Abstract

Surface plasmon-coupled emission from shaped PMMA films doped with randomly oriented fluorescence molecules was investigated. Experimental results show that for different shapes, such as triangle or circular structures, the SPCE ring displays different intensity patterns. For a given shape, it was observed that the relative position and polarization of an incident laser spot on the shaped PMMA can be used to adjust the fluorescence intensity distribution of the SPCE ring. The proposed method enables controlling the fluorescence emission in azimuthal direction in addition to the radial angle controlled by common SPCE, which will further enhances the fluorescence collection efficiency and has applications in fluorescence sensing, imaging and so on.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  2. J. R. Lakowicz and Y. Fu, “Modification of single molecule fluorescence near metallic nanostructures,” Laser & Photonics Reviews 3(1-2), 221–232 (2009).
    [CrossRef]
  3. J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, “Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles,” Nano Lett. 7(7), 2101–2107 (2007).
    [CrossRef] [PubMed]
  4. J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
    [CrossRef] [PubMed]
  5. J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324(2), 153–169 (2004).
    [CrossRef]
  6. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem. 324(2), 170–182 (2004).
    [CrossRef]
  7. C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Directional surface plasmon coupled emission,” J. Fluoresc. 14(1), 119–123 (2004).
    [CrossRef] [PubMed]
  8. N. Calander, “Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures,” Anal. Chem. 76(8), 2168–2173 (2004).
    [CrossRef] [PubMed]
  9. H. M. Hiep, M. Fujii, and S. Hayashi, Effects of molecular orientation on surface-plasmon-coupled emission patterns, Appl.Phys.Lett, 91, 183110–1-3(2007).
  10. M. Ghazali, F. Adlina, F. Minoru, and H. Shinji, Anisotropic propagation of surface plasmon polaritons caused by oriented molecular overlayer, Appl.Phys.Lett, 95, 033303–1-3(2009).
  11. A. Bouhelier and G. P. Wiederrecht, Excitation of broadband surface plasmon polaritons: Plasmonic continuum spectroscopy, Phys. Rev. B, 71, 195406–1-5 (2005).
  12. D. G. Zhang, X.-C. Yuan, A. Bouhelier, G. H. Yuan, P. Wang, and H. Ming, Active control of surface plasmon polaritons by optical isomerization of an azobenzene polymer film, Appl. Phys. Lett 95, 101102–1-3(2009).
  13. A. L. Stepanov, J. R. Krenn, H. Ditlbacher, A. Hohenau, A. Drezet, B. Steinberger, A. Leitner, and F. R. Aussenegg, “Quantitative analysis of surface plasmon interaction with silver nanoparticles,” Opt. Lett. 30(12), 1524–1526 (2005).
    [CrossRef] [PubMed]
  14. D. G. Zhang, X.-C. Yuan, J. Bu, G. H. Yuan, Q. Wang, J. Lin, X. J. Zhang, P. Wang, H. Ming, and T. Mei, “Surface plasmon converging and diverging properties modulated by polymer refractive structures on metal films,” Opt. Express 17(14), 11315–11320 (2009).
    [CrossRef] [PubMed]
  15. D. G. Zhang, X.-C. Yuan, A. Bouhelier, P. Wang, and H. Ming, “Excitation of surface plasmon polaritons guided mode by Rhodamine B molecules doped in a PMMA stripe,” Opt. Lett. 35(3), 408–410 (2010).
    [CrossRef] [PubMed]
  16. D. G. Zhang, X.-C. Yuan, G. H. Yuan, P. Wang, and H. Ming, “Directional fluorescence emission characterized with leakage radiation microscopy,” J. Opt. 12(3), 035002 (2010).
    [CrossRef]
  17. D. G. Zhang, X. C. Yuan, and A. Bouhelier, “Direct image of surface-plasmon-coupled emission by leakage radiation microscopy,” Appl. Opt. 49(5), 875–879 (2010).
    [CrossRef] [PubMed]
  18. Q. W. Zhan and J. Leger, “Focus shaping using cylindrical vector beams,” Opt. Express 10(7), 324–331 (2002).
    [PubMed]

2010 (3)

2009 (2)

2007 (1)

J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, “Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles,” Nano Lett. 7(7), 2101–2107 (2007).
[CrossRef] [PubMed]

2005 (1)

2004 (4)

J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324(2), 153–169 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem. 324(2), 170–182 (2004).
[CrossRef]

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Directional surface plasmon coupled emission,” J. Fluoresc. 14(1), 119–123 (2004).
[CrossRef] [PubMed]

N. Calander, “Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures,” Anal. Chem. 76(8), 2168–2173 (2004).
[CrossRef] [PubMed]

2003 (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[CrossRef] [PubMed]

2002 (1)

Aussenegg, F. R.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bouhelier, A.

Bu, J.

Calander, N.

N. Calander, “Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures,” Anal. Chem. 76(8), 2168–2173 (2004).
[CrossRef] [PubMed]

Chowdhury, M. H.

J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, “Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles,” Nano Lett. 7(7), 2101–2107 (2007).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ditlbacher, H.

Drezet, A.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Fu, Y.

J. R. Lakowicz and Y. Fu, “Modification of single molecule fluorescence near metallic nanostructures,” Laser & Photonics Reviews 3(1-2), 221–232 (2009).
[CrossRef]

J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, “Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles,” Nano Lett. 7(7), 2101–2107 (2007).
[CrossRef] [PubMed]

Geddes, C. D.

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Directional surface plasmon coupled emission,” J. Fluoresc. 14(1), 119–123 (2004).
[CrossRef] [PubMed]

Gryczynski, I.

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Directional surface plasmon coupled emission,” J. Fluoresc. 14(1), 119–123 (2004).
[CrossRef] [PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem. 324(2), 170–182 (2004).
[CrossRef]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[CrossRef] [PubMed]

Gryczynski, Z.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem. 324(2), 170–182 (2004).
[CrossRef]

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Directional surface plasmon coupled emission,” J. Fluoresc. 14(1), 119–123 (2004).
[CrossRef] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[CrossRef] [PubMed]

Hohenau, A.

Krenn, J. R.

Lakowicz, J. R.

J. R. Lakowicz and Y. Fu, “Modification of single molecule fluorescence near metallic nanostructures,” Laser & Photonics Reviews 3(1-2), 221–232 (2009).
[CrossRef]

J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, “Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles,” Nano Lett. 7(7), 2101–2107 (2007).
[CrossRef] [PubMed]

J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324(2), 153–169 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem. 324(2), 170–182 (2004).
[CrossRef]

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Directional surface plasmon coupled emission,” J. Fluoresc. 14(1), 119–123 (2004).
[CrossRef] [PubMed]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[CrossRef] [PubMed]

Leger, J.

Leitner, A.

Lin, J.

Malicka, J.

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Directional surface plasmon coupled emission,” J. Fluoresc. 14(1), 119–123 (2004).
[CrossRef] [PubMed]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem. 324(2), 170–182 (2004).
[CrossRef]

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[CrossRef] [PubMed]

Mei, T.

Ming, H.

Steinberger, B.

Stepanov, A. L.

Wang, P.

Wang, Q.

Yuan, G. H.

Yuan, X. C.

Yuan, X.-C.

Zhan, Q. W.

Zhang, D. G.

Zhang, J.

J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, “Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles,” Nano Lett. 7(7), 2101–2107 (2007).
[CrossRef] [PubMed]

Zhang, X. J.

Anal. Biochem. (2)

J. R. Lakowicz, “Radiative decay engineering 3. Surface plasmon-coupled directional emission,” Anal. Biochem. 324(2), 153–169 (2004).
[CrossRef]

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission,” Anal. Biochem. 324(2), 170–182 (2004).
[CrossRef]

Anal. Chem. (1)

N. Calander, “Theory and simulation of surface plasmon-coupled directional emission from fluorophores at planar structures,” Anal. Chem. 76(8), 2168–2173 (2004).
[CrossRef] [PubMed]

Appl. Opt. (1)

Biochem. Biophys. Res. Commun. (1)

J. R. Lakowicz, J. Malicka, I. Gryczynski, and Z. Gryczynski, “Directional surface plasmon-coupled emission: A new method for high sensitivity detection,” Biochem. Biophys. Res. Commun. 307(3), 435–439 (2003).
[CrossRef] [PubMed]

J. Fluoresc. (1)

C. D. Geddes, I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Directional surface plasmon coupled emission,” J. Fluoresc. 14(1), 119–123 (2004).
[CrossRef] [PubMed]

J. Opt. (1)

D. G. Zhang, X.-C. Yuan, G. H. Yuan, P. Wang, and H. Ming, “Directional fluorescence emission characterized with leakage radiation microscopy,” J. Opt. 12(3), 035002 (2010).
[CrossRef]

Laser & Photonics Reviews (1)

J. R. Lakowicz and Y. Fu, “Modification of single molecule fluorescence near metallic nanostructures,” Laser & Photonics Reviews 3(1-2), 221–232 (2009).
[CrossRef]

Nano Lett. (1)

J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, “Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles,” Nano Lett. 7(7), 2101–2107 (2007).
[CrossRef] [PubMed]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Other (4)

H. M. Hiep, M. Fujii, and S. Hayashi, Effects of molecular orientation on surface-plasmon-coupled emission patterns, Appl.Phys.Lett, 91, 183110–1-3(2007).

M. Ghazali, F. Adlina, F. Minoru, and H. Shinji, Anisotropic propagation of surface plasmon polaritons caused by oriented molecular overlayer, Appl.Phys.Lett, 95, 033303–1-3(2009).

A. Bouhelier and G. P. Wiederrecht, Excitation of broadband surface plasmon polaritons: Plasmonic continuum spectroscopy, Phys. Rev. B, 71, 195406–1-5 (2005).

D. G. Zhang, X.-C. Yuan, A. Bouhelier, G. H. Yuan, P. Wang, and H. Ming, Active control of surface plasmon polaritons by optical isomerization of an azobenzene polymer film, Appl. Phys. Lett 95, 101102–1-3(2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the experimental set-up, leaky radiation microscopy.

Fig. 2
Fig. 2

(a): Bright-field transmission image of triangular PMMA film acquired by the CCD camera without filter. The central bright spot is the focused laser spot. (b) direct-space fluorescence image; (c) Fourier plane fluorescence image. White boxes marked with 1, 2, 3 represent the stronger area on the SPCE ring.

Fig. 3
Fig. 3

(a): Bright-field transmission image of circular PMMA film acquired by the CCD camera without long pass filter. The central bright spot is the focused laser spot. (b) direct-space fluorescence image; (c) Fourier plane fluorescence image.

Fig. 4
Fig. 4

Different irradiated position related to the square PMMA film. (a), (d) and (g): Bright-field transmission image of square shape PMMA film acquired by the CCD camera without long pass edge filter. The central bright point is the focused laser spot. (b), (e) and (h) are direct-space fluorescence images; (c), (f) and (i) are the Fourier plane fluorescence images.

Fig. 5
Fig. 5

Different polarization of the excitation beam. Direct space fluorescence image with circularly polarized (a), vertically linearly polarized (b) and horizontally linear polarized excitation beam focused onto the center of the square PMMA film.

Metrics