Abstract

2D images of label-free biochips exploiting resonant waveguide grating (RWG) are presented. They indicate sensitivities on the order of 1 pg/mm2 for proteins in air, and hence 10 pg/mm2 in water can be safely expected. A 320×256 pixels Aluminum-Gallium-Nitride-based sensor array is used, with an intrinsic narrow spectral window centered at 280 nm. The additional role of characteristic biological layer absorption at this wavelength is calculated, and regimes revealing its impact are discussed. Experimentally, the resonance of a chip coated with protein is revealed and the sensitivity evaluated through angular spectroscopy and imaging. In addition to a sensitivity similar to surface plasmon resonance (SPR), the RWGs resonance can be flexibly tailored to gain spatial, biochemical, or spectral sensitivity.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Hessel and A. A. Oliner, “A New Theory of Wood’s Anomalies on Optical Gratings,” Appl. Opt. 4(10), 1275–1297 (1965).
    [CrossRef]
  2. U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
    [CrossRef]
  3. I. E. Araci, S. B. Mendes, N. Yurt, S. Honkanen, and N. Peyghambarian, “Highly sensitive spectroscopic detection of heme-protein submonolayer films by channel integrated optical waveguide,” Opt. Express 15(9), 5595–5603 (2007).
    [CrossRef] [PubMed]
  4. M. Nakkach, P. Lecaruyer, F. Bardin, J. Sakly, Z. Ben Lakhdar, and M. Canva, “Absorption and related optical dispersion effects on the spectral response of a surface plasmon resonance sensor,” Appl. Opt. 47(33), 6177–6182 (2008).
    [CrossRef] [PubMed]
  5. I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, “A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces,” Opt. Express 17(15), 13222–13235 (2009).
    [CrossRef] [PubMed]
  6. I. D. Block, P. C. Mathias, S. I. Jones, L. O. Vodkin, and B. T. Cunningham, “Optimizing the spatial resolution of photonic crystal label-free imaging,” Appl. Opt. 48(34), 6567–6574 (2009).
    [CrossRef] [PubMed]
  7. R. B. M. Schasfoort, and A. McWhirter, in Handbook of surface plasmon resonance (R.B.M Schasfoort and A. J. Tudos, RSC Publishing Enschede, Netherlands, 2007), Chap. 3.
  8. P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Act. Chem. 99(1), 6–13 (2004).
    [CrossRef]
  9. E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Bios. Bioelec. 11(6-7), 635–649 (1996).
    [CrossRef]
  10. N. Ganesh, I. D. Block, and B. T. Cunningham, “Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” Appl. Phys. Lett. 89(2), 023901 (2006).
    [CrossRef]
  11. K. Robin, J. L. Reverchon, L. Mugherli, M. Fromant, P. Plateau, and H. Benisty, “Detection of biological macromolecules on a biochip dedicated to UV specific absorption,” Bios. Bioelec. 24(6), 1585–1591 (2009).
    [CrossRef]
  12. J. L. Reverchon, J. A. Robo, J. P. Truffer, J. P. Caumes, I. Mourad, J. Brault, and J. Y. Duboz, “AlGaN-based focal plane arrays for selective UV imaging at 310nm and 280nm and route toward deep UV imaging”, Proc. SPIE 6744 (2007).
    [CrossRef]
  13. K. Robin, J. L. Reverchon, L. Mugherli, M. Fromant, and H. Benisty, “Biodetection of DNA and proteins using enhanced UV absorption by structuration of the chip surface”, Proc. SPIE 7188-04 (2009).
    [CrossRef]
  14. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13(5), 1024–1035 (1996).
    [CrossRef]
  15. A. David, “High efficiency GaN-based LEDs: light extraction by photonic crystals,” Ann. Phys. (Paris) 31(6), 1–235 (2006).
  16. F. David, Edwards, “Silicon (Si)” in Handbook of optical constants of Solids, E. D. Palik ed.(Academic, Press, 1985).
  17. V. Brioude and O. Parriaux, “Normalised analysis for the design of evanescent-wave sensors and its use for tolerance evaluation,” Opt. Quant. Elec. 32(6/8), 899–908 (2000).
    [CrossRef]
  18. D. Bahatt, J. E. Cahill, K. Nishikida, E. G. Picozza, P. G. Saviano, D. H. Tracy, and Y. Wang, “Optical resonance analysis system”, US patent 7251085, (2007).
  19. E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
    [CrossRef] [PubMed]

2009

2008

M. Nakkach, P. Lecaruyer, F. Bardin, J. Sakly, Z. Ben Lakhdar, and M. Canva, “Absorption and related optical dispersion effects on the spectral response of a surface plasmon resonance sensor,” Appl. Opt. 47(33), 6177–6182 (2008).
[CrossRef] [PubMed]

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[CrossRef] [PubMed]

2007

2006

A. David, “High efficiency GaN-based LEDs: light extraction by photonic crystals,” Ann. Phys. (Paris) 31(6), 1–235 (2006).

N. Ganesh, I. D. Block, and B. T. Cunningham, “Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” Appl. Phys. Lett. 89(2), 023901 (2006).
[CrossRef]

2004

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Act. Chem. 99(1), 6–13 (2004).
[CrossRef]

2000

V. Brioude and O. Parriaux, “Normalised analysis for the design of evanescent-wave sensors and its use for tolerance evaluation,” Opt. Quant. Elec. 32(6/8), 899–908 (2000).
[CrossRef]

1996

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Bios. Bioelec. 11(6-7), 635–649 (1996).
[CrossRef]

L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13(5), 1024–1035 (1996).
[CrossRef]

1965

1961

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[CrossRef]

Araci, I. E.

Bardin, F.

Bashir, R.

Ben Lakhdar, Z.

Benisty, H.

K. Robin, J. L. Reverchon, L. Mugherli, M. Fromant, P. Plateau, and H. Benisty, “Detection of biological macromolecules on a biochip dedicated to UV specific absorption,” Bios. Bioelec. 24(6), 1585–1591 (2009).
[CrossRef]

Bergstein, D. A.

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[CrossRef] [PubMed]

Block, I. D.

Brioude, V.

V. Brioude and O. Parriaux, “Normalised analysis for the design of evanescent-wave sensors and its use for tolerance evaluation,” Opt. Quant. Elec. 32(6/8), 899–908 (2000).
[CrossRef]

Cabodi, M.

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[CrossRef] [PubMed]

Canva, M.

Chaudhery, V.

Cunningham, B. T.

I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, “A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces,” Opt. Express 17(15), 13222–13235 (2009).
[CrossRef] [PubMed]

I. D. Block, P. C. Mathias, S. I. Jones, L. O. Vodkin, and B. T. Cunningham, “Optimizing the spatial resolution of photonic crystal label-free imaging,” Appl. Opt. 48(34), 6567–6574 (2009).
[CrossRef] [PubMed]

N. Ganesh, I. D. Block, and B. T. Cunningham, “Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” Appl. Phys. Lett. 89(2), 023901 (2006).
[CrossRef]

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Act. Chem. 99(1), 6–13 (2004).
[CrossRef]

David, A.

A. David, “High efficiency GaN-based LEDs: light extraction by photonic crystals,” Ann. Phys. (Paris) 31(6), 1–235 (2006).

Dorvel, B. R.

Fano, U.

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[CrossRef]

Fromant, M.

K. Robin, J. L. Reverchon, L. Mugherli, M. Fromant, P. Plateau, and H. Benisty, “Detection of biological macromolecules on a biochip dedicated to UV specific absorption,” Bios. Bioelec. 24(6), 1585–1591 (2009).
[CrossRef]

Ganesh, N.

Gershoni, J. M.

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[CrossRef] [PubMed]

Gerstenmaier, J.

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Act. Chem. 99(1), 6–13 (2004).
[CrossRef]

Goldberg, B. B.

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[CrossRef] [PubMed]

Gonzalez, R.

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[CrossRef] [PubMed]

Hessel, A.

Honkanen, S.

Jones, S. I.

Lecaruyer, P.

Li, L.

Li, P. Y.

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Act. Chem. 99(1), 6–13 (2004).
[CrossRef]

Lin, B.

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Act. Chem. 99(1), 6–13 (2004).
[CrossRef]

Mathias, P. C.

Mendes, S. B.

Mugherli, L.

K. Robin, J. L. Reverchon, L. Mugherli, M. Fromant, P. Plateau, and H. Benisty, “Detection of biological macromolecules on a biochip dedicated to UV specific absorption,” Bios. Bioelec. 24(6), 1585–1591 (2009).
[CrossRef]

Nakkach, M.

Needham, J. W.

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[CrossRef] [PubMed]

Oliner, A. A.

Özkumur, E.

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[CrossRef] [PubMed]

Parriaux, O.

V. Brioude and O. Parriaux, “Normalised analysis for the design of evanescent-wave sensors and its use for tolerance evaluation,” Opt. Quant. Elec. 32(6/8), 899–908 (2000).
[CrossRef]

Peyghambarian, N.

Plateau, P.

K. Robin, J. L. Reverchon, L. Mugherli, M. Fromant, P. Plateau, and H. Benisty, “Detection of biological macromolecules on a biochip dedicated to UV specific absorption,” Bios. Bioelec. 24(6), 1585–1591 (2009).
[CrossRef]

Reverchon, J. L.

K. Robin, J. L. Reverchon, L. Mugherli, M. Fromant, P. Plateau, and H. Benisty, “Detection of biological macromolecules on a biochip dedicated to UV specific absorption,” Bios. Bioelec. 24(6), 1585–1591 (2009).
[CrossRef]

Robin, K.

K. Robin, J. L. Reverchon, L. Mugherli, M. Fromant, P. Plateau, and H. Benisty, “Detection of biological macromolecules on a biochip dedicated to UV specific absorption,” Bios. Bioelec. 24(6), 1585–1591 (2009).
[CrossRef]

Sakly, J.

Unlü, M. S.

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[CrossRef] [PubMed]

Vodkin, L. O.

Yeatman, E. M.

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Bios. Bioelec. 11(6-7), 635–649 (1996).
[CrossRef]

Yurt, N.

Ann. Phys. (Paris)

A. David, “High efficiency GaN-based LEDs: light extraction by photonic crystals,” Ann. Phys. (Paris) 31(6), 1–235 (2006).

Appl. Opt.

Appl. Phys. Lett.

N. Ganesh, I. D. Block, and B. T. Cunningham, “Near ultraviolet-wavelength photonic-crystal biosensor with enhanced surface-to-bulk sensitivity ratio,” Appl. Phys. Lett. 89(2), 023901 (2006).
[CrossRef]

Bios. Bioelec.

K. Robin, J. L. Reverchon, L. Mugherli, M. Fromant, P. Plateau, and H. Benisty, “Detection of biological macromolecules on a biochip dedicated to UV specific absorption,” Bios. Bioelec. 24(6), 1585–1591 (2009).
[CrossRef]

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Bios. Bioelec. 11(6-7), 635–649 (1996).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Express

Opt. Quant. Elec.

V. Brioude and O. Parriaux, “Normalised analysis for the design of evanescent-wave sensors and its use for tolerance evaluation,” Opt. Quant. Elec. 32(6/8), 899–908 (2000).
[CrossRef]

Phys. Rev.

U. Fano, “Effects of Configuration Interaction on Intensities and Phase Shifts,” Phys. Rev. 124(6), 1866–1878 (1961).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

E. Özkumur, J. W. Needham, D. A. Bergstein, R. Gonzalez, M. Cabodi, J. M. Gershoni, B. B. Goldberg, and M. S. Unlü, “Label-free and dynamic detection of biomolecular interactions for high-throughput microarray applications,” Proc. Natl. Acad. Sci. U.S.A. 105(23), 7988–7992 (2008).
[CrossRef] [PubMed]

Sens. Act. Chem.

P. Y. Li, B. Lin, J. Gerstenmaier, and B. T. Cunningham, “A new method for label-free imaging of biomolecular interactions,” Sens. Act. Chem. 99(1), 6–13 (2004).
[CrossRef]

Other

R. B. M. Schasfoort, and A. McWhirter, in Handbook of surface plasmon resonance (R.B.M Schasfoort and A. J. Tudos, RSC Publishing Enschede, Netherlands, 2007), Chap. 3.

J. L. Reverchon, J. A. Robo, J. P. Truffer, J. P. Caumes, I. Mourad, J. Brault, and J. Y. Duboz, “AlGaN-based focal plane arrays for selective UV imaging at 310nm and 280nm and route toward deep UV imaging”, Proc. SPIE 6744 (2007).
[CrossRef]

K. Robin, J. L. Reverchon, L. Mugherli, M. Fromant, and H. Benisty, “Biodetection of DNA and proteins using enhanced UV absorption by structuration of the chip surface”, Proc. SPIE 7188-04 (2009).
[CrossRef]

D. Bahatt, J. E. Cahill, K. Nishikida, E. G. Picozza, P. G. Saviano, D. H. Tracy, and Y. Wang, “Optical resonance analysis system”, US patent 7251085, (2007).

F. David, Edwards, “Silicon (Si)” in Handbook of optical constants of Solids, E. D. Palik ed.(Academic, Press, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Schemes of detection instrumentation (a) for spectroscopy characterization where the large spectrum reflected signal is measured through an optical fiber and (b) for the imaging set-up, where the light is filtered through a monochromator and measured with a UV 2D detector; (c) Top view of the 2D biochip with spots of typical size 140 μm with center to center distance of 400 μm.

Fig. 2.
Fig. 2.

Side view and electric field profiles first for (a) a non-corrugated chip showing the λ/2 SiN thickness and 3λ/4 SiO2 layer optical thicknesses (b) for the SiO2 mode and (c) for the SiN mode.

Fig. 3.
Fig. 3.

(a) Reflectivity profile of the chip R0 for a θ = 39° incidence angle without (solid line) and with a MetRS protein layer (dashed line); the bottom graph is the contrast C referred to the right side scale for this air ambient; (b) R (λ,θ) reflectivity map evidencing SiO2 and SiN modes and (c) Similar map of reflectivity induced contrast C(λ,θ); the SiN mode strongly interacts with the biological layer.

Fig. 4.
Fig. 4.

(a) Reflectivity modification for various hypothetical nondispersive top layers: the bare chip is the solid black line, the three other cases are:“tryptophan layer” (dotted line, n = 1.49+0.06i), “nonabsorbing layer” (dashed line n = 1.49+0i) and “pure absorbing medium” (dash-dotted n = 1+0.06i) ; (b) Induced reflectivity contrast C(λ) for the three cases. These RWG reflectivity contrasts would be further modulated by the absorption spectra (tryptophan band around λ = 280 nm indicated).

Fig. 5.
Fig. 5.

(a) Reflectivity for different ambient media without (solid line) and with (dashed line) protein monolayer; for a θ = 39° incidence angle; (b) Induced reflectivity contrast C(λ) for the three cases, taking into account instrumental resolution ∆θ = 0.6° and ∆λ = 1.5 nm.

Fig. 6.
Fig. 6.

Experimental data to be compared with Fig. 3. (a) Spectra R(λ) at θ = 39° without and with a 2.5 nm protein layer; (b) Comparison at θ = 39°of experimental and theoretical contrast, i.e. Cair of Fig. 5(b), here on the full 250–310 nm scale; (c) (θ,2θ) Chip spectroscopic characterization map. (d) Contrast map C(λ,θ) for angles 10° to 50° (a finer angular scan than Fig. 6(c) was used).

Fig. 7.
Fig. 7.

(a) Images of biochip for different incidence angles from 37.5 to 40° of incidence angle. The contrast is induced by the shift of the resonance wavelength. The bar is 1 mm. (b) Theoretical reflectivity with and without protein calculated taking into account a ∆λ = 1.5 nm spectral resolution and ∆θ = 1° angular aperture for sufficient incidence flux (c) Average of nine horizontal reflectivity profiles R(x) chosen in scratch-free regions of the image: they run across 3 sets of 3 spots on lines 2, 3 and 5. Three different angles profiles are plotted, illustrating positive contrast (θ = 40°, black spots on bright field), null contrast (θ = 39°), and negative contrast (θ = 38°, bright spots on dark field) and (d) Experimental reflectivity values of the images plotted for each incidence angle inside and outside biological spots, and simulated curves. An image of a single spot at each angle is also given.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

n eff ( λ r , θ r ) = n a sin 0 ( θ ) + m λ r Λ
C = Δ R R = R chip R spot R chip , Γ abs = C / α

Metrics