Abstract

The spherical aberration induced by refractive-index mismatch results in the degradation on the quality of sectioning images in conventional confocal laser scanning microscope (CLSM). In this research, we have derived the theory of image formation in a Zeeman laser scanning confocal microscope (ZLSCM) and conducted experiments in order to verify the ability of reducing spherical aberration in ZLSCM. A Zeeman laser is used as the light source and produces the linearly polarized photon-pairs (LPPP) laser beam. With the features of common-path propagation of LPPP and optical heterodyne detection, ZLSCM shows the ability of reducing the specimen-induced spherical aberration and improving the axial resolution simultaneously.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson and A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett. 12(4), 227–229 (1987).
    [CrossRef] [PubMed]
  2. T. Wilson, “The role of the pinhole in confocal imaging system,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed., (Plenum Press, 1995), pp. 167–182.
  3. T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic Press, 1984).
  4. J. M. Schmitt, A. Knuttel, and M. Yadlowsky, “Confocal microscopy in turbid media,” J. Opt. Soc. Am. A 11(8), 2226–2235 (1994).
    [CrossRef]
  5. H. F. Chang, C. Chou, H. F. Yau, Y. H. Chan, J. N. Yih, and J. S. Wu, “Angular distribution of polarized photon-pairs in a scattering medium with a Zeeman laser scanning confocal microscope,” J. Microsc. 223(Pt 1), 26–32 (2006).
    [CrossRef] [PubMed]
  6. S. W. Hell and E. H. K. Stelzer, “Lens aberrations in confocal fluorescence microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, eds., (Plenum Press, 1995), pp. 347–354.
  7. C. J. R. Sheppard, “Confocal imaging through weakly aberrating media,” Appl. Opt. 39(34), 6366–6368 (2000).
    [CrossRef]
  8. M. Kempe and W. Rudolph, “Scanning microscopy through thick layers based on linear correlation,” Opt. Lett. 19(23), 1919–1921 (1994).
    [CrossRef] [PubMed]
  9. M. Kempe, W. Rudolph, and E. Welsch, “Comparative study of confocal and heterodyne microscopy for imaging through scattering media,” J. Opt. Soc. Am. A 13(1), 46–52 (1996).
    [CrossRef]
  10. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
    [CrossRef] [PubMed]
  11. J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
    [CrossRef] [PubMed]
  12. C. J. R. Sheppard, M. Roy, and M. D. Sharma, “Image formation in low-coherence and confocal interference microscopes,” Appl. Opt. 43(7), 1493–1502 (2004).
    [CrossRef] [PubMed]
  13. H. W. Wang, J. A. Izatt, and M. D. Kulkarni, “Optical coherence microscopy,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, 2001) , pp. 275–298.
  14. C. J. R. Sheppard and M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt. 30(25), 3563–3568 (1991).
    [CrossRef] [PubMed]
  15. C. J. R. Sheppard, M. Gu, K. Brain, and H. Zhou, “Influence of spherical aberration on axial imaging of confocal reflection microscopy,” Appl. Opt. 33(4), 616–624 (1994).
    [CrossRef] [PubMed]
  16. M. Schwertner, M. Booth, and T. Wilson, “Characterizing specimen induced aberrations for high NA adaptive optical microscopy,” Opt. Express 12(26), 6540–6552 (2004).
    [CrossRef] [PubMed]
  17. C. J. R. Sheppard and D. M. Shotton, Confocal Laser Scanning Microscopy (Springer, 1997) , pp. 27–39.
  18. C. Chou, L. C. Peng, Y. H. Chou, Y. H. Tang, C. Y. Han, and C. W. Lyu, “Polarized optical coherence imaging in turbid media by use of a Zeeman laser,” Opt. Lett. 25(20), 1517–1519 (2000).
    [CrossRef]
  19. L. C. Peng, C. Chou, C. W. Lyu, and J. C. Hsieh, “Zeeman laser-scanning confocal microscopy in turbid media,” Opt. Lett. 26(6), 349–351 (2001).
    [CrossRef]
  20. Agilent Technologies, Laser and Optics User’s Manual (Agilent Technologies, 2002), Chap. 5.
  21. E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31(2), 241–243 (2006).
    [CrossRef] [PubMed]
  22. M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, 1996).
  23. R. M. Zucker, “Confocal microscopy system performance: axial resolution,” Microscopy Today 12, 38–40 (2004).
  24. D. K. Hamilton and C. J. R. Sheppard, “A confocal interference microscope,” Opt. Acta (Lond.) 29, 1573–1577 (1982).
  25. C. J. R. Sheppard and Y. Gong, “Improvement in axial resolution by interference confocal microscopy,” Optik (Stuttg.) 87, 129–132 (1991).
  26. M. Gu and C. J. R. Sheppard, “Effects of defocus and primary spherical aberration on images of a straight edge in confocal microscopy,” Appl. Opt. 33(4), 625–630 (1994).
    [CrossRef] [PubMed]

2006

H. F. Chang, C. Chou, H. F. Yau, Y. H. Chan, J. N. Yih, and J. S. Wu, “Angular distribution of polarized photon-pairs in a scattering medium with a Zeeman laser scanning confocal microscope,” J. Microsc. 223(Pt 1), 26–32 (2006).
[CrossRef] [PubMed]

E. O. Potma, C. L. Evans, and X. S. Xie, “Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging,” Opt. Lett. 31(2), 241–243 (2006).
[CrossRef] [PubMed]

2004

2001

2000

1996

1994

1991

C. J. R. Sheppard and Y. Gong, “Improvement in axial resolution by interference confocal microscopy,” Optik (Stuttg.) 87, 129–132 (1991).

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

C. J. R. Sheppard and M. Gu, “Aberration compensation in confocal microscopy,” Appl. Opt. 30(25), 3563–3568 (1991).
[CrossRef] [PubMed]

1987

1982

D. K. Hamilton and C. J. R. Sheppard, “A confocal interference microscope,” Opt. Acta (Lond.) 29, 1573–1577 (1982).

Booth, M.

Brain, K.

Carlini, A. R.

Chan, Y. H.

H. F. Chang, C. Chou, H. F. Yau, Y. H. Chan, J. N. Yih, and J. S. Wu, “Angular distribution of polarized photon-pairs in a scattering medium with a Zeeman laser scanning confocal microscope,” J. Microsc. 223(Pt 1), 26–32 (2006).
[CrossRef] [PubMed]

Chang, H. F.

H. F. Chang, C. Chou, H. F. Yau, Y. H. Chan, J. N. Yih, and J. S. Wu, “Angular distribution of polarized photon-pairs in a scattering medium with a Zeeman laser scanning confocal microscope,” J. Microsc. 223(Pt 1), 26–32 (2006).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Chou, C.

Chou, Y. H.

Evans, C. L.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gong, Y.

C. J. R. Sheppard and Y. Gong, “Improvement in axial resolution by interference confocal microscopy,” Optik (Stuttg.) 87, 129–132 (1991).

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Gu, M.

Hamilton, D. K.

D. K. Hamilton and C. J. R. Sheppard, “A confocal interference microscope,” Opt. Acta (Lond.) 29, 1573–1577 (1982).

Han, C. Y.

Hee, M. R.

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Hsieh, J. C.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Izatt, J. A.

Kempe, M.

Knuttel, A.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Lyu, C. W.

Owen, G. M.

Peng, L. C.

Potma, E. O.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Roy, M.

Rudolph, W.

Schmitt, J. M.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Schwertner, M.

Sharma, M. D.

Sheppard, C. J. R.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

J. A. Izatt, M. R. Hee, G. M. Owen, E. A. Swanson, and J. G. Fujimoto, “Optical coherence microscopy in scattering media,” Opt. Lett. 19(8), 590–592 (1994).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Tang, Y. H.

Welsch, E.

Wilson, T.

Wu, J. S.

H. F. Chang, C. Chou, H. F. Yau, Y. H. Chan, J. N. Yih, and J. S. Wu, “Angular distribution of polarized photon-pairs in a scattering medium with a Zeeman laser scanning confocal microscope,” J. Microsc. 223(Pt 1), 26–32 (2006).
[CrossRef] [PubMed]

Xie, X. S.

Yadlowsky, M.

Yau, H. F.

H. F. Chang, C. Chou, H. F. Yau, Y. H. Chan, J. N. Yih, and J. S. Wu, “Angular distribution of polarized photon-pairs in a scattering medium with a Zeeman laser scanning confocal microscope,” J. Microsc. 223(Pt 1), 26–32 (2006).
[CrossRef] [PubMed]

Yih, J. N.

H. F. Chang, C. Chou, H. F. Yau, Y. H. Chan, J. N. Yih, and J. S. Wu, “Angular distribution of polarized photon-pairs in a scattering medium with a Zeeman laser scanning confocal microscope,” J. Microsc. 223(Pt 1), 26–32 (2006).
[CrossRef] [PubMed]

Zhou, H.

Zucker, R. M.

R. M. Zucker, “Confocal microscopy system performance: axial resolution,” Microscopy Today 12, 38–40 (2004).

Appl. Opt.

J. Microsc.

H. F. Chang, C. Chou, H. F. Yau, Y. H. Chan, J. N. Yih, and J. S. Wu, “Angular distribution of polarized photon-pairs in a scattering medium with a Zeeman laser scanning confocal microscope,” J. Microsc. 223(Pt 1), 26–32 (2006).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Microscopy Today

R. M. Zucker, “Confocal microscopy system performance: axial resolution,” Microscopy Today 12, 38–40 (2004).

Opt. Acta (Lond.)

D. K. Hamilton and C. J. R. Sheppard, “A confocal interference microscope,” Opt. Acta (Lond.) 29, 1573–1577 (1982).

Opt. Express

Opt. Lett.

Optik (Stuttg.)

C. J. R. Sheppard and Y. Gong, “Improvement in axial resolution by interference confocal microscopy,” Optik (Stuttg.) 87, 129–132 (1991).

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).
[CrossRef] [PubMed]

Other

T. Wilson, “The role of the pinhole in confocal imaging system,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed., (Plenum Press, 1995), pp. 167–182.

T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic Press, 1984).

S. W. Hell and E. H. K. Stelzer, “Lens aberrations in confocal fluorescence microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, eds., (Plenum Press, 1995), pp. 347–354.

H. W. Wang, J. A. Izatt, and M. D. Kulkarni, “Optical coherence microscopy,” in Handbook of Optical Coherence Tomography, B. E. Bouma and G. J. Tearney, eds. (Marcel Dekker, 2001) , pp. 275–298.

C. J. R. Sheppard and D. M. Shotton, Confocal Laser Scanning Microscopy (Springer, 1997) , pp. 27–39.

M. Gu, Principles of Three-Dimensional Imaging in Confocal Microscopes (World Scientific, 1996).

Agilent Technologies, Laser and Optics User’s Manual (Agilent Technologies, 2002), Chap. 5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram and coordinate system of a reflection-mode ZLSCM. (x 1, y 1), (x 2, y 2) and (x 4, y 4) are the coordinates of the source plane, the object plane and the image plane, respectively.

Fig. 2
Fig. 2

Experimental setup of (a) ZLSCM and (b) CLSM. ZL, Zeeman He-Ne laser; M1-M6, mirrors; BS, beam-splitter; O1, objective lens; GP, glass plate; P, polarizer; A, attenuator; O2, collector lens; PMT, photomultiplier tube; LA, linear amplifier; SA, spectrum analyzer; DVM, digital voltmeter; PC, personal computer; LMS, linear motor stage. (c) The experimental setup of focusing into a water medium to introduce spherical aberration.

Fig. 3
Fig. 3

Axial responses were measured by ZLSCM and CLSM with a mirror as object. The blue line and the red line represent the normalized signal of ZLSCM and CLSM, respectively. The crosses and the solid circles represent the experimental data of ZLSCM and CLSM, respectively. The measured interval is 0.125μm.

Fig. 4
Fig. 4

Axial responses of ZLSCM and CLSM under the condition that single piece of cover glass was placed directly on mirror M5. The blue line and the red line represent the normalized signal of ZLSCM and CLSM respectively, and the solid circles represent the experimental data. The measured interval is 0.2μm.

Fig. 5
Fig. 5

Axial responses of ZLSCM and CLSM under the condition of focusing into a water medium at the depth of 540μm from the air/water interface. The blue line and the red line represent the normalized signal of ZLSCM and CLSM respectively, and the solid circles represent the experimental data. The measured interval is 0.5μm.

Fig. 6
Fig. 6

Axial responses of ZLSCM and CLSM under the condition of focusing into a water medium at the depth of 884μm from the air/water interface. The blue line and the red line represent the normalized signal of ZLSCM and CLSM respectively, and the solid circles represent the experimental data. The measured interval is 0.5μm.

Fig. 7
Fig. 7

Experimental setup of CIM. PBS, polarized beam-splitter; HWP, half wave plate.

Fig. 8
Fig. 8

Axial responses of ZLSCM, CLSM and CIM under the condition that (a) a mirror as object, and (b) single piece of cover glass was placed directly on mirror M5. The blue line, the red line and the green line represent the normalized signal of ZLSCM, CLSM and CIM, respectively. The measured interval is 0.1μm and 0.2μm in Fig. 8(a) and Fig. 8(b), respectively.

Fig. 9
Fig. 9

1-D scanning profiles of the optical grating under the condition (a) of aberration-free (b) that single piece of cover glass (170μm in thickness) was placed directly on the grating. The laser beam was focused on the upper surface of the grating. The blue line and the red line represent the experimental data measured by ZLSCM and CLSM, respectively. The measured interval is 1μm and 0.1μm in Fig. 9(a) and Fig. 9(b), respectively.

Tables (1)

Tables Icon

Table 1 Axial Resolution, Peak Value of First Side Lobe, and Peak Value of Second Side Lobe of ZLSCM and CLSM Under Three Conditions of Introducing Spherical Aberration

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

U p ( x 4 , y 4 , t ) = 1 M exp ( i ω p t ) T p ( m , n ) c p ( m , n ) exp [ 2 π i ( m x 4 + n y 4 ) M ]   d m   d n ,
c p ( m , n ) = P ˜ 1,p ( x 1 , y 1 ) P ˜ 2,p ( m λ f x 1 , n λ f y 1 ) d x 1 d y 1 ,
T p ( m , n ) = ( x 2 , y 2 ) exp [ 2 π i ( m x 2 + n y 2 ) ] d x 2 d y 2 .
U s ( x 4 ,   y 4 ,   t ) = 1 M exp ( i ω s t ) T s ( m , n ) c s ( m , n ) exp [ 2 π i ( m x 4 + n y 4 ) M ] d m d n ,
c s ( m , n ) = P ˜ 1 ,s ( x 1 , y 1 ) P ˜ 2 ,s ( m λ f x 1 , n λ f y 1 ) d x 1 d y 1 ,
T s ( m , n ) = t ( x 2 , y 2 ) exp [ 2 π i ( m x 2 + n y 2 ) ] d x 2 d y 2 .
I ( x 4 , y 4 , t ) = | U ( x 4 , y 4 , t ) | 2         = | 1 2 U p ( x 4 , y 4 , t ) + 1 2 U s ( x 4 , y 4 , t ) | 2         = 1 2 | exp ( i ω p t ) 1 M T p ( m , n ) c p ( m , n ) exp [ 2 π i ( m x 4 + n y 4 ) M ]   d m   d n         + exp ( i ω s t ) 1 M s s ( m , n ) c s ( m , n ) exp [ 2 π i ( m x 4 + n y 4 ) M ]   d m   d n | 2 .
I AC ( x 4 , y 4 , t )   =   1 2 exp ( i Δ ω t ) 1 M 2 T p ( m , n ) T s * ( m , n ) c p ( m , n ) c s * ( m , n )                 × exp { 2 π i [ ( m m ) x 4 + ( n n ) y 4 ] M }   d m   d n   d m   d n + C . C .   ,
c p ( m ,   n ) c s * ( m ,   n )   =   P ˜ 1,p ( x 1 ,   y 1 ) P ˜ 2,p ( m λf x 1 ,   n λf y 1 )               × P ˜ 1,s * ( x 1 ,   y 1 ) P ˜ 2,s * ( m λf x 1 ,   n λf y 1 ) d x 1 d y 1 d x 1 d y 1 .
c p ( 0,   0 ) c s * ( 0,   0 ) = P ˜ 1 ( x 1 , y 1 ) P ˜ 1 * ( x 1 , y 1 ) P ˜ 2 ( x 1 , y 1 ) P ˜ 2 * ( x 1 , y 1 ) dx 1 dy 1 .
E sig ( z , t )   =   A p ( z ) exp [ i ( ω p t + ϕ sig ) ] +A s ( z ) exp [ i ( ω s t + ϕ sig ) ] ,
E ref ( t ) = Α s  exp [ i ( ω s t + ϕ ref ) ] + Α p  exp [ i ( ω p t + ϕ ref ) ] .
Ι AC = 2 Α p ( z ) Α s ( z ) c o s ( Δ ω t ) + 2 Α p Α s c o s ( Δ ω t ) + 2 Α p ( z ) Α s c o s ( Δ ω t + Δ ϕ ) + 2 Α s ( z ) Α p c o s ( Δ ω t Δ ϕ ) ,

Metrics