Abstract

Raman spectroscopy permits probing of the molecular and chemical properties of the analyzed sample. However, its applicability has been seriously limited to specific applications by the presence of a strong fluorescence background. In our recent paper [Anal. Chem. 82, 738 (2010)], we reported a new modulation method for separating Raman scattering from fluorescence. By continuously changing the excitation wavelength, we demonstrated that it is possible to continuously shift the Raman peaks while the fluorescence background remains essentially constant. In this way, our method allows separation of the modulated Raman peaks from the static fluorescence background with important advantages when compared to previous work using only two [Appl. Spectrosc. 46, 707 (1992)] or a few shifted excitation wavelengths [Opt. Express 16, 10975 (2008)]. The purpose of the present work is to demonstrate a significant improvement of the efficacy of the modulated method by using different processing algorithms. The merits of each algorithm (Standard Deviation analysis, Fourier Filtering, Least-Squares fitting and Principal Component Analysis) are discussed and the dependence of the modulated Raman signal on several parameters, such as the amplitude and the modulation rate of the Raman excitation wavelength, is analyzed. The results of both simulation and experimental data demonstrate that Principal Component Analysis is the best processing algorithm. It improves the signal-to-noise ratio in the treated Raman spectra, reducing required acquisition times. Additionally, this approach does not require any synchronization procedure, reduces user intervention and renders it suitable for real-time applications.

© 2010 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Rusciano, A. C. De Luca, G. Pesce, and A. Sasso, “Raman tweezers as a diagnostic tool of hemoglobin-related blood disorders,” Sensors 8, 7818–7832 (2008).
    [CrossRef]
  2. P. R. T. Jess, V. Garcés-Chávez, A. C. Riches, C. S. Herrington, and K. Dholakia, “Simultaneous Raman microspectroscopy of optically trapped and stacked cells,” J. Raman Spectrosc. 38, 1082–1088 (2007).
    [CrossRef]
  3. J. Chan, D. Taylor, T. Zwerdling, S. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
    [CrossRef]
  4. T. Bridges, R. Uibel, and J. Harris, “Measuring diffusion of molecules into individual polymer particles by confocal Raman microscopy,” Anal. Chem. 78, 2121–2129 (2006).
    [CrossRef] [PubMed]
  5. A. C. De Luca, G. Rusciano, G. Pesce, S. Caserta, S. Guido, and A. Sasso, “Diffusion in polymer blends by Raman microscopy,” Macromolecules 41, 5512–5514 (2008).
    [CrossRef]
  6. H. Cui, P. Liu, and G. W. Yang, “Noble metal nanoparticle patterning deposition using pulsed-laser deposition in liquid for surface-enhanced Raman scattering,” Appl. Phys. Lett. 89, 153124 (2006).
    [CrossRef]
  7. M. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, “Raman spectroscopy of carbon nanotubes,” Phys. Rep. 409, 47–99 (2005).
    [CrossRef]
  8. A. C. De Luca, G. Rusciano, R. Ciancia, V. Martinelli, G. Pesce, B. Rotoli, L. Selvaggi, and A. Sasso, “Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by raman tweezers,” Opt. Express 16, 7943–7957 (2008).
    [CrossRef] [PubMed]
  9. T. Chernenko, C. Matthäus, L. Milane, L. Quintero, M. Amiji, and M. Diem, “Label-free Raman spectral imaging of intracellular delivery and degradation of polymeric nanoparticle systems,” ACS Nano 3, 3552–3559 (2009).
    [CrossRef] [PubMed]
  10. H. Wikström, C. Kakidas, and L. Taylor, “Determination of hydrate transition temperature using transformation kinetics obtained by Raman spectroscopy,” J. Pharm. Biomed. Anal. 49, 247–252 (2009).
    [CrossRef]
  11. F. Zhu, N. Isaacs, L. Hecht, and L. Barron, “Raman optical activity: a tool for protein structure analysis,” Structure 13, 1409–1419 (2005).
    [CrossRef] [PubMed]
  12. P. Caspers, G. Lucassen, and G. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85, 572–580 (2003).
    [CrossRef] [PubMed]
  13. P. R. Jess, D. D. Smith, M. Mazilu, K. Dholakia, A. C. Riches, and C. S. Herrington, “Early detection of cervical neoplasia by Raman spectroscopy,” Int. J. Cancer 121, 2723–2728 (2007).
    [CrossRef] [PubMed]
  14. P. R. Jess, M. Mazilu, K. Dholakia, A. C. Riches, and C. S. Herrington, “Optical detection and granding of lung neoplasia by Raman microspectroscopy,” Int. J. Cancer 124, 376–380 (2009).
    [CrossRef]
  15. A. Shreve, N. Cherepy, and R. Mathies, “Effective rejection of fluorescence interference in Raman spectroscopy using a shifted excitation difference technique,” Appl. Spectrosc. 46, 707–711 (1992).
    [CrossRef]
  16. S. McCain, R. Willett, and D. Brady, “Multi-excitation Raman spectroscopy technique for fluorescence rejection,” Opt. Express 16, 10975–10991 (2008).
    [CrossRef] [PubMed]
  17. I. G. Cormack, M. Mazilu, K. Dholakia, and C. S. Herrington, “Fluorescence suppression within Raman spectroscopy using annular beam excitation,” Appl. Phys. Lett. 91, 023903 (2007).
    [CrossRef]
  18. G. Rusciano, A. C. De Luca, A. Sasso, and G. Pesce, “Phase-sensitive detection in Raman tweezers,” Appl. Phys. Lett. 89, 261116 (2006).
    [CrossRef]
  19. J. Zhao, H. Lui, D. McLean, and H. Zeng, “Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy,” Appl. Spectrosc. 61, 1225–1232 (2007).
    [CrossRef] [PubMed]
  20. B. Beier, and A. Berger, “Method for automated background subtraction from Raman spectra containing known contaminants,” Analyst (Lond.) 134, 1198–1202 (2009).
    [CrossRef] [PubMed]
  21. A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated Raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
    [CrossRef]
  22. P. Mosier-Boss, S. Lieberman, and R. Newbery, “Fluorescence rejection in Raman spectroscopy by shifted spectra, edge detection, and fft filtering techniques,” Appl. Spectrosc. 49, 630–638 (1995).
    [CrossRef]
  23. J. Zhao, M. M. Carrabba, and F. S. Allen, “Automated fluorescence rejection using shifted excitation Raman difference spectroscopy,” Appl. Spectrosc. 56, 834–845 (2002).
    [CrossRef]
  24. F. V. Bright, “Multicomponent suppression of fluorescent interferants using phase-resolved Raman spectroscopy,” Anal. Chem. 60, 1622–1623 (1988).
    [CrossRef] [PubMed]
  25. T. Bridges, M. Houlne, and J. Harris, “Spatially resolved analysis of small particles by confocal Raman microscopy: Depth profiling and optical trapping,” Anal. Chem. 76, 576–584 (2004).
    [CrossRef] [PubMed]
  26. I. T. Jolliffe, “Principal Component Analysis,” 2nd ed. (Springer, New York, 2002).

2010 (1)

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated Raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
[CrossRef]

2009 (4)

B. Beier, and A. Berger, “Method for automated background subtraction from Raman spectra containing known contaminants,” Analyst (Lond.) 134, 1198–1202 (2009).
[CrossRef] [PubMed]

T. Chernenko, C. Matthäus, L. Milane, L. Quintero, M. Amiji, and M. Diem, “Label-free Raman spectral imaging of intracellular delivery and degradation of polymeric nanoparticle systems,” ACS Nano 3, 3552–3559 (2009).
[CrossRef] [PubMed]

H. Wikström, C. Kakidas, and L. Taylor, “Determination of hydrate transition temperature using transformation kinetics obtained by Raman spectroscopy,” J. Pharm. Biomed. Anal. 49, 247–252 (2009).
[CrossRef]

P. R. Jess, M. Mazilu, K. Dholakia, A. C. Riches, and C. S. Herrington, “Optical detection and granding of lung neoplasia by Raman microspectroscopy,” Int. J. Cancer 124, 376–380 (2009).
[CrossRef]

2008 (4)

S. McCain, R. Willett, and D. Brady, “Multi-excitation Raman spectroscopy technique for fluorescence rejection,” Opt. Express 16, 10975–10991 (2008).
[CrossRef] [PubMed]

A. C. De Luca, G. Rusciano, G. Pesce, S. Caserta, S. Guido, and A. Sasso, “Diffusion in polymer blends by Raman microscopy,” Macromolecules 41, 5512–5514 (2008).
[CrossRef]

A. C. De Luca, G. Rusciano, R. Ciancia, V. Martinelli, G. Pesce, B. Rotoli, L. Selvaggi, and A. Sasso, “Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by raman tweezers,” Opt. Express 16, 7943–7957 (2008).
[CrossRef] [PubMed]

G. Rusciano, A. C. De Luca, G. Pesce, and A. Sasso, “Raman tweezers as a diagnostic tool of hemoglobin-related blood disorders,” Sensors 8, 7818–7832 (2008).
[CrossRef]

2007 (4)

P. R. T. Jess, V. Garcés-Chávez, A. C. Riches, C. S. Herrington, and K. Dholakia, “Simultaneous Raman microspectroscopy of optically trapped and stacked cells,” J. Raman Spectrosc. 38, 1082–1088 (2007).
[CrossRef]

P. R. Jess, D. D. Smith, M. Mazilu, K. Dholakia, A. C. Riches, and C. S. Herrington, “Early detection of cervical neoplasia by Raman spectroscopy,” Int. J. Cancer 121, 2723–2728 (2007).
[CrossRef] [PubMed]

I. G. Cormack, M. Mazilu, K. Dholakia, and C. S. Herrington, “Fluorescence suppression within Raman spectroscopy using annular beam excitation,” Appl. Phys. Lett. 91, 023903 (2007).
[CrossRef]

J. Zhao, H. Lui, D. McLean, and H. Zeng, “Automated autofluorescence background subtraction algorithm for biomedical Raman spectroscopy,” Appl. Spectrosc. 61, 1225–1232 (2007).
[CrossRef] [PubMed]

2006 (4)

G. Rusciano, A. C. De Luca, A. Sasso, and G. Pesce, “Phase-sensitive detection in Raman tweezers,” Appl. Phys. Lett. 89, 261116 (2006).
[CrossRef]

H. Cui, P. Liu, and G. W. Yang, “Noble metal nanoparticle patterning deposition using pulsed-laser deposition in liquid for surface-enhanced Raman scattering,” Appl. Phys. Lett. 89, 153124 (2006).
[CrossRef]

J. Chan, D. Taylor, T. Zwerdling, S. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[CrossRef]

T. Bridges, R. Uibel, and J. Harris, “Measuring diffusion of molecules into individual polymer particles by confocal Raman microscopy,” Anal. Chem. 78, 2121–2129 (2006).
[CrossRef] [PubMed]

2005 (2)

F. Zhu, N. Isaacs, L. Hecht, and L. Barron, “Raman optical activity: a tool for protein structure analysis,” Structure 13, 1409–1419 (2005).
[CrossRef] [PubMed]

M. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, “Raman spectroscopy of carbon nanotubes,” Phys. Rep. 409, 47–99 (2005).
[CrossRef]

2004 (1)

T. Bridges, M. Houlne, and J. Harris, “Spatially resolved analysis of small particles by confocal Raman microscopy: Depth profiling and optical trapping,” Anal. Chem. 76, 576–584 (2004).
[CrossRef] [PubMed]

2003 (1)

P. Caspers, G. Lucassen, and G. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85, 572–580 (2003).
[CrossRef] [PubMed]

2002 (1)

1995 (1)

1992 (1)

1988 (1)

F. V. Bright, “Multicomponent suppression of fluorescent interferants using phase-resolved Raman spectroscopy,” Anal. Chem. 60, 1622–1623 (1988).
[CrossRef] [PubMed]

Allen, F. S.

Amiji, M.

T. Chernenko, C. Matthäus, L. Milane, L. Quintero, M. Amiji, and M. Diem, “Label-free Raman spectral imaging of intracellular delivery and degradation of polymeric nanoparticle systems,” ACS Nano 3, 3552–3559 (2009).
[CrossRef] [PubMed]

Barron, L.

F. Zhu, N. Isaacs, L. Hecht, and L. Barron, “Raman optical activity: a tool for protein structure analysis,” Structure 13, 1409–1419 (2005).
[CrossRef] [PubMed]

Beier, B.

B. Beier, and A. Berger, “Method for automated background subtraction from Raman spectra containing known contaminants,” Analyst (Lond.) 134, 1198–1202 (2009).
[CrossRef] [PubMed]

Berger, A.

B. Beier, and A. Berger, “Method for automated background subtraction from Raman spectra containing known contaminants,” Analyst (Lond.) 134, 1198–1202 (2009).
[CrossRef] [PubMed]

Brady, D.

Bridges, T.

T. Bridges, R. Uibel, and J. Harris, “Measuring diffusion of molecules into individual polymer particles by confocal Raman microscopy,” Anal. Chem. 78, 2121–2129 (2006).
[CrossRef] [PubMed]

T. Bridges, M. Houlne, and J. Harris, “Spatially resolved analysis of small particles by confocal Raman microscopy: Depth profiling and optical trapping,” Anal. Chem. 76, 576–584 (2004).
[CrossRef] [PubMed]

Bright, F. V.

F. V. Bright, “Multicomponent suppression of fluorescent interferants using phase-resolved Raman spectroscopy,” Anal. Chem. 60, 1622–1623 (1988).
[CrossRef] [PubMed]

Carrabba, M. M.

Caserta, S.

A. C. De Luca, G. Rusciano, G. Pesce, S. Caserta, S. Guido, and A. Sasso, “Diffusion in polymer blends by Raman microscopy,” Macromolecules 41, 5512–5514 (2008).
[CrossRef]

Caspers, P.

P. Caspers, G. Lucassen, and G. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85, 572–580 (2003).
[CrossRef] [PubMed]

Chan, J.

J. Chan, D. Taylor, T. Zwerdling, S. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[CrossRef]

Cherepy, N.

Chernenko, T.

T. Chernenko, C. Matthäus, L. Milane, L. Quintero, M. Amiji, and M. Diem, “Label-free Raman spectral imaging of intracellular delivery and degradation of polymeric nanoparticle systems,” ACS Nano 3, 3552–3559 (2009).
[CrossRef] [PubMed]

Ciancia, R.

Cormack, I. G.

I. G. Cormack, M. Mazilu, K. Dholakia, and C. S. Herrington, “Fluorescence suppression within Raman spectroscopy using annular beam excitation,” Appl. Phys. Lett. 91, 023903 (2007).
[CrossRef]

Cui, H.

H. Cui, P. Liu, and G. W. Yang, “Noble metal nanoparticle patterning deposition using pulsed-laser deposition in liquid for surface-enhanced Raman scattering,” Appl. Phys. Lett. 89, 153124 (2006).
[CrossRef]

De Luca, A. C.

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated Raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
[CrossRef]

A. C. De Luca, G. Rusciano, G. Pesce, S. Caserta, S. Guido, and A. Sasso, “Diffusion in polymer blends by Raman microscopy,” Macromolecules 41, 5512–5514 (2008).
[CrossRef]

A. C. De Luca, G. Rusciano, R. Ciancia, V. Martinelli, G. Pesce, B. Rotoli, L. Selvaggi, and A. Sasso, “Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by raman tweezers,” Opt. Express 16, 7943–7957 (2008).
[CrossRef] [PubMed]

G. Rusciano, A. C. De Luca, G. Pesce, and A. Sasso, “Raman tweezers as a diagnostic tool of hemoglobin-related blood disorders,” Sensors 8, 7818–7832 (2008).
[CrossRef]

G. Rusciano, A. C. De Luca, A. Sasso, and G. Pesce, “Phase-sensitive detection in Raman tweezers,” Appl. Phys. Lett. 89, 261116 (2006).
[CrossRef]

Dholakia, K.

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated Raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
[CrossRef]

P. R. Jess, M. Mazilu, K. Dholakia, A. C. Riches, and C. S. Herrington, “Optical detection and granding of lung neoplasia by Raman microspectroscopy,” Int. J. Cancer 124, 376–380 (2009).
[CrossRef]

P. R. Jess, D. D. Smith, M. Mazilu, K. Dholakia, A. C. Riches, and C. S. Herrington, “Early detection of cervical neoplasia by Raman spectroscopy,” Int. J. Cancer 121, 2723–2728 (2007).
[CrossRef] [PubMed]

P. R. T. Jess, V. Garcés-Chávez, A. C. Riches, C. S. Herrington, and K. Dholakia, “Simultaneous Raman microspectroscopy of optically trapped and stacked cells,” J. Raman Spectrosc. 38, 1082–1088 (2007).
[CrossRef]

I. G. Cormack, M. Mazilu, K. Dholakia, and C. S. Herrington, “Fluorescence suppression within Raman spectroscopy using annular beam excitation,” Appl. Phys. Lett. 91, 023903 (2007).
[CrossRef]

Diem, M.

T. Chernenko, C. Matthäus, L. Milane, L. Quintero, M. Amiji, and M. Diem, “Label-free Raman spectral imaging of intracellular delivery and degradation of polymeric nanoparticle systems,” ACS Nano 3, 3552–3559 (2009).
[CrossRef] [PubMed]

Dresselhaus, G.

M. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, “Raman spectroscopy of carbon nanotubes,” Phys. Rep. 409, 47–99 (2005).
[CrossRef]

Dresselhaus, M.

M. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, “Raman spectroscopy of carbon nanotubes,” Phys. Rep. 409, 47–99 (2005).
[CrossRef]

Garcés-Chávez, V.

P. R. T. Jess, V. Garcés-Chávez, A. C. Riches, C. S. Herrington, and K. Dholakia, “Simultaneous Raman microspectroscopy of optically trapped and stacked cells,” J. Raman Spectrosc. 38, 1082–1088 (2007).
[CrossRef]

Guido, S.

A. C. De Luca, G. Rusciano, G. Pesce, S. Caserta, S. Guido, and A. Sasso, “Diffusion in polymer blends by Raman microscopy,” Macromolecules 41, 5512–5514 (2008).
[CrossRef]

Harris, J.

T. Bridges, R. Uibel, and J. Harris, “Measuring diffusion of molecules into individual polymer particles by confocal Raman microscopy,” Anal. Chem. 78, 2121–2129 (2006).
[CrossRef] [PubMed]

T. Bridges, M. Houlne, and J. Harris, “Spatially resolved analysis of small particles by confocal Raman microscopy: Depth profiling and optical trapping,” Anal. Chem. 76, 576–584 (2004).
[CrossRef] [PubMed]

Hecht, L.

F. Zhu, N. Isaacs, L. Hecht, and L. Barron, “Raman optical activity: a tool for protein structure analysis,” Structure 13, 1409–1419 (2005).
[CrossRef] [PubMed]

Herrington, C. S.

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated Raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
[CrossRef]

P. R. Jess, M. Mazilu, K. Dholakia, A. C. Riches, and C. S. Herrington, “Optical detection and granding of lung neoplasia by Raman microspectroscopy,” Int. J. Cancer 124, 376–380 (2009).
[CrossRef]

P. R. Jess, D. D. Smith, M. Mazilu, K. Dholakia, A. C. Riches, and C. S. Herrington, “Early detection of cervical neoplasia by Raman spectroscopy,” Int. J. Cancer 121, 2723–2728 (2007).
[CrossRef] [PubMed]

P. R. T. Jess, V. Garcés-Chávez, A. C. Riches, C. S. Herrington, and K. Dholakia, “Simultaneous Raman microspectroscopy of optically trapped and stacked cells,” J. Raman Spectrosc. 38, 1082–1088 (2007).
[CrossRef]

I. G. Cormack, M. Mazilu, K. Dholakia, and C. S. Herrington, “Fluorescence suppression within Raman spectroscopy using annular beam excitation,” Appl. Phys. Lett. 91, 023903 (2007).
[CrossRef]

Houlne, M.

T. Bridges, M. Houlne, and J. Harris, “Spatially resolved analysis of small particles by confocal Raman microscopy: Depth profiling and optical trapping,” Anal. Chem. 76, 576–584 (2004).
[CrossRef] [PubMed]

Huser, T.

J. Chan, D. Taylor, T. Zwerdling, S. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[CrossRef]

Ihara, K.

J. Chan, D. Taylor, T. Zwerdling, S. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[CrossRef]

Isaacs, N.

F. Zhu, N. Isaacs, L. Hecht, and L. Barron, “Raman optical activity: a tool for protein structure analysis,” Structure 13, 1409–1419 (2005).
[CrossRef] [PubMed]

Jess, P. R.

P. R. Jess, M. Mazilu, K. Dholakia, A. C. Riches, and C. S. Herrington, “Optical detection and granding of lung neoplasia by Raman microspectroscopy,” Int. J. Cancer 124, 376–380 (2009).
[CrossRef]

P. R. Jess, D. D. Smith, M. Mazilu, K. Dholakia, A. C. Riches, and C. S. Herrington, “Early detection of cervical neoplasia by Raman spectroscopy,” Int. J. Cancer 121, 2723–2728 (2007).
[CrossRef] [PubMed]

Jess, P. R. T.

P. R. T. Jess, V. Garcés-Chávez, A. C. Riches, C. S. Herrington, and K. Dholakia, “Simultaneous Raman microspectroscopy of optically trapped and stacked cells,” J. Raman Spectrosc. 38, 1082–1088 (2007).
[CrossRef]

Jorio, A.

M. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, “Raman spectroscopy of carbon nanotubes,” Phys. Rep. 409, 47–99 (2005).
[CrossRef]

Kakidas, C.

H. Wikström, C. Kakidas, and L. Taylor, “Determination of hydrate transition temperature using transformation kinetics obtained by Raman spectroscopy,” J. Pharm. Biomed. Anal. 49, 247–252 (2009).
[CrossRef]

Lane, S.

J. Chan, D. Taylor, T. Zwerdling, S. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[CrossRef]

Lieberman, S.

Liu, P.

H. Cui, P. Liu, and G. W. Yang, “Noble metal nanoparticle patterning deposition using pulsed-laser deposition in liquid for surface-enhanced Raman scattering,” Appl. Phys. Lett. 89, 153124 (2006).
[CrossRef]

Lucassen, G.

P. Caspers, G. Lucassen, and G. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85, 572–580 (2003).
[CrossRef] [PubMed]

Lui, H.

Martinelli, V.

Mathies, R.

Matthäus, C.

T. Chernenko, C. Matthäus, L. Milane, L. Quintero, M. Amiji, and M. Diem, “Label-free Raman spectral imaging of intracellular delivery and degradation of polymeric nanoparticle systems,” ACS Nano 3, 3552–3559 (2009).
[CrossRef] [PubMed]

Mazilu, M.

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated Raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
[CrossRef]

P. R. Jess, M. Mazilu, K. Dholakia, A. C. Riches, and C. S. Herrington, “Optical detection and granding of lung neoplasia by Raman microspectroscopy,” Int. J. Cancer 124, 376–380 (2009).
[CrossRef]

I. G. Cormack, M. Mazilu, K. Dholakia, and C. S. Herrington, “Fluorescence suppression within Raman spectroscopy using annular beam excitation,” Appl. Phys. Lett. 91, 023903 (2007).
[CrossRef]

P. R. Jess, D. D. Smith, M. Mazilu, K. Dholakia, A. C. Riches, and C. S. Herrington, “Early detection of cervical neoplasia by Raman spectroscopy,” Int. J. Cancer 121, 2723–2728 (2007).
[CrossRef] [PubMed]

McCain, S.

McLean, D.

Milane, L.

T. Chernenko, C. Matthäus, L. Milane, L. Quintero, M. Amiji, and M. Diem, “Label-free Raman spectral imaging of intracellular delivery and degradation of polymeric nanoparticle systems,” ACS Nano 3, 3552–3559 (2009).
[CrossRef] [PubMed]

Mosier-Boss, P.

Newbery, R.

Pesce, G.

A. C. De Luca, G. Rusciano, R. Ciancia, V. Martinelli, G. Pesce, B. Rotoli, L. Selvaggi, and A. Sasso, “Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by raman tweezers,” Opt. Express 16, 7943–7957 (2008).
[CrossRef] [PubMed]

A. C. De Luca, G. Rusciano, G. Pesce, S. Caserta, S. Guido, and A. Sasso, “Diffusion in polymer blends by Raman microscopy,” Macromolecules 41, 5512–5514 (2008).
[CrossRef]

G. Rusciano, A. C. De Luca, G. Pesce, and A. Sasso, “Raman tweezers as a diagnostic tool of hemoglobin-related blood disorders,” Sensors 8, 7818–7832 (2008).
[CrossRef]

G. Rusciano, A. C. De Luca, A. Sasso, and G. Pesce, “Phase-sensitive detection in Raman tweezers,” Appl. Phys. Lett. 89, 261116 (2006).
[CrossRef]

Puppels, G.

P. Caspers, G. Lucassen, and G. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85, 572–580 (2003).
[CrossRef] [PubMed]

Quintero, L.

T. Chernenko, C. Matthäus, L. Milane, L. Quintero, M. Amiji, and M. Diem, “Label-free Raman spectral imaging of intracellular delivery and degradation of polymeric nanoparticle systems,” ACS Nano 3, 3552–3559 (2009).
[CrossRef] [PubMed]

Riches, A.

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated Raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
[CrossRef]

Riches, A. C.

P. R. Jess, M. Mazilu, K. Dholakia, A. C. Riches, and C. S. Herrington, “Optical detection and granding of lung neoplasia by Raman microspectroscopy,” Int. J. Cancer 124, 376–380 (2009).
[CrossRef]

P. R. Jess, D. D. Smith, M. Mazilu, K. Dholakia, A. C. Riches, and C. S. Herrington, “Early detection of cervical neoplasia by Raman spectroscopy,” Int. J. Cancer 121, 2723–2728 (2007).
[CrossRef] [PubMed]

P. R. T. Jess, V. Garcés-Chávez, A. C. Riches, C. S. Herrington, and K. Dholakia, “Simultaneous Raman microspectroscopy of optically trapped and stacked cells,” J. Raman Spectrosc. 38, 1082–1088 (2007).
[CrossRef]

Rotoli, B.

Rusciano, G.

A. C. De Luca, G. Rusciano, R. Ciancia, V. Martinelli, G. Pesce, B. Rotoli, L. Selvaggi, and A. Sasso, “Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by raman tweezers,” Opt. Express 16, 7943–7957 (2008).
[CrossRef] [PubMed]

A. C. De Luca, G. Rusciano, G. Pesce, S. Caserta, S. Guido, and A. Sasso, “Diffusion in polymer blends by Raman microscopy,” Macromolecules 41, 5512–5514 (2008).
[CrossRef]

G. Rusciano, A. C. De Luca, G. Pesce, and A. Sasso, “Raman tweezers as a diagnostic tool of hemoglobin-related blood disorders,” Sensors 8, 7818–7832 (2008).
[CrossRef]

G. Rusciano, A. C. De Luca, A. Sasso, and G. Pesce, “Phase-sensitive detection in Raman tweezers,” Appl. Phys. Lett. 89, 261116 (2006).
[CrossRef]

Saito, R.

M. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, “Raman spectroscopy of carbon nanotubes,” Phys. Rep. 409, 47–99 (2005).
[CrossRef]

Sasso, A.

A. C. De Luca, G. Rusciano, G. Pesce, S. Caserta, S. Guido, and A. Sasso, “Diffusion in polymer blends by Raman microscopy,” Macromolecules 41, 5512–5514 (2008).
[CrossRef]

G. Rusciano, A. C. De Luca, G. Pesce, and A. Sasso, “Raman tweezers as a diagnostic tool of hemoglobin-related blood disorders,” Sensors 8, 7818–7832 (2008).
[CrossRef]

A. C. De Luca, G. Rusciano, R. Ciancia, V. Martinelli, G. Pesce, B. Rotoli, L. Selvaggi, and A. Sasso, “Spectroscopical and mechanical characterization of normal and thalassemic red blood cells by raman tweezers,” Opt. Express 16, 7943–7957 (2008).
[CrossRef] [PubMed]

G. Rusciano, A. C. De Luca, A. Sasso, and G. Pesce, “Phase-sensitive detection in Raman tweezers,” Appl. Phys. Lett. 89, 261116 (2006).
[CrossRef]

Selvaggi, L.

Shreve, A.

Smith, D. D.

P. R. Jess, D. D. Smith, M. Mazilu, K. Dholakia, A. C. Riches, and C. S. Herrington, “Early detection of cervical neoplasia by Raman spectroscopy,” Int. J. Cancer 121, 2723–2728 (2007).
[CrossRef] [PubMed]

Taylor, D.

J. Chan, D. Taylor, T. Zwerdling, S. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[CrossRef]

Taylor, L.

H. Wikström, C. Kakidas, and L. Taylor, “Determination of hydrate transition temperature using transformation kinetics obtained by Raman spectroscopy,” J. Pharm. Biomed. Anal. 49, 247–252 (2009).
[CrossRef]

Uibel, R.

T. Bridges, R. Uibel, and J. Harris, “Measuring diffusion of molecules into individual polymer particles by confocal Raman microscopy,” Anal. Chem. 78, 2121–2129 (2006).
[CrossRef] [PubMed]

Wikström, H.

H. Wikström, C. Kakidas, and L. Taylor, “Determination of hydrate transition temperature using transformation kinetics obtained by Raman spectroscopy,” J. Pharm. Biomed. Anal. 49, 247–252 (2009).
[CrossRef]

Willett, R.

Yang, G. W.

H. Cui, P. Liu, and G. W. Yang, “Noble metal nanoparticle patterning deposition using pulsed-laser deposition in liquid for surface-enhanced Raman scattering,” Appl. Phys. Lett. 89, 153124 (2006).
[CrossRef]

Zeng, H.

Zhao, J.

Zhu, F.

F. Zhu, N. Isaacs, L. Hecht, and L. Barron, “Raman optical activity: a tool for protein structure analysis,” Structure 13, 1409–1419 (2005).
[CrossRef] [PubMed]

Zwerdling, T.

J. Chan, D. Taylor, T. Zwerdling, S. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[CrossRef]

ACS Nano (1)

T. Chernenko, C. Matthäus, L. Milane, L. Quintero, M. Amiji, and M. Diem, “Label-free Raman spectral imaging of intracellular delivery and degradation of polymeric nanoparticle systems,” ACS Nano 3, 3552–3559 (2009).
[CrossRef] [PubMed]

Anal. Chem. (4)

T. Bridges, R. Uibel, and J. Harris, “Measuring diffusion of molecules into individual polymer particles by confocal Raman microscopy,” Anal. Chem. 78, 2121–2129 (2006).
[CrossRef] [PubMed]

A. C. De Luca, M. Mazilu, A. Riches, C. S. Herrington, and K. Dholakia, “Online fluorescence suppression in modulated Raman spectroscopy,” Anal. Chem. 82, 738–745 (2010).
[CrossRef]

F. V. Bright, “Multicomponent suppression of fluorescent interferants using phase-resolved Raman spectroscopy,” Anal. Chem. 60, 1622–1623 (1988).
[CrossRef] [PubMed]

T. Bridges, M. Houlne, and J. Harris, “Spatially resolved analysis of small particles by confocal Raman microscopy: Depth profiling and optical trapping,” Anal. Chem. 76, 576–584 (2004).
[CrossRef] [PubMed]

Analyst (Lond.) (1)

B. Beier, and A. Berger, “Method for automated background subtraction from Raman spectra containing known contaminants,” Analyst (Lond.) 134, 1198–1202 (2009).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

H. Cui, P. Liu, and G. W. Yang, “Noble metal nanoparticle patterning deposition using pulsed-laser deposition in liquid for surface-enhanced Raman scattering,” Appl. Phys. Lett. 89, 153124 (2006).
[CrossRef]

I. G. Cormack, M. Mazilu, K. Dholakia, and C. S. Herrington, “Fluorescence suppression within Raman spectroscopy using annular beam excitation,” Appl. Phys. Lett. 91, 023903 (2007).
[CrossRef]

G. Rusciano, A. C. De Luca, A. Sasso, and G. Pesce, “Phase-sensitive detection in Raman tweezers,” Appl. Phys. Lett. 89, 261116 (2006).
[CrossRef]

Appl. Spectrosc. (4)

Biophys. J. (2)

P. Caspers, G. Lucassen, and G. Puppels, “Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin,” Biophys. J. 85, 572–580 (2003).
[CrossRef] [PubMed]

J. Chan, D. Taylor, T. Zwerdling, S. Lane, K. Ihara, and T. Huser, “Micro-Raman spectroscopy detects individual neoplastic and normal hematopoietic cells,” Biophys. J. 90, 648–656 (2006).
[CrossRef]

Int. J. Cancer (2)

P. R. Jess, D. D. Smith, M. Mazilu, K. Dholakia, A. C. Riches, and C. S. Herrington, “Early detection of cervical neoplasia by Raman spectroscopy,” Int. J. Cancer 121, 2723–2728 (2007).
[CrossRef] [PubMed]

P. R. Jess, M. Mazilu, K. Dholakia, A. C. Riches, and C. S. Herrington, “Optical detection and granding of lung neoplasia by Raman microspectroscopy,” Int. J. Cancer 124, 376–380 (2009).
[CrossRef]

J. Pharm. Biomed. Anal. (1)

H. Wikström, C. Kakidas, and L. Taylor, “Determination of hydrate transition temperature using transformation kinetics obtained by Raman spectroscopy,” J. Pharm. Biomed. Anal. 49, 247–252 (2009).
[CrossRef]

J. Raman Spectrosc. (1)

P. R. T. Jess, V. Garcés-Chávez, A. C. Riches, C. S. Herrington, and K. Dholakia, “Simultaneous Raman microspectroscopy of optically trapped and stacked cells,” J. Raman Spectrosc. 38, 1082–1088 (2007).
[CrossRef]

Macromolecules (1)

A. C. De Luca, G. Rusciano, G. Pesce, S. Caserta, S. Guido, and A. Sasso, “Diffusion in polymer blends by Raman microscopy,” Macromolecules 41, 5512–5514 (2008).
[CrossRef]

Opt. Express (2)

Phys. Rep. (1)

M. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, “Raman spectroscopy of carbon nanotubes,” Phys. Rep. 409, 47–99 (2005).
[CrossRef]

Sensors (1)

G. Rusciano, A. C. De Luca, G. Pesce, and A. Sasso, “Raman tweezers as a diagnostic tool of hemoglobin-related blood disorders,” Sensors 8, 7818–7832 (2008).
[CrossRef]

Structure (1)

F. Zhu, N. Isaacs, L. Hecht, and L. Barron, “Raman optical activity: a tool for protein structure analysis,” Structure 13, 1409–1419 (2005).
[CrossRef] [PubMed]

Other (1)

I. T. Jolliffe, “Principal Component Analysis,” 2nd ed. (Springer, New York, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Experimental set-up. Except for the laser (tunable in this instance), the setup used for the modulation technique is identical to the standard Raman set-up. It is composed of an inverted microscope that images the biological cells, focuses the Raman excitation beam onto the sample and collects the Raman scattering. Abbreviation: L, lens; BS, beam splitter; DBS, dichroic beam splitter; BPF, bandpass filter, M, mirror.

Fig. 2.
Fig. 2.

Standard Raman spectrum of a polystyrene bead (2 μm sized) in a solution 10−7 M of NIR-dye, showing the polymer Raman peaks on top of a broad fluorescence signal (a). The laser power on the sample was 5 mW and the integration time 10s. The SERDS spectrum is obtained by acquiring only two spectra with an integration time of 5s each at two slightly different laser wavenumbers (Δν ~40 GHz) (b). Comparison of the modulated Raman spectra obtained by using different mathematical approaches: Standard Deviation analysis (c), Fourier Filtering (d), Least-Squares fitting (e) and Principal Component Analysis (f). The spectra are obtained by modulating the Raman excitation wavelength with a frequency of f ~1Hz and an amplitude A ~40 GHz. 100 spectra are acquired with an integration time of 0.1s each. The inserts show an expanded view of the spectral window between 1700–1750 cm−1.

Fig. 3.
Fig. 3.

Trends of the ratio between two polystyrene Raman peaks, R = I 1001/I 1031, as a function of the amplitude A (GHz) of the laser modulation. The different sets of data correspond to the different algorithms used to treat the acquired spectra.

Fig. 4.
Fig. 4.

(a): Plot of the temporal behaviour of the Raman spectra as the Raman excitation wavenumber is modulated. We can clearly see the periodical modulation of the Raman peaks with increasing acquisition numbers. (b): The signal intensity of a single selected pixel as a function of the acquisition number.

Fig. 5.
Fig. 5.

Signal intensity of a single CCD pixel as a function of the acquisition number for two different amplitudes of the laser modulation. Higher amplitudes result in a change of the sinusoidal behavior.

Fig. 6.
Fig. 6.

(a)The standard Raman spectrum of a 2 μm polystyrene bead in a 10−7M solution of a NIR dye. The spectrum was acquired with an integration time of 10s and the laser power was approximately 5mW at the sample. (b) The corresponding modulated Raman spectrum obtained by analyzing the spectra, acquired by continuously shifting the Raman excitation wavenumber (f=1Hz), with the PCA algorithm. In this case, the total integration time was also 10s.

Fig. 7.
Fig. 7.

Signal-to-noise ratio (SNR) of the polystyrene Raman peak at 1001 cm −1 as a function of the laser wavenumber modulation rate (f). The different sets of data correspond to the different algorithms (PCA, LSQ fit, FF and SD) used to treat the acquired spectra.

Fig. 8.
Fig. 8.

Signal-to-noise ratio (SNR) of a simulated Raman peak as a function of the laser wavenumber modulation rate (f). Additionally, the height and width of the Raman peaks and the noise level selected for the simulations are quite close to the measured experimental parameters. The different sets of data correspond to the different algorithms (PCA, LSQ fit, FF and SD) used to treat the simulated spectra.

Tables (1)

Tables Icon

Table 1. Polystyrene Raman bands [25].

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

S j ( ν i ) = S F ( ν i + Δ ν j ) + S R ( ν i + Δ ν j )
= S F ( ν i ) + S R ( ν i + Δ ν j )
D ( ν i ) = S 1 ( ν i ) S 2 ( ν i )
= S R ( ν i + Δ ν / 2 ) S R ( ν i + Δ ν / 2 )
Δ ν ν S R ( ν i )
S ̂ ( ν i ) = 1 N j = 1 N S j ( ν i )
σ ( ν i ) = 1 N j = 1 N ( S j ( ν i ) S ̂ ( ν i ) ) 2 .
S FF ( ν i ) = j = 1 N sin ( j 2 π / n p ) S j ( ν i ) .
S j ( ν i ) = S F ( ν i ) + S R ( ν k ) M ik ( Δ ν j )
M ik ( Δ ν j ) = ( Δ ν j Δ ν j ̲ ) δ i + Δ ν j ¯ , k + ( Δ ν j ¯ Δ ν j ) δ i + Δ ̲ ν j , k
μ S PCA ( ν i ) = C ik S PCA ( ν k )
C ik = j = 1 N ( S j ( ν i ) S ̂ ( ν i ) ) ( S j ( ν k ) S ̂ ( ν k ) ) .

Metrics