. Dehghani, E. M. C. Hillman, M. Schweiger, S. R. Arridge, and D. T. Delpy, "Three-dimensional time-resolved optical tomography of a conical breast phantom," Appl. Opt. 40(19), 3278-3288 (2001).
[CrossRef]

M. Schweiger, S. R. Arridge, and D. T. Delpy, "Application of the Finite-Element Method for the Forward and Inverse Model in Optical Tomography," J. Math. Imaging Vis. 3, 263-283 (1993).
[CrossRef]

Scott, J. J.

Sevick-Muraca, E. M.

R. Roy, A. Godavarty, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical tomography using referenced measurements of heterogeneous media," IEEE Trans. Med. Imaging. 22(7), 824-836 (2003).
[CrossRef] [PubMed]

D. J. Hawrysz, and E. M. Sevick-Muraca, "Developments toward Diagnostic Breast Cancer Imaging using Near-Infrared Optical Measurements and Fluorescent Contrast Agents," Neoplasia 2 (5), 388-417 (2000).
[CrossRef]

D. Y. Paithankar, U. A. Chen, B. W. Pogue, M. S. Patterson, and E. M. Sevick-Muraca, "Imaging of fluorescent yield and lifetime from multiply scattered light reemitted from random medium," Appl. Opt. 36(10), 2260-2272 (1997).
[CrossRef] [PubMed]

Sevick-Muraka, E. M.

M. J. Eppstein, D. E. Doughety, D. J. Hawrysz, and E. M. Sevick-Muraka, "Three-Dimensional Baysian Optical Image Reconstruction with Domain Decomposition," IEEE Trans. Med. Imaging 20(3), 147-163 (2001).
[CrossRef] [PubMed]

Shen, H.

Sinn, P.

Stroszczynski, C.

D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients," Phys. Med. Biol. 50, 2429-2449 (2005).
[CrossRef] [PubMed]

Suzuki, A.

B. D. van Veen, W. van Drongelen, M. Yuchtman, and A. Suzuki, "Localization of brain electrical activity via linear constrained minimum variance spatial filter," IEEE Trans. Biomed. Eng. 44(9), 867-880 (1997).
[CrossRef] [PubMed]

Tanikawa, Y.

Troy, T. L.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu and B. W. Rice, "Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging," J. Biomed. Opt. 12, 024007 (2007).
[CrossRef] [PubMed]

van Drongelen, W.

B. D. van Veen, W. van Drongelen, M. Yuchtman, and A. Suzuki, "Localization of brain electrical activity via linear constrained minimum variance spatial filter," IEEE Trans. Biomed. Eng. 44(9), 867-880 (1997).
[CrossRef] [PubMed]

van Veen, B. D.

B. D. van Veen, W. van Drongelen, M. Yuchtman, and A. Suzuki, "Localization of brain electrical activity via linear constrained minimum variance spatial filter," IEEE Trans. Biomed. Eng. 44(9), 867-880 (1997).
[CrossRef] [PubMed]

B. D. van Veen and K. M. Buckly, "Beamforming: A versatile approach to spatial filtering," IEEE ASSP Mag. 15, 4-23 (1988).
[CrossRef]

Veenstra, H.

Vishwanath, K.

K. Vishwanath, B. Pogue, and M-A. Mycek, "Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational method," Phys. Med. Biol. 47, 3387-3405 (2002).
[CrossRef] [PubMed]

Wabnitz, H.

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, "Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas," Phys. Med. Biol. 50, 2451-2468 (2005).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients," Phys. Med. Biol. 50, 2429-2449 (2005).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, H. H. Rinneberg, T. Moesta, and P. M. Schlag, "Development of a time-domain optical mammography and first in vivo applications," Appl. Opt. 38(13), 2927-2943 (1999).
[CrossRef]

Wang, G.

Wang, L. V.

V. Ntziachristos, J. Ripoll, L. V. Wang, R. Weissleder, "Looking and listening to light: the evolution of wholebody photonic imaging," Nat. Biotechnol. 23 (3), 313-320 (2005).
[CrossRef] [PubMed]

Wang, Y.

Wassermann, B.

D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients," Phys. Med. Biol. 50, 2429-2449 (2005).
[CrossRef] [PubMed]

Webb, K. J.

Weissleder, R.

R. Weissleder, "Molecular Imaging in Cancer," Science 321, 1168-1171 (2006).
[CrossRef]

V. Ntziachristos, J. Ripoll, L. V. Wang, R. Weissleder, "Looking and listening to light: the evolution of wholebody photonic imaging," Nat. Biotechnol. 23 (3), 313-320 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, C-H. Yung, C. Bremerand, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8 (7), 757-760 (2002).
[CrossRef] [PubMed]

Wu, J.

Xu, H.

C. Kuo, O. Coquoz, T. L. Troy, H. Xu and B. W. Rice, "Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging," J. Biomed. Opt. 12, 024007 (2007).
[CrossRef] [PubMed]

Yamada, Y.

Yang, W.

Y. Lv, J. Yian, W. Cong, G. Wang, W. Yang, C. Qin and M. Xu, "Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation," Phys. Med. Biol. 52, 4497-4512 (2007).
[CrossRef] [PubMed]

Yano, A.

Yates, T.

T. Yates, C. Hebdan, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

Yian, J.

Y. Lv, J. Yian, W. Cong, G. Wang, W. Yang, C. Qin and M. Xu, "Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation," Phys. Med. Biol. 52, 4497-4512 (2007).
[CrossRef] [PubMed]

Yodh, A. G.

Yuchtman, M.

B. D. van Veen, W. van Drongelen, M. Yuchtman, and A. Suzuki, "Localization of brain electrical activity via linear constrained minimum variance spatial filter," IEEE Trans. Biomed. Eng. 44(9), 867-880 (1997).
[CrossRef] [PubMed]

Yung, C-H.

V. Ntziachristos, C-H. Yung, C. Bremerand, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8 (7), 757-760 (2002).
[CrossRef] [PubMed]

Zhang, L.

Zhang, Q.

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas "Quantitative spectroscopic optical tomography of the breast guided by imperfect a priori structural information," Phys. Med. Biol. 50, 3941-3956 (2005).
[CrossRef] [PubMed]

Zhao, H

Zhao, H.

ACM trans. on Math. Software (1)

C. C. Paige and M. A. Saunders, "LSQR: An Algorithm for Sparse Linear Equations and Sparse Least Squares," ACM trans. on Math. Software 8(1), 43-71 (1982).
[CrossRef]

Appl. Opt. (4)

Electron. Commun. Comput. Sci. (1)

S. Okawa, and S. Honda, "MEG Analysis with Spatial Filtered Reconstruction," IEICE Trans. on Fundam.Electron. Commun. Comput. Sci. 89-A(5), 1428-1436 (2006).
[CrossRef]

IEEE ASSP Mag. (1)

B. D. van Veen and K. M. Buckly, "Beamforming: A versatile approach to spatial filtering," IEEE ASSP Mag. 15, 4-23 (1988).
[CrossRef]

IEEE Signal Process Mag. (1)

S. Baillet, J. C. Mosher and R. M. Leahy, "Electromagnetic brain mapping," IEEE Signal Process Mag. 18, 14-30 (2001).
[CrossRef]

IEEE Trans. Biomed. Eng. (1)

B. D. van Veen, W. van Drongelen, M. Yuchtman, and A. Suzuki, "Localization of brain electrical activity via linear constrained minimum variance spatial filter," IEEE Trans. Biomed. Eng. 44(9), 867-880 (1997).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging (1)

M. J. Eppstein, D. E. Doughety, D. J. Hawrysz, and E. M. Sevick-Muraka, "Three-Dimensional Baysian Optical Image Reconstruction with Domain Decomposition," IEEE Trans. Med. Imaging 20(3), 147-163 (2001).
[CrossRef] [PubMed]

IEEE Trans. Med. Imaging. (1)

R. Roy, A. Godavarty, and E. M. Sevick-Muraca, "Fluorescence-enhanced optical tomography using referenced measurements of heterogeneous media," IEEE Trans. Med. Imaging. 22(7), 824-836 (2003).
[CrossRef] [PubMed]

International Congress Series (1)

S. Okawa, and S. Honda, "Dipole estimation with a combination of noise reduction and spatial filter," International Congress Series 1300, 249-252 (2007).
[CrossRef]

Inverse Prob. (1)

S. R. Arridge, "Optical tomography in medical imaging," Inverse Prob. 15, R41-R93 (1999).
[CrossRef]

J. Biomed. Opt. (1)

C. Kuo, O. Coquoz, T. L. Troy, H. Xu and B. W. Rice, "Three-dimensional reconstruction of in vivo bioluminescent sources based on multispectral imaging," J. Biomed. Opt. 12, 024007 (2007).
[CrossRef] [PubMed]

J. Math. Imaging Vis. (1)

M. Schweiger, S. R. Arridge, and D. T. Delpy, "Application of the Finite-Element Method for the Forward and Inverse Model in Optical Tomography," J. Math. Imaging Vis. 3, 263-283 (1993).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nat. Biotechnol. (1)

V. Ntziachristos, J. Ripoll, L. V. Wang, R. Weissleder, "Looking and listening to light: the evolution of wholebody photonic imaging," Nat. Biotechnol. 23 (3), 313-320 (2005).
[CrossRef] [PubMed]

Nat. Med. (1)

V. Ntziachristos, C-H. Yung, C. Bremerand, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nat. Med. 8 (7), 757-760 (2002).
[CrossRef] [PubMed]

Neoplasia (1)

D. J. Hawrysz, and E. M. Sevick-Muraca, "Developments toward Diagnostic Breast Cancer Imaging using Near-Infrared Optical Measurements and Fluorescent Contrast Agents," Neoplasia 2 (5), 388-417 (2000).
[CrossRef]

Opt. Express (6)

Opt. Lett. (2)

Phys. Med. Biol. (7)

Y. Lv, J. Yian, W. Cong, G. Wang, W. Yang, C. Qin and M. Xu, "Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation," Phys. Med. Biol. 52, 4497-4512 (2007).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-R43 (2005).
[CrossRef] [PubMed]

T. Yates, C. Hebdan, A. Gibson, N. Everdell, S. R. Arridge, and M. Douek, "Optical tomography of the breast using a multi-channel time-resolved imager," Phys. Med. Biol. 50, 2503-2517 (2005).
[CrossRef] [PubMed]

G. Boverman, E. L. Miller, A. Li, Q. Zhang, T. Chaves, D. H. Brooks, and D. A. Boas "Quantitative spectroscopic optical tomography of the breast guided by imperfect a priori structural information," Phys. Med. Biol. 50, 3941-3956 (2005).
[CrossRef] [PubMed]

K. Vishwanath, B. Pogue, and M-A. Mycek, "Quantitative fluorescence lifetime spectroscopy in turbid media: comparison of theoretical, experimental and computational method," Phys. Med. Biol. 47, 3387-3405 (2002).
[CrossRef] [PubMed]

D. Grosenick, K. T. Moesta, M. Moller, J. Mucke, H. Wabnitz, B. Gebauer, C. Stroszczynski, B. Wassermann, P. M. Schlag, and H. Rinneberg, "Time-domain scanning optical mammography: I. Recording and assessment of mammograms of 154 patients," Phys. Med. Biol. 50, 2429-2449 (2005).
[CrossRef] [PubMed]

D. Grosenick, H. Wabnitz, K. T. Moesta, J. Mucke, P. M. Schlag, and H. Rinneberg, "Time-domain scanning optical mammography: II. Optical properties and tissue parameters of 87 carcinomas," Phys. Med. Biol. 50, 2451-2468 (2005).
[CrossRef] [PubMed]

Science (1)

R. Weissleder, "Molecular Imaging in Cancer," Science 321, 1168-1171 (2006).
[CrossRef]

Other (8)

L. Bakker, M. van der Mark, M van Beek, M. van der Voort, G. Hooft, T. Nielsen, T. Koehler, R. Ziegler, K. Licha, and M. Pessel, "Optical Fluorescence Imaging of Breast Cancer," in Proceedings of Biomedical Optics Topical Meeting (OSA, Miami, Florida, 2006) SH56.

C. R. Vogel,Computational Methods for Inverse Problems (Frontiers in Applied Mathematics) (SIAM, Philadelphia, 2002).
[CrossRef]

S. Okawa, and Y. Yamada, "Source estimation with spatial filter for fluorescence diffuse optical tomography," in Biomedical Optics Topical Meeting Technical Digest (OSA, Miami, Florida, 2008) BSuE41.

A. Soubret, J. Ripoll, D. Yessayan, and V. Ntziachristos, "Three-dimensional fluorescent tomography in presence of absorption: Study of the normalized Born approximation," in 2004 Biomedical Optics Topical Meeting Technical Digest (OSA, Miami, Florida, 2004) WB6.

C. W. Groetsch, Inverse Problems in the Mathematical Sciences 1. Auflage (Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, Braunschweig/Wiesbaden, 1993).

C. W. Groetsch, Inverse Problem (the Mathematical Association of America, Washington, 1999).

S. Holder, Electrical Impedance Tomography: Methods, History and Applications (Institute of Physics Publishing, Bristol and Philadelphia, 2005).

S. Okawa and Y. Yamada, "3D Light Source Reconstruction with Spatial Filter for Fluorescence/ Bioluminescence Diffuse Optical Tomography,ffin Diffuse Optical Imaging II, R. Cubeddu and A. H. Hielscher, eds., Proc. SPIE 7369, 736916.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1.

The reconstructed source distributions: (a)–(g) are in order of the number of the iteration. (h) is the true source distribution; i.e., true source at (x, y) =(20 mm, 0 mm) with the radius of 2.5 mm and the source strength of unity.

Fig. 2.
Fig. 2.

The residual error ratio as the function of the updating iterations.

Fig. 3.
Fig. 3.

The reconstructed source distributions by (a) the proposed method, (b) the minimum-norm solution, (c) and (d) LSQR, and (e) and (f) Algebraic Reconstruction Technique. The true distribution is shown in Fig. 1 (h).

Fig. 4.
Fig. 4.

The averages (top) and the standard deviations (bottom) of the reconstructed source strengths: (a-1) SDnoise = 0.01 and λSVD = 0.98, (a-2) SDnoise = 0.01 and λSVD = 1.0, (b) SDnoise = 0.001 and λSVD = 0.995, and (c) SDnoise = 0.1 and λSVD = 0.96.

Fig. 5.
Fig. 5.

The measured intensities of (solid line) the target signal light and of (dashed lines) the background emissions.

Fig. 6.
Fig. 6.

The reconstructed source distributions using the proposed noise reduction with (a-1) qBG = 0.0001 and λSVD = 0.995, (a-2) qBG = 0.0001 and λSVD = 0.97, (b-1) qBG = 0.001 and λSVD = 0.97, (b-2) qBG = 0.001 and λSVD = 0.80, and (c-1) qBG = 0.01 and λSVD = 0.97, (c-2) qBG = 0.01 and λSVD = 0.8.

Fig. 7.
Fig. 7.

The measured light intensities in the inhomogeneous medium (dashed curves) and in the homogeneous medium with µ s = 0.8 mm−1 (solid curve). µ s in the region of (3/4)πθ ≤ (5/4)π of the inhomogeneous medium is 0.72 mm−1, 0.4 mm−1 or 0.08 mm−1.

Fig. 8.
Fig. 8.

The source distributions reconstructed by use of incorrect homogeneous distribution of µ s . λSDV used in the noise reduction and the µ s in the particular region in the inhomogeneous medium are (a) λSVD = 0.995, µ s =0.72 mm−1, (b) λSVD = 0.98, µ s = 0.4 mm−1, (c-1) λSVD = 0.95, µ s =0.08 mm−1, and (c-2) λSVD = 0.99, µ s =0.08 mm−1. For (c-3), the correct distribution of µ s and λSVD = 0.99 are used. µ s =0.08 mm−1 in the particular region. And for (d), homogeneous µ s and λSVD = 0.995 are used. The particular region has µ s =8.0 mm−1.

Fig. 9.
Fig. 9.

The detected light intensities (dashed line) in the inhomogeneous medium and (solid) in the homogeneous medium with µa = 0.007 mm−1. The absorption coefficien in (3/4)πθ ≤ (5/4)π of the inhomogeneous medium varied.

Fig. 10.
Fig. 10.

The source distributions reconstructed by use of incorrect homogeneous distribution of µa . λSDV used in the noise reduction and the µ s in the particular region in the inhomogeneous medium are (a) λSVD = 0.99, µa =0.0035 mm−1, (b-1) λSVD = 0.97, µa =0.0007 mm−1, (b-2) λSVD = 0.99, µa =0.0007 mm−1. For (b-3), the correct distribution of µa and λSVD = 0.99 were used. µa =0.0007 mm−1 in the particular region. For (c), λSVD = 0.995 and the homogeneous µa are used. µa of the particular region is 0.07 mm−1.

Fig. 11.
Fig. 11.

The reconstructed (top) and true (bottom) distributions of the source strengths by the proposed method. The true centers of the two emitting source regions are at (a) (x, y) = (−10, 0) and (10, 0), (b) (x, y) = (−7.5, 0) and (7.5,0), (c) (x, y) = (−5, 0) and (5, 0), and (d) (x, y) = (−7.5, 20) and (7.5, 20).

Fig. 12.
Fig. 12.

(a) The distribution of µa of the circular medium, (b) the distribution of D = 1/(3µ s ), (c) the distribution of (µa + µaf ) where µaf is the absorption coefficien of ICG, (d) the calculated fluenc rate of the excitation light in the logarithmic scale, log10 Φ x , and (e) the fluorescenc light sources in the logarithmic scale, log10 q 0 = log10 ηµaf Φ x

Fig. 13.
Fig. 13.

The reconstructed images of the fluorescen source strengths with (a) λSVD =0.995 and six iterations, (b) λSVD = 0.9 and six iterations, (c) λSVD = 0.8 and six iterations, (d) λSVD = 0.80 and f ve iterations, and (e) λSVD = 0.8 and seven iterations.

Fig. 14.
Fig. 14.

The cross section in the plane of y = 0 mm of the cylindrical object consisting of annular regions which simulate various tissues of a mouse, i.e., (i) heart, (ii) lung, (iii) liver and (iv) fat. The illuminating and detecting positions are placed in the planes of z = 9, and 21 mm (dashed lines).

Fig. 15.
Fig. 15.

The cross sections of the reconstructed 3D source distributions (a) from the data without background emission, noise and mismatch in the optical properties, and no artifact reduction is carried out, (b) to (d) from the data with background emissions, noises and mismatches in the optical properties, λSVD = (b) 0.995, (c) 0.9, and (d) 0.8. The number of the updating iteration is seven.

Tables (1)

Tables Icon

Table 1. The optical properties of the tissues in the cylindrical object [mm−1].

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

{ · D ( r ) + μ a ( r ) } Φ ( r ) = q 0 ( r ) ,
n · D Φ = 1 2 A Φ on Ω ,
{ K ( D ) + C ( μ a ) + B } Φ = Q ,
Φ = G Q ,
m = L Q ,
Q ̂ = W T m ,
q ̂ k = w k T m = Σ i = 1 N w k T l i q i , ( k = 1 , 2 , , N ) ,
max w k ( w k T l k ) 2 , subject to w k T L 2 ( = Σ i = 1 N ( w k l i ) 2 ) = 1 .
w k = { l k T ( LL T ) 1 l k } 1 2 ( LL T ) 1 l k .
p i = q ̂ i Q ̂ ,
l i l i p i .
α = arg min α m α L Q ̂ 2 = m T L Q ̂ Q ̂ T L T L Q ̂ ,
Q ¯ = α · Q ̂ .
m = L Q + ε ,
m UHU T m ( = UHy ) ,

Metrics