Abstract

Average enhancement factor (AEF) of a coreshell (Ag@SiO2) on the fluorescence of molecules doped within the silica shell is proposed and studied to estimate the overall performance of a large number of coreshells. Using Mie theory and dyadic Green’s functions, the enhancement factor (EF) of a coreshell is first calculated for any arbitrarily oriented and located electric dipole embedded in the shell. AEF is then obtained by averaging the individual EF over all possible orientations and positions of the electric dipoles. AEF of a FITC-doped coreshell (radius of Ag core: 25 nm, thickness of shell: 15 nm) irradiated by a laser of 488 nm for FITC’s emission at 518 nm is 2.406. It is much smaller than the maximum EF (30.114) of a coreshell containing a single molecule with a radial orientation at its optimal position. For Alexa 430-doped coreshell excited at 428 nm, AEF is 12.34 at the emission of 538 nm.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
    [CrossRef] [PubMed]
  2. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [CrossRef] [PubMed]
  3. O. G. Tovmachenko, C. Graf, D. J. van den Heuvel, A. van Blaaderen, and H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater. 18(1), 91–95 (2006).
    [CrossRef]
  4. K. Aslan, M. Wu, J. R. Lakowicz, and C. D. Geddes, “Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms,” J. Am. Chem. Soc. 129(6), 1524–1525 (2007).
    [CrossRef] [PubMed]
  5. K. Aslan, M. Wu, J. R. Lakowicz, and C. D. Geddes, “Metal enhanced fluorescence solution-based sensing platform 2: fluorescent core-shell Ag@SiO2 nanoballs,” J. Fluoresc. 17(2), 127–131 (2007).
    [CrossRef] [PubMed]
  6. D. Cheng and Q.-H. Xu, “Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles,” Chem. Commun. (Camb.) 2007(3), 248–250 (2007).
    [CrossRef]
  7. R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
    [CrossRef] [PubMed]
  8. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
    [CrossRef] [PubMed]
  9. J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
    [CrossRef] [PubMed]
  10. W. Wang, Z. Li, B. Gu, Z. Zhang, and H. Xu, “Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering,” ACS Nano 3(11), 3493–3496 (2009).
    [CrossRef] [PubMed]
  11. C. Fernandez-Lopez, C. Mateo-Mateo, R. A. Alvarez-Puebla, J. Perez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzan, “Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles,” Langmuir 25(24), 13894–13899 (2009).
    [CrossRef] [PubMed]
  12. T. Härtling, P. Reichenbach, and L. M. Eng, “Near-field coupling of a single fluorescent molecule and a spherical gold nanoparticle,” Opt. Express 15(20), 12806–12817 (2007).
    [CrossRef] [PubMed]
  13. M. H. Chowdhury, S. K. Gray, J. Pond, C. D. Geddes, K. Aslan, and J. R. Lakowicz, “Computational study of fluorescence scattering by silver nanoparticles,” J. Opt. Soc. Am. B 24(9), 2259–2267 (2007).
    [CrossRef] [PubMed]
  14. G. Colas des Francs, A. Bouhelier, E. Finot, J. C. Weeber, A. Dereux, C. Girard, and E. Dujardin, “Fluorescence relaxation in the near-field of a mesoscopic metallic particle: distance dependence and role of plasmon modes,” Opt. Express 16(22), 17654–17666 (2008).
    [CrossRef] [PubMed]
  15. O. Stranik, R. Nooney, C. McDonagh, and B. D. MacCraith, “Optimization of nanoparticle size for plasmonic enhancement of fluorescence,” Plasmonics 2(1), 15–22 (2007).
    [CrossRef]
  16. C.-T. Tai, Dyadic Green's Functions in Electromagnetic Theory (IEEE, 1971).
  17. X.-W. Chen, W. C.-H. Choy, S. He, and P. C. Chui, “Highly efficient fluorescence of a fluorescing nanoparticle with a silver shell,” Opt. Express 15(11), 7083–7094 (2007).
    [CrossRef] [PubMed]
  18. J.-W. Liaw, J. H. Chen, C. S. Chen, and M.-K. Kuo, “Purcell effect of nanoshell dimer on single molecule’s fluorescence,” Opt. Express 17(16), 13532–13540 (2009).
    [CrossRef] [PubMed]
  19. J.-W. Liaw, J.-H. Chen, and C.-S. Chen, “Enhancement or quenching effect of metallic nanodimer on spontaneous emission,” J. Quant. Spectrosc. Radiat. Transf. 111(3), 454–465 (2010).
    [CrossRef]
  20. Y. Jin and X. Gao, “Plasmonic fluorescent quantum dots,” Nat. Nanotechnol. 4(9), 571–576 (2009).
    [CrossRef] [PubMed]
  21. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [CrossRef]
  22. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
    [CrossRef] [PubMed]
  23. H. Y. Xie, H. Y. Chung, P. T. Leung, and D. P. Tsai, “Plasmonic enhancement of Förster energy transfer between two molecules in the vicinity of a metallic nanoparticle: Nonlocal optical effects,” Phys. Rev. B 80(15), 155448 (2009).
    [CrossRef]
  24. M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett. 9(8), 3066–3071 (2009).
    [CrossRef] [PubMed]
  25. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
    [CrossRef] [PubMed]

2010 (1)

J.-W. Liaw, J.-H. Chen, and C.-S. Chen, “Enhancement or quenching effect of metallic nanodimer on spontaneous emission,” J. Quant. Spectrosc. Radiat. Transf. 111(3), 454–465 (2010).
[CrossRef]

2009 (8)

Y. Jin and X. Gao, “Plasmonic fluorescent quantum dots,” Nat. Nanotechnol. 4(9), 571–576 (2009).
[CrossRef] [PubMed]

J.-W. Liaw, J. H. Chen, C. S. Chen, and M.-K. Kuo, “Purcell effect of nanoshell dimer on single molecule’s fluorescence,” Opt. Express 17(16), 13532–13540 (2009).
[CrossRef] [PubMed]

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[CrossRef] [PubMed]

W. Wang, Z. Li, B. Gu, Z. Zhang, and H. Xu, “Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering,” ACS Nano 3(11), 3493–3496 (2009).
[CrossRef] [PubMed]

C. Fernandez-Lopez, C. Mateo-Mateo, R. A. Alvarez-Puebla, J. Perez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzan, “Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles,” Langmuir 25(24), 13894–13899 (2009).
[CrossRef] [PubMed]

H. Y. Xie, H. Y. Chung, P. T. Leung, and D. P. Tsai, “Plasmonic enhancement of Förster energy transfer between two molecules in the vicinity of a metallic nanoparticle: Nonlocal optical effects,” Phys. Rev. B 80(15), 155448 (2009).
[CrossRef]

M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett. 9(8), 3066–3071 (2009).
[CrossRef] [PubMed]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (8)

O. Stranik, R. Nooney, C. McDonagh, and B. D. MacCraith, “Optimization of nanoparticle size for plasmonic enhancement of fluorescence,” Plasmonics 2(1), 15–22 (2007).
[CrossRef]

X.-W. Chen, W. C.-H. Choy, S. He, and P. C. Chui, “Highly efficient fluorescence of a fluorescing nanoparticle with a silver shell,” Opt. Express 15(11), 7083–7094 (2007).
[CrossRef] [PubMed]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

T. Härtling, P. Reichenbach, and L. M. Eng, “Near-field coupling of a single fluorescent molecule and a spherical gold nanoparticle,” Opt. Express 15(20), 12806–12817 (2007).
[CrossRef] [PubMed]

M. H. Chowdhury, S. K. Gray, J. Pond, C. D. Geddes, K. Aslan, and J. R. Lakowicz, “Computational study of fluorescence scattering by silver nanoparticles,” J. Opt. Soc. Am. B 24(9), 2259–2267 (2007).
[CrossRef] [PubMed]

K. Aslan, M. Wu, J. R. Lakowicz, and C. D. Geddes, “Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms,” J. Am. Chem. Soc. 129(6), 1524–1525 (2007).
[CrossRef] [PubMed]

K. Aslan, M. Wu, J. R. Lakowicz, and C. D. Geddes, “Metal enhanced fluorescence solution-based sensing platform 2: fluorescent core-shell Ag@SiO2 nanoballs,” J. Fluoresc. 17(2), 127–131 (2007).
[CrossRef] [PubMed]

D. Cheng and Q.-H. Xu, “Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles,” Chem. Commun. (Camb.) 2007(3), 248–250 (2007).
[CrossRef]

2006 (3)

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

O. G. Tovmachenko, C. Graf, D. J. van den Heuvel, A. van Blaaderen, and H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater. 18(1), 91–95 (2006).
[CrossRef]

2005 (1)

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
[CrossRef] [PubMed]

2002 (1)

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Alvarez-Puebla, R. A.

C. Fernandez-Lopez, C. Mateo-Mateo, R. A. Alvarez-Puebla, J. Perez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzan, “Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles,” Langmuir 25(24), 13894–13899 (2009).
[CrossRef] [PubMed]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Aslan, K.

K. Aslan, M. Wu, J. R. Lakowicz, and C. D. Geddes, “Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms,” J. Am. Chem. Soc. 129(6), 1524–1525 (2007).
[CrossRef] [PubMed]

K. Aslan, M. Wu, J. R. Lakowicz, and C. D. Geddes, “Metal enhanced fluorescence solution-based sensing platform 2: fluorescent core-shell Ag@SiO2 nanoballs,” J. Fluoresc. 17(2), 127–131 (2007).
[CrossRef] [PubMed]

M. H. Chowdhury, S. K. Gray, J. Pond, C. D. Geddes, K. Aslan, and J. R. Lakowicz, “Computational study of fluorescence scattering by silver nanoparticles,” J. Opt. Soc. Am. B 24(9), 2259–2267 (2007).
[CrossRef] [PubMed]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Bardhan, R.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[CrossRef] [PubMed]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Boudreau, D.

M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett. 9(8), 3066–3071 (2009).
[CrossRef] [PubMed]

Bouhelier, A.

Chen, C. S.

Chen, C.-S.

J.-W. Liaw, J.-H. Chen, and C.-S. Chen, “Enhancement or quenching effect of metallic nanodimer on spontaneous emission,” J. Quant. Spectrosc. Radiat. Transf. 111(3), 454–465 (2010).
[CrossRef]

Chen, J. H.

Chen, J.-H.

J.-W. Liaw, J.-H. Chen, and C.-S. Chen, “Enhancement or quenching effect of metallic nanodimer on spontaneous emission,” J. Quant. Spectrosc. Radiat. Transf. 111(3), 454–465 (2010).
[CrossRef]

Chen, X.-W.

Cheng, D.

D. Cheng and Q.-H. Xu, “Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles,” Chem. Commun. (Camb.) 2007(3), 248–250 (2007).
[CrossRef]

Chowdhury, M. H.

Choy, W. C.-H.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Chui, P. C.

Chung, H. Y.

H. Y. Xie, H. Y. Chung, P. T. Leung, and D. P. Tsai, “Plasmonic enhancement of Förster energy transfer between two molecules in the vicinity of a metallic nanoparticle: Nonlocal optical effects,” Phys. Rev. B 80(15), 155448 (2009).
[CrossRef]

Colas des Francs, G.

Cole, J. R.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[CrossRef] [PubMed]

Dereux, A.

Dujardin, E.

Dulkeith, E.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Eng, L. M.

Feldmann, J.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Fernandez-Lopez, C.

C. Fernandez-Lopez, C. Mateo-Mateo, R. A. Alvarez-Puebla, J. Perez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzan, “Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles,” Langmuir 25(24), 13894–13899 (2009).
[CrossRef] [PubMed]

Finot, E.

Gao, X.

Y. Jin and X. Gao, “Plasmonic fluorescent quantum dots,” Nat. Nanotechnol. 4(9), 571–576 (2009).
[CrossRef] [PubMed]

Geddes, C. D.

M. H. Chowdhury, S. K. Gray, J. Pond, C. D. Geddes, K. Aslan, and J. R. Lakowicz, “Computational study of fluorescence scattering by silver nanoparticles,” J. Opt. Soc. Am. B 24(9), 2259–2267 (2007).
[CrossRef] [PubMed]

K. Aslan, M. Wu, J. R. Lakowicz, and C. D. Geddes, “Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms,” J. Am. Chem. Soc. 129(6), 1524–1525 (2007).
[CrossRef] [PubMed]

K. Aslan, M. Wu, J. R. Lakowicz, and C. D. Geddes, “Metal enhanced fluorescence solution-based sensing platform 2: fluorescent core-shell Ag@SiO2 nanoballs,” J. Fluoresc. 17(2), 127–131 (2007).
[CrossRef] [PubMed]

Gerritsen, H. C.

O. G. Tovmachenko, C. Graf, D. J. van den Heuvel, A. van Blaaderen, and H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater. 18(1), 91–95 (2006).
[CrossRef]

Girard, C.

Gittins, D. I.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Goodrich, G. P.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

Grady, N. K.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[CrossRef] [PubMed]

Graf, C.

O. G. Tovmachenko, C. Graf, D. J. van den Heuvel, A. van Blaaderen, and H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater. 18(1), 91–95 (2006).
[CrossRef]

Gray, S. K.

Gu, B.

W. Wang, Z. Li, B. Gu, Z. Zhang, and H. Xu, “Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering,” ACS Nano 3(11), 3493–3496 (2009).
[CrossRef] [PubMed]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Halas, N. J.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[CrossRef] [PubMed]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

Härtling, T.

He, S.

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Jin, Y.

Y. Jin and X. Gao, “Plasmonic fluorescent quantum dots,” Nat. Nanotechnol. 4(9), 571–576 (2009).
[CrossRef] [PubMed]

Johnson, B. R.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Joshi, A.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[CrossRef] [PubMed]

Klar, T. A.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Kuo, M.-K.

Lakowicz, J. R.

K. Aslan, M. Wu, J. R. Lakowicz, and C. D. Geddes, “Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms,” J. Am. Chem. Soc. 129(6), 1524–1525 (2007).
[CrossRef] [PubMed]

K. Aslan, M. Wu, J. R. Lakowicz, and C. D. Geddes, “Metal enhanced fluorescence solution-based sensing platform 2: fluorescent core-shell Ag@SiO2 nanoballs,” J. Fluoresc. 17(2), 127–131 (2007).
[CrossRef] [PubMed]

M. H. Chowdhury, S. K. Gray, J. Pond, C. D. Geddes, K. Aslan, and J. R. Lakowicz, “Computational study of fluorescence scattering by silver nanoparticles,” J. Opt. Soc. Am. B 24(9), 2259–2267 (2007).
[CrossRef] [PubMed]

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
[CrossRef] [PubMed]

Lessard-Viger, M.

M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett. 9(8), 3066–3071 (2009).
[CrossRef] [PubMed]

Leung, P. T.

H. Y. Xie, H. Y. Chung, P. T. Leung, and D. P. Tsai, “Plasmonic enhancement of Förster energy transfer between two molecules in the vicinity of a metallic nanoparticle: Nonlocal optical effects,” Phys. Rev. B 80(15), 155448 (2009).
[CrossRef]

Levi, S. A.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Li, Z.

W. Wang, Z. Li, B. Gu, Z. Zhang, and H. Xu, “Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering,” ACS Nano 3(11), 3493–3496 (2009).
[CrossRef] [PubMed]

Liaw, J.-W.

J.-W. Liaw, J.-H. Chen, and C.-S. Chen, “Enhancement or quenching effect of metallic nanodimer on spontaneous emission,” J. Quant. Spectrosc. Radiat. Transf. 111(3), 454–465 (2010).
[CrossRef]

J.-W. Liaw, J. H. Chen, C. S. Chen, and M.-K. Kuo, “Purcell effect of nanoshell dimer on single molecule’s fluorescence,” Opt. Express 17(16), 13532–13540 (2009).
[CrossRef] [PubMed]

Liz-Marzan, L. M.

C. Fernandez-Lopez, C. Mateo-Mateo, R. A. Alvarez-Puebla, J. Perez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzan, “Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles,” Langmuir 25(24), 13894–13899 (2009).
[CrossRef] [PubMed]

MacCraith, B. D.

O. Stranik, R. Nooney, C. McDonagh, and B. D. MacCraith, “Optimization of nanoparticle size for plasmonic enhancement of fluorescence,” Plasmonics 2(1), 15–22 (2007).
[CrossRef]

Mateo-Mateo, C.

C. Fernandez-Lopez, C. Mateo-Mateo, R. A. Alvarez-Puebla, J. Perez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzan, “Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles,” Langmuir 25(24), 13894–13899 (2009).
[CrossRef] [PubMed]

McDonagh, C.

O. Stranik, R. Nooney, C. McDonagh, and B. D. MacCraith, “Optimization of nanoparticle size for plasmonic enhancement of fluorescence,” Plasmonics 2(1), 15–22 (2007).
[CrossRef]

Möller, M.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Morteani, A. C.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Niedereichholz, T.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Nooney, R.

O. Stranik, R. Nooney, C. McDonagh, and B. D. MacCraith, “Optimization of nanoparticle size for plasmonic enhancement of fluorescence,” Plasmonics 2(1), 15–22 (2007).
[CrossRef]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Pastoriza-Santos, I.

C. Fernandez-Lopez, C. Mateo-Mateo, R. A. Alvarez-Puebla, J. Perez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzan, “Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles,” Langmuir 25(24), 13894–13899 (2009).
[CrossRef] [PubMed]

Perez-Juste, J.

C. Fernandez-Lopez, C. Mateo-Mateo, R. A. Alvarez-Puebla, J. Perez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzan, “Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles,” Langmuir 25(24), 13894–13899 (2009).
[CrossRef] [PubMed]

Pond, J.

Rainville, L.

M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett. 9(8), 3066–3071 (2009).
[CrossRef] [PubMed]

Reichenbach, P.

Reinhoudt, D. N.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Rioux, M.

M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett. 9(8), 3066–3071 (2009).
[CrossRef] [PubMed]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Stranik, O.

O. Stranik, R. Nooney, C. McDonagh, and B. D. MacCraith, “Optimization of nanoparticle size for plasmonic enhancement of fluorescence,” Plasmonics 2(1), 15–22 (2007).
[CrossRef]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Tam, F.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

Tovmachenko, O. G.

O. G. Tovmachenko, C. Graf, D. J. van den Heuvel, A. van Blaaderen, and H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater. 18(1), 91–95 (2006).
[CrossRef]

Tsai, D. P.

H. Y. Xie, H. Y. Chung, P. T. Leung, and D. P. Tsai, “Plasmonic enhancement of Förster energy transfer between two molecules in the vicinity of a metallic nanoparticle: Nonlocal optical effects,” Phys. Rev. B 80(15), 155448 (2009).
[CrossRef]

van Blaaderen, A.

O. G. Tovmachenko, C. Graf, D. J. van den Heuvel, A. van Blaaderen, and H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater. 18(1), 91–95 (2006).
[CrossRef]

van den Heuvel, D. J.

O. G. Tovmachenko, C. Graf, D. J. van den Heuvel, A. van Blaaderen, and H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater. 18(1), 91–95 (2006).
[CrossRef]

van Veggel, F. C. J. M.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Wang, W.

W. Wang, Z. Li, B. Gu, Z. Zhang, and H. Xu, “Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering,” ACS Nano 3(11), 3493–3496 (2009).
[CrossRef] [PubMed]

Weeber, J. C.

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Wu, M.

K. Aslan, M. Wu, J. R. Lakowicz, and C. D. Geddes, “Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms,” J. Am. Chem. Soc. 129(6), 1524–1525 (2007).
[CrossRef] [PubMed]

K. Aslan, M. Wu, J. R. Lakowicz, and C. D. Geddes, “Metal enhanced fluorescence solution-based sensing platform 2: fluorescent core-shell Ag@SiO2 nanoballs,” J. Fluoresc. 17(2), 127–131 (2007).
[CrossRef] [PubMed]

Xie, H. Y.

H. Y. Xie, H. Y. Chung, P. T. Leung, and D. P. Tsai, “Plasmonic enhancement of Förster energy transfer between two molecules in the vicinity of a metallic nanoparticle: Nonlocal optical effects,” Phys. Rev. B 80(15), 155448 (2009).
[CrossRef]

Xu, H.

W. Wang, Z. Li, B. Gu, Z. Zhang, and H. Xu, “Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering,” ACS Nano 3(11), 3493–3496 (2009).
[CrossRef] [PubMed]

Xu, Q.-H.

D. Cheng and Q.-H. Xu, “Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles,” Chem. Commun. (Camb.) 2007(3), 248–250 (2007).
[CrossRef]

Zhang, Z.

W. Wang, Z. Li, B. Gu, Z. Zhang, and H. Xu, “Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering,” ACS Nano 3(11), 3493–3496 (2009).
[CrossRef] [PubMed]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

ACS Nano (2)

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[CrossRef] [PubMed]

W. Wang, Z. Li, B. Gu, Z. Zhang, and H. Xu, “Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering,” ACS Nano 3(11), 3493–3496 (2009).
[CrossRef] [PubMed]

Adv. Mater. (1)

O. G. Tovmachenko, C. Graf, D. J. van den Heuvel, A. van Blaaderen, and H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater. 18(1), 91–95 (2006).
[CrossRef]

Anal. Biochem. (1)

J. R. Lakowicz, “Radiative decay engineering 5: metal-enhanced fluorescence and plasmon emission,” Anal. Biochem. 337(2), 171–194 (2005).
[CrossRef] [PubMed]

Chem. Commun. (Camb.) (1)

D. Cheng and Q.-H. Xu, “Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles,” Chem. Commun. (Camb.) 2007(3), 248–250 (2007).
[CrossRef]

J. Am. Chem. Soc. (1)

K. Aslan, M. Wu, J. R. Lakowicz, and C. D. Geddes, “Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms,” J. Am. Chem. Soc. 129(6), 1524–1525 (2007).
[CrossRef] [PubMed]

J. Fluoresc. (1)

K. Aslan, M. Wu, J. R. Lakowicz, and C. D. Geddes, “Metal enhanced fluorescence solution-based sensing platform 2: fluorescent core-shell Ag@SiO2 nanoballs,” J. Fluoresc. 17(2), 127–131 (2007).
[CrossRef] [PubMed]

J. Opt. Soc. Am. B (1)

J. Quant. Spectrosc. Radiat. Transf. (1)

J.-W. Liaw, J.-H. Chen, and C.-S. Chen, “Enhancement or quenching effect of metallic nanodimer on spontaneous emission,” J. Quant. Spectrosc. Radiat. Transf. 111(3), 454–465 (2010).
[CrossRef]

Langmuir (1)

C. Fernandez-Lopez, C. Mateo-Mateo, R. A. Alvarez-Puebla, J. Perez-Juste, I. Pastoriza-Santos, and L. M. Liz-Marzan, “Highly controlled silica coating of PEG-capped metal nanoparticles and preparation of SERS-encoded particles,” Langmuir 25(24), 13894–13899 (2009).
[CrossRef] [PubMed]

Nano Lett. (2)

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

M. Lessard-Viger, M. Rioux, L. Rainville, and D. Boudreau, “FRET enhancement in multilayer core-shell nanoparticles,” Nano Lett. 9(8), 3066–3071 (2009).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

Y. Jin and X. Gao, “Plasmonic fluorescent quantum dots,” Nat. Nanotechnol. 4(9), 571–576 (2009).
[CrossRef] [PubMed]

Nature (1)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009).
[CrossRef] [PubMed]

Opt. Express (4)

Phys. Rev. B (2)

H. Y. Xie, H. Y. Chung, P. T. Leung, and D. P. Tsai, “Plasmonic enhancement of Förster energy transfer between two molecules in the vicinity of a metallic nanoparticle: Nonlocal optical effects,” Phys. Rev. B 80(15), 155448 (2009).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett. (3)

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Plasmonics (1)

O. Stranik, R. Nooney, C. McDonagh, and B. D. MacCraith, “Optimization of nanoparticle size for plasmonic enhancement of fluorescence,” Plasmonics 2(1), 15–22 (2007).
[CrossRef]

Other (1)

C.-T. Tai, Dyadic Green's Functions in Electromagnetic Theory (IEEE, 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Configuration of a coreshell (Ag@SiO2) containing a molecule (with an arbitrarily oriented dipole moment) embedded in the silica shell, irradiated by a x-polarized plane wave. The radii of the Ag core and the coreshell, are denoted by a 2 and a 1 , respectively. There are four typical embedded positions (A, B, C and D, they are on x, −z, y and z axes, respectively) of a single molecule in the middle of the silica shell.

Fig. 2
Fig. 2

(a) Spherical plot of the 3D profile of EF versus dipole orientations at λ e x = λ e m = 420     nm for a coreshell ( a 2 = 25   nm ,     t s = 15   nm ) containing a molecule located at point A, where EEF is 55.052. (b) x-z plane, (c) y-z plane, and (d) x-y plane cross sections of (a).

Fig. 3
Fig. 3

(a) Spherical plot of the 3D profile of EEF versus molecule positions for a coreshell ( a 2 = 25   nm ,     t s = 15   nm ) at λ e x = λ e m = 420     nm , where molecules locate at the middle layer of the shell (d = 7.5 nm). AEF is 23.485. (b) x-z plane, (c) y-z plane, and (d) x-y plane cross sections of (a). EEF = 56.55 (A′), 55.052 (A), 8.819(B), 7.512(C), 6.281(D). In the 3D profile, the maximum EEF occurs at the point A′, and the minimum EEF at the point D.

Fig. 4
Fig. 4

AEF versus distances d between the molecules-layer and the Ag core of a coreshell ( a 2 = 25   nm ,     t s = 15   nm ) at λ e x = λ e m = 420     nm . The maximum AEF (34.37) occurs at d = 4 nm. The AEF of the entire shell is 18.78.

Fig. 5
Fig. 5

(a) AEF versus wavelengths for a coreshell of a 2 = 25   nm with different shell thicknesses t s . (b) AEF versus wavelengths for a coreshell of t s = 15   nm with different core radii a 2 .

Fig. 6
Fig. 6

AEF versus emission wavelengths λ e m for a molecules-doped Ag@SiO2 of a 2 = 25   nm ,     t s = 15   nm excited by different lasers ( λ e x = 405, 428, 458, 488, 561, and 633 nm).

Fig. 7
Fig. 7

AEF of Ag@SiO2 of a 5 nm silica layer with molecules attached on the outer surface excited by a laser of λ e x = 450 nm for emission of λ e m = 620 nm, compared with the experimental data of Ref [15].

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

α ( e p , x d ; λ e x , λ e m ) = | E ( x d ; λ e x ) e p | 2 | E i | 2 η ( e p x d ; λ e m )
α M ( x d ; λ e c , λ e m ) = 1 4 π 0 4 π α ( e p , x d ; λ e x , λ e m ) d Ω
α ^ A ( a 2 + d ; λ e x , λ e m ) = 1 4 π 0 4 π α E ( a 2 + d ,     Ω ; λ e x , λ e m ) d Ω
α A ( λ e x , λ e m ) = 4 π V 0 r i a 1 α ^ A ( r   ; λ e x , λ e m ) r 2 d r

Metrics