Abstract

Nano-composites of quantum dots (QDs) and gold nanorods (GNRs) or silica-coated GNRs (GNRs_SiO2) were synthesized. The attached GNRs modify the excitation intensity and spontaneous emission of QDs through the surface plasmonic effects. The fluorescence from QDs is enhanced and can be optimized by modifying the thickness of silica coated on GNRs, under both one- and two-photon excitations. The measurements of fluorescence intensity and lifetime demonstrate that the enhancement may be attributed to the matching of the localized surface plasmon resonance of GNR to the excitation wavelength. In addition to enhancing QD-fluorescence in QD-GNR@SiO2, GNRs also present as an effective contrast agent for bio-imaging, through light scattering and or two-photon emission, as well as for photo-thermal therapy. The composite’s multifunctional characteristics are highly valuable and to be exploited in bio-applications.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
    [CrossRef] [PubMed]
  2. W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281(5385), 2016–2018 (1998).
    [CrossRef] [PubMed]
  3. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  4. D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47(4), 233–236 (1981).
    [CrossRef]
  5. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  6. Z. Yang, W. H. Ni, X. S. Kou, S. Z. Zhang, Z. H. Sun, L. D. Sun, J. F. Wang, and C. H. Yan, “Incorporation of Gold Nanorods and Their Enhancement of Fluorescence in Mesostructured Silica Thin Films,” J. Phys. Chem. C 112, 18895–188903 (2008).
  7. R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
    [CrossRef] [PubMed]
  8. Y. P. Hsieh, C. T. Liang, Y. F. Chen, C. W. Lai, and P. T. Chou, “Mechanism of giant enhancement of light emission from Au/CdSe nanocomposites,” Nanotechnology 18(41), 415707 (2007).
    [CrossRef]
  9. Y. S. Chi, H. R. Byon, B. S. Lee, B. Kong, H. C. Choi, and I. S. Choi, “Polymeric Rulers: Distance-Dependent Emission Behaviors of Fluorophores on Flat Gold Surfaces and Bioassay Platforms Using Plasmonic Fluorescence Enhancement,” Adv. Funct. Mater. 18(21), 3395–3402 (2008).
    [CrossRef]
  10. O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2(12), 1449–1452 (2002).
    [CrossRef]
  11. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [CrossRef] [PubMed]
  12. P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
    [CrossRef] [PubMed]
  13. J. Zhang and J. R. Lakowicz, “Metal-enhanced fluorescence of an organic fluorophore using gold particles,” Opt. Express 15(5), 2598–2606 (2007).
    [CrossRef] [PubMed]
  14. J. C. Ostrowski, A. Mikhailovsky, D. A. Bussian, M. A. Summers, S. K. Buratto, and G. C. Bazan, “Enhancement of phosphorescence by surface-plasmon resonances in colloidal metal nanoparticles: The role of aggregates,” Adv. Funct. Mater. 16(9), 1221–1227 (2006).
    [CrossRef]
  15. F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
    [CrossRef] [PubMed]
  16. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
    [CrossRef] [PubMed]
  17. M. Thomas, J. J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85(17), 3863 (2004).
    [CrossRef]
  18. V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89(25), 253118 (2006).
    [CrossRef]
  19. H. C. Van de Hulst, Light scattering by small particles, (Wiley-Interscience, New York, 1957).
  20. S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
    [CrossRef]
  21. B. Nikoobakht and M. A. El-Sayed, “Surface-enhanced Raman scattering studies on aggregated gold nanorods,” J. Phys. Chem. A 107(18), 3372–3378 (2003).
    [CrossRef]
  22. X. Li, J. Qian, and S. He, “Impact of the self-assembly of multilayer polyelectrolyte functionalized gold nanorods and its application to biosensing,” Nanotechnology 19(35), 355501 (2008).
    [CrossRef] [PubMed]
  23. R. S. Norman, J. W. Stone, A. Gole, C. J. Murphy, and T. L. Sabo-Attwood, “Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods,” Nano Lett. 8(1), 302–306 (2008).
    [CrossRef]
  24. X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
    [CrossRef] [PubMed]
  25. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
    [CrossRef] [PubMed]
  26. X. Qu, J. Wang, Z. Zhang, N. Koop, R. Rahmanzadeh, and G. Hüttmann, “Imaging of cancer cells by multiphoton microscopy using gold nanoparticles and fluorescent dyes,” J. Biomed. Opt. 13(3), 031217 (2008).
    [CrossRef] [PubMed]
  27. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
    [CrossRef] [PubMed]
  28. Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7(3), 690–696 (2007).
    [CrossRef] [PubMed]
  29. Y. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
    [CrossRef]
  30. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
    [CrossRef] [PubMed]
  31. T. Soller, M. Ringler, M. Wunderlich, T. A. Klar, J. Feldmann, H. P. Josel, Y. Markert, A. Nichtl, and K. Kürzinger, “Radiative and nonradiative rates of phosphors attached to gold nanoparticles,” Nano Lett. 7(7), 1941–1946 (2007).
    [CrossRef]
  32. X. Li, J. Qian, L. Jiang, and S. He, “Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection,” Appl. Phys. Lett. 94(6), 063111 (2009).
    [CrossRef]
  33. C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
    [CrossRef] [PubMed]
  34. J. Lee, A. O. Govorov, J. Dulka, and N. A. Kotov, “Bioconjugates of CdTe nanowires and Au nanoparticles: Plasmon-excition interactions, luminescence enhancement, and collective effects,” Nano Lett. 4(12), 2323–2330 (2004).
    [CrossRef]
  35. A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Forster energy transfer in optically excited semiconductor and metal nanoparitcles,” Phys. Rev. B 76(12), 125308 (2007).
    [CrossRef]
  36. G. L. Liu, Y. T. Long, Y. Choi, T. Kang, and L. P. Lee, “Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer,” Nat. Methods 4(12), 1015–1017 (2007).
    [CrossRef] [PubMed]
  37. P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010).
    [CrossRef] [PubMed]
  38. Q. Q. Zhan, J. Qian, X. Li, and S. He, “A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging,” Nanotechnology 21(5), 055704 (2010).
    [CrossRef]
  39. V. Ghukasyan, Y. Y. Hsu, S. H. Kung, and F. J. Kao, “Application of fluorescence resonance energy transfer resolved by fluorescence lifetime imaging microscopy for the detection of enterovirus 71 infection in cells,” J. Biomed. Opt. 12(2), 024016 (2007).
    [CrossRef] [PubMed]
  40. V. Ghukasyan and F. J. Kao, “Monitoring Cellular Metabolism with Fluorescence Lifetime of Reduced Nicotinamide Adenine Dinucleotide,” J. Phys. Chem. C 113(27), 11532–11540 (2009).
    [CrossRef]
  41. R. Hu, K. T. Yong, I. Roy, H. Ding, S. He, and P. N. Prasad, “Metallic Nanostructures as Localized Plasmon Resonance Enhanced Scattering Probes for Multiplex Dark-Field Targeted Imaging of Cancer Cells,” J. Phys. Chem. C 113(7), 2676–2684 (2009).
    [CrossRef]
  42. B. Nikoobakht, J. Wang, and M. A. El-Sayed, “Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition,” Chem. Phys. Lett. 366(1-2), 17–23 (2002).
    [CrossRef]
  43. C. Wang, Z. Ma, T. Wang, and Z. Su, “Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing,” Adv. Funct. Mater. 16(13), 1673–1678 (2006).
    [CrossRef]
  44. J. Wenger, D. Gérard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16(5), 3008–3020 (2008).
    [CrossRef] [PubMed]
  45. T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10(10), 105005 (2008).
    [CrossRef]
  46. S. He, Y. Cui, Y. Ye, P. Zhang, and Y. Jin, “Optical nano-antennas and metamaterials,” Mater. Today 12(12), 16–24 (2009).
    [CrossRef]
  47. A. R. Clapp, I. L. Medintz, B. R. Fisher, G. P. Anderson, and H. Mattoussi, “Can luminescent quantum dots be efficient energy acceptors with organic dye donors?” J. Am. Chem. Soc. 127(4), 1242–1250 (2005).
    [CrossRef] [PubMed]
  48. O. P. Varnavski, M. B. Mohamed, M. A. El-Sayed, and T. Goodson, “Relative enhancement of ultrafast emission in gold nanorods,” J. Phys. Chem. B 107(14), 3101–3104 (2003).
    [CrossRef]
  49. P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
    [CrossRef] [PubMed]
  50. C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, and Y. C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
    [CrossRef] [PubMed]

2010

P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010).
[CrossRef] [PubMed]

Q. Q. Zhan, J. Qian, X. Li, and S. He, “A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging,” Nanotechnology 21(5), 055704 (2010).
[CrossRef]

2009

X. Li, J. Qian, L. Jiang, and S. He, “Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection,” Appl. Phys. Lett. 94(6), 063111 (2009).
[CrossRef]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[CrossRef] [PubMed]

V. Ghukasyan and F. J. Kao, “Monitoring Cellular Metabolism with Fluorescence Lifetime of Reduced Nicotinamide Adenine Dinucleotide,” J. Phys. Chem. C 113(27), 11532–11540 (2009).
[CrossRef]

R. Hu, K. T. Yong, I. Roy, H. Ding, S. He, and P. N. Prasad, “Metallic Nanostructures as Localized Plasmon Resonance Enhanced Scattering Probes for Multiplex Dark-Field Targeted Imaging of Cancer Cells,” J. Phys. Chem. C 113(7), 2676–2684 (2009).
[CrossRef]

S. He, Y. Cui, Y. Ye, P. Zhang, and Y. Jin, “Optical nano-antennas and metamaterials,” Mater. Today 12(12), 16–24 (2009).
[CrossRef]

2008

J. Wenger, D. Gérard, J. Dintinger, O. Mahboub, N. Bonod, E. Popov, T. W. Ebbesen, and H. Rigneault, “Emission and excitation contributions to enhanced single molecule fluorescence by gold nanometric apertures,” Opt. Express 16(5), 3008–3020 (2008).
[CrossRef] [PubMed]

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10(10), 105005 (2008).
[CrossRef]

Y. S. Chi, H. R. Byon, B. S. Lee, B. Kong, H. C. Choi, and I. S. Choi, “Polymeric Rulers: Distance-Dependent Emission Behaviors of Fluorophores on Flat Gold Surfaces and Bioassay Platforms Using Plasmonic Fluorescence Enhancement,” Adv. Funct. Mater. 18(21), 3395–3402 (2008).
[CrossRef]

Z. Yang, W. H. Ni, X. S. Kou, S. Z. Zhang, Z. H. Sun, L. D. Sun, J. F. Wang, and C. H. Yan, “Incorporation of Gold Nanorods and Their Enhancement of Fluorescence in Mesostructured Silica Thin Films,” J. Phys. Chem. C 112, 18895–188903 (2008).

Y. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
[CrossRef]

X. Li, J. Qian, and S. He, “Impact of the self-assembly of multilayer polyelectrolyte functionalized gold nanorods and its application to biosensing,” Nanotechnology 19(35), 355501 (2008).
[CrossRef] [PubMed]

R. S. Norman, J. W. Stone, A. Gole, C. J. Murphy, and T. L. Sabo-Attwood, “Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods,” Nano Lett. 8(1), 302–306 (2008).
[CrossRef]

X. Qu, J. Wang, Z. Zhang, N. Koop, R. Rahmanzadeh, and G. Hüttmann, “Imaging of cancer cells by multiphoton microscopy using gold nanoparticles and fluorescent dyes,” J. Biomed. Opt. 13(3), 031217 (2008).
[CrossRef] [PubMed]

2007

T. Soller, M. Ringler, M. Wunderlich, T. A. Klar, J. Feldmann, H. P. Josel, Y. Markert, A. Nichtl, and K. Kürzinger, “Radiative and nonradiative rates of phosphors attached to gold nanoparticles,” Nano Lett. 7(7), 1941–1946 (2007).
[CrossRef]

V. Ghukasyan, Y. Y. Hsu, S. H. Kung, and F. J. Kao, “Application of fluorescence resonance energy transfer resolved by fluorescence lifetime imaging microscopy for the detection of enterovirus 71 infection in cells,” J. Biomed. Opt. 12(2), 024016 (2007).
[CrossRef] [PubMed]

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Forster energy transfer in optically excited semiconductor and metal nanoparitcles,” Phys. Rev. B 76(12), 125308 (2007).
[CrossRef]

G. L. Liu, Y. T. Long, Y. Choi, T. Kang, and L. P. Lee, “Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer,” Nat. Methods 4(12), 1015–1017 (2007).
[CrossRef] [PubMed]

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7(3), 690–696 (2007).
[CrossRef] [PubMed]

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
[CrossRef] [PubMed]

J. Zhang and J. R. Lakowicz, “Metal-enhanced fluorescence of an organic fluorophore using gold particles,” Opt. Express 15(5), 2598–2606 (2007).
[CrossRef] [PubMed]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

Y. P. Hsieh, C. T. Liang, Y. F. Chen, C. W. Lai, and P. T. Chou, “Mechanism of giant enhancement of light emission from Au/CdSe nanocomposites,” Nanotechnology 18(41), 415707 (2007).
[CrossRef]

2006

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89(25), 253118 (2006).
[CrossRef]

J. C. Ostrowski, A. Mikhailovsky, D. A. Bussian, M. A. Summers, S. K. Buratto, and G. C. Bazan, “Enhancement of phosphorescence by surface-plasmon resonances in colloidal metal nanoparticles: The role of aggregates,” Adv. Funct. Mater. 16(9), 1221–1227 (2006).
[CrossRef]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, and Y. C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[CrossRef] [PubMed]

C. Wang, Z. Ma, T. Wang, and Z. Su, “Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing,” Adv. Funct. Mater. 16(13), 1673–1678 (2006).
[CrossRef]

2005

A. R. Clapp, I. L. Medintz, B. R. Fisher, G. P. Anderson, and H. Mattoussi, “Can luminescent quantum dots be efficient energy acceptors with organic dye donors?” J. Am. Chem. Soc. 127(4), 1242–1250 (2005).
[CrossRef] [PubMed]

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

2004

J. Lee, A. O. Govorov, J. Dulka, and N. A. Kotov, “Bioconjugates of CdTe nanowires and Au nanoparticles: Plasmon-excition interactions, luminescence enhancement, and collective effects,” Nano Lett. 4(12), 2323–2330 (2004).
[CrossRef]

M. Thomas, J. J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85(17), 3863 (2004).
[CrossRef]

2003

B. Nikoobakht and M. A. El-Sayed, “Surface-enhanced Raman scattering studies on aggregated gold nanorods,” J. Phys. Chem. A 107(18), 3372–3378 (2003).
[CrossRef]

O. P. Varnavski, M. B. Mohamed, M. A. El-Sayed, and T. Goodson, “Relative enhancement of ultrafast emission in gold nanorods,” J. Phys. Chem. B 107(14), 3101–3104 (2003).
[CrossRef]

2002

B. Nikoobakht, J. Wang, and M. A. El-Sayed, “Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition,” Chem. Phys. Lett. 366(1-2), 17–23 (2002).
[CrossRef]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2(12), 1449–1452 (2002).
[CrossRef]

1999

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
[CrossRef]

1998

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281(5385), 2016–2018 (1998).
[CrossRef] [PubMed]

1987

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

1981

D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47(4), 233–236 (1981).
[CrossRef]

1946

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Adam, P. M.

P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010).
[CrossRef] [PubMed]

Alivisatos, A. P.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

Anderson, G. P.

A. R. Clapp, I. L. Medintz, B. R. Fisher, G. P. Anderson, and H. Mattoussi, “Can luminescent quantum dots be efficient energy acceptors with organic dye donors?” J. Am. Chem. Soc. 127(4), 1242–1250 (2005).
[CrossRef] [PubMed]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Arias-Gonzalez, J. R.

M. Thomas, J. J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85(17), 3863 (2004).
[CrossRef]

Artemyev, M.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2(12), 1449–1452 (2002).
[CrossRef]

Bardhan, R.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[CrossRef] [PubMed]

Bazan, G. C.

J. C. Ostrowski, A. Mikhailovsky, D. A. Bussian, M. A. Summers, S. K. Buratto, and G. C. Bazan, “Enhancement of phosphorescence by surface-plasmon resonances in colloidal metal nanoparticles: The role of aggregates,” Adv. Funct. Mater. 16(9), 1221–1227 (2006).
[CrossRef]

Ben-Yakar, A.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Bharadwaj, P.

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Bonod, N.

Bradley, A. L.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89(25), 253118 (2006).
[CrossRef]

Bruchez, M.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

Buratto, S. K.

J. C. Ostrowski, A. Mikhailovsky, D. A. Bussian, M. A. Summers, S. K. Buratto, and G. C. Bazan, “Enhancement of phosphorescence by surface-plasmon resonances in colloidal metal nanoparticles: The role of aggregates,” Adv. Funct. Mater. 16(9), 1221–1227 (2006).
[CrossRef]

Bussian, D. A.

J. C. Ostrowski, A. Mikhailovsky, D. A. Bussian, M. A. Summers, S. K. Buratto, and G. C. Bazan, “Enhancement of phosphorescence by surface-plasmon resonances in colloidal metal nanoparticles: The role of aggregates,” Adv. Funct. Mater. 16(9), 1221–1227 (2006).
[CrossRef]

Byon, H. R.

Y. S. Chi, H. R. Byon, B. S. Lee, B. Kong, H. C. Choi, and I. S. Choi, “Polymeric Rulers: Distance-Dependent Emission Behaviors of Fluorophores on Flat Gold Surfaces and Bioassay Platforms Using Plasmonic Fluorescence Enhancement,” Adv. Funct. Mater. 18(21), 3395–3402 (2008).
[CrossRef]

Byrne, S. J.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89(25), 253118 (2006).
[CrossRef]

Carminati, R.

M. Thomas, J. J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85(17), 3863 (2004).
[CrossRef]

Chan, W. C. W.

W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281(5385), 2016–2018 (1998).
[CrossRef] [PubMed]

Chen, C. C.

C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, and Y. C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[CrossRef] [PubMed]

Chen, C. P.

C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, and Y. C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[CrossRef] [PubMed]

Chen, L. C.

C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, and Y. C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[CrossRef] [PubMed]

Chen, Y.

Y. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
[CrossRef]

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7(3), 690–696 (2007).
[CrossRef] [PubMed]

Chen, Y. C.

C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, and Y. C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[CrossRef] [PubMed]

Chen, Y. F.

Y. P. Hsieh, C. T. Liang, Y. F. Chen, C. W. Lai, and P. T. Chou, “Mechanism of giant enhancement of light emission from Au/CdSe nanocomposites,” Nanotechnology 18(41), 415707 (2007).
[CrossRef]

Chi, Y. S.

Y. S. Chi, H. R. Byon, B. S. Lee, B. Kong, H. C. Choi, and I. S. Choi, “Polymeric Rulers: Distance-Dependent Emission Behaviors of Fluorophores on Flat Gold Surfaces and Bioassay Platforms Using Plasmonic Fluorescence Enhancement,” Adv. Funct. Mater. 18(21), 3395–3402 (2008).
[CrossRef]

Choi, H. C.

Y. S. Chi, H. R. Byon, B. S. Lee, B. Kong, H. C. Choi, and I. S. Choi, “Polymeric Rulers: Distance-Dependent Emission Behaviors of Fluorophores on Flat Gold Surfaces and Bioassay Platforms Using Plasmonic Fluorescence Enhancement,” Adv. Funct. Mater. 18(21), 3395–3402 (2008).
[CrossRef]

Choi, I. S.

Y. S. Chi, H. R. Byon, B. S. Lee, B. Kong, H. C. Choi, and I. S. Choi, “Polymeric Rulers: Distance-Dependent Emission Behaviors of Fluorophores on Flat Gold Surfaces and Bioassay Platforms Using Plasmonic Fluorescence Enhancement,” Adv. Funct. Mater. 18(21), 3395–3402 (2008).
[CrossRef]

Choi, Y.

G. L. Liu, Y. T. Long, Y. Choi, T. Kang, and L. P. Lee, “Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer,” Nat. Methods 4(12), 1015–1017 (2007).
[CrossRef] [PubMed]

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Chou, P. T.

Y. P. Hsieh, C. T. Liang, Y. F. Chen, C. W. Lai, and P. T. Chou, “Mechanism of giant enhancement of light emission from Au/CdSe nanocomposites,” Nanotechnology 18(41), 415707 (2007).
[CrossRef]

Clapp, A. R.

A. R. Clapp, I. L. Medintz, B. R. Fisher, G. P. Anderson, and H. Mattoussi, “Can luminescent quantum dots be efficient energy acceptors with organic dye donors?” J. Am. Chem. Soc. 127(4), 1242–1250 (2005).
[CrossRef] [PubMed]

Cole, J. R.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[CrossRef] [PubMed]

Cui, Y.

S. He, Y. Cui, Y. Ye, P. Zhang, and Y. Jin, “Optical nano-antennas and metamaterials,” Mater. Today 12(12), 16–24 (2009).
[CrossRef]

Ding, H.

R. Hu, K. T. Yong, I. Roy, H. Ding, S. He, and P. N. Prasad, “Metallic Nanostructures as Localized Plasmon Resonance Enhanced Scattering Probes for Multiplex Dark-Field Targeted Imaging of Cancer Cells,” J. Phys. Chem. C 113(7), 2676–2684 (2009).
[CrossRef]

Dintinger, J.

Dulka, J.

J. Lee, A. O. Govorov, J. Dulka, and N. A. Kotov, “Bioconjugates of CdTe nanowires and Au nanoparticles: Plasmon-excition interactions, luminescence enhancement, and collective effects,” Nano Lett. 4(12), 2323–2330 (2004).
[CrossRef]

Dulkeith, E.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Durr, N. J.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Ebbesen, T. W.

El-Sayed, I. H.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

El-Sayed, M. A.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

O. P. Varnavski, M. B. Mohamed, M. A. El-Sayed, and T. Goodson, “Relative enhancement of ultrafast emission in gold nanorods,” J. Phys. Chem. B 107(14), 3101–3104 (2003).
[CrossRef]

B. Nikoobakht and M. A. El-Sayed, “Surface-enhanced Raman scattering studies on aggregated gold nanorods,” J. Phys. Chem. A 107(18), 3372–3378 (2003).
[CrossRef]

B. Nikoobakht, J. Wang, and M. A. El-Sayed, “Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition,” Chem. Phys. Lett. 366(1-2), 17–23 (2002).
[CrossRef]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
[CrossRef]

Eychmüller, A.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89(25), 253118 (2006).
[CrossRef]

Feldmann, J.

T. Soller, M. Ringler, M. Wunderlich, T. A. Klar, J. Feldmann, H. P. Josel, Y. Markert, A. Nichtl, and K. Kürzinger, “Radiative and nonradiative rates of phosphors attached to gold nanoparticles,” Nano Lett. 7(7), 1941–1946 (2007).
[CrossRef]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Fisher, B. R.

A. R. Clapp, I. L. Medintz, B. R. Fisher, G. P. Anderson, and H. Mattoussi, “Can luminescent quantum dots be efficient energy acceptors with organic dye donors?” J. Am. Chem. Soc. 127(4), 1242–1250 (2005).
[CrossRef] [PubMed]

Fisher, M.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

Gaponenko, S.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2(12), 1449–1452 (2002).
[CrossRef]

Gaponik, N.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89(25), 253118 (2006).
[CrossRef]

Gérard, D.

Ghukasyan, V.

V. Ghukasyan and F. J. Kao, “Monitoring Cellular Metabolism with Fluorescence Lifetime of Reduced Nicotinamide Adenine Dinucleotide,” J. Phys. Chem. C 113(27), 11532–11540 (2009).
[CrossRef]

V. Ghukasyan, Y. Y. Hsu, S. H. Kung, and F. J. Kao, “Application of fluorescence resonance energy transfer resolved by fluorescence lifetime imaging microscopy for the detection of enterovirus 71 infection in cells,” J. Biomed. Opt. 12(2), 024016 (2007).
[CrossRef] [PubMed]

Gin, P.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

Ginger, D. S.

Y. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
[CrossRef]

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7(3), 690–696 (2007).
[CrossRef] [PubMed]

Gittins, D. I.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Gole, A.

R. S. Norman, J. W. Stone, A. Gole, C. J. Murphy, and T. L. Sabo-Attwood, “Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods,” Nano Lett. 8(1), 302–306 (2008).
[CrossRef]

Goodrich, G. P.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

Goodson, T.

O. P. Varnavski, M. B. Mohamed, M. A. El-Sayed, and T. Goodson, “Relative enhancement of ultrafast emission in gold nanorods,” J. Phys. Chem. B 107(14), 3101–3104 (2003).
[CrossRef]

Govorov, A. O.

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Forster energy transfer in optically excited semiconductor and metal nanoparitcles,” Phys. Rev. B 76(12), 125308 (2007).
[CrossRef]

J. Lee, A. O. Govorov, J. Dulka, and N. A. Kotov, “Bioconjugates of CdTe nanowires and Au nanoparticles: Plasmon-excition interactions, luminescence enhancement, and collective effects,” Nano Lett. 4(12), 2323–2330 (2004).
[CrossRef]

Grady, N. K.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[CrossRef] [PubMed]

Greffet, J. J.

M. Thomas, J. J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85(17), 3863 (2004).
[CrossRef]

Gu, M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Gun’ko, Y. K.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89(25), 253118 (2006).
[CrossRef]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Halas, N. J.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[CrossRef] [PubMed]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

He, S.

Q. Q. Zhan, J. Qian, X. Li, and S. He, “A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging,” Nanotechnology 21(5), 055704 (2010).
[CrossRef]

R. Hu, K. T. Yong, I. Roy, H. Ding, S. He, and P. N. Prasad, “Metallic Nanostructures as Localized Plasmon Resonance Enhanced Scattering Probes for Multiplex Dark-Field Targeted Imaging of Cancer Cells,” J. Phys. Chem. C 113(7), 2676–2684 (2009).
[CrossRef]

S. He, Y. Cui, Y. Ye, P. Zhang, and Y. Jin, “Optical nano-antennas and metamaterials,” Mater. Today 12(12), 16–24 (2009).
[CrossRef]

X. Li, J. Qian, L. Jiang, and S. He, “Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection,” Appl. Phys. Lett. 94(6), 063111 (2009).
[CrossRef]

X. Li, J. Qian, and S. He, “Impact of the self-assembly of multilayer polyelectrolyte functionalized gold nanorods and its application to biosensing,” Nanotechnology 19(35), 355501 (2008).
[CrossRef] [PubMed]

Hira, S.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

Hopkins, B.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

Hsieh, Y. P.

Y. P. Hsieh, C. T. Liang, Y. F. Chen, C. W. Lai, and P. T. Chou, “Mechanism of giant enhancement of light emission from Au/CdSe nanocomposites,” Nanotechnology 18(41), 415707 (2007).
[CrossRef]

Hsu, Y. Y.

V. Ghukasyan, Y. Y. Hsu, S. H. Kung, and F. J. Kao, “Application of fluorescence resonance energy transfer resolved by fluorescence lifetime imaging microscopy for the detection of enterovirus 71 infection in cells,” J. Biomed. Opt. 12(2), 024016 (2007).
[CrossRef] [PubMed]

Hu, R.

R. Hu, K. T. Yong, I. Roy, H. Ding, S. He, and P. N. Prasad, “Metallic Nanostructures as Localized Plasmon Resonance Enhanced Scattering Probes for Multiplex Dark-Field Targeted Imaging of Cancer Cells,” J. Phys. Chem. C 113(7), 2676–2684 (2009).
[CrossRef]

Huang, X.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Hüttmann, G.

X. Qu, J. Wang, Z. Zhang, N. Koop, R. Rahmanzadeh, and G. Hüttmann, “Imaging of cancer cells by multiphoton microscopy using gold nanoparticles and fluorescent dyes,” J. Biomed. Opt. 13(3), 031217 (2008).
[CrossRef] [PubMed]

Jaffiol, R.

P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010).
[CrossRef] [PubMed]

Jain, P. K.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Javier, A.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

Jen-La Plante, I.

Y. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
[CrossRef]

Jennings, T.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

Jiang, L.

X. Li, J. Qian, L. Jiang, and S. He, “Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection,” Appl. Phys. Lett. 94(6), 063111 (2009).
[CrossRef]

Jin, Y.

S. He, Y. Cui, Y. Ye, P. Zhang, and Y. Jin, “Optical nano-antennas and metamaterials,” Mater. Today 12(12), 16–24 (2009).
[CrossRef]

Johnson, B. R.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

Josel, H. P.

T. Soller, M. Ringler, M. Wunderlich, T. A. Klar, J. Feldmann, H. P. Josel, Y. Markert, A. Nichtl, and K. Kürzinger, “Radiative and nonradiative rates of phosphors attached to gold nanoparticles,” Nano Lett. 7(7), 1941–1946 (2007).
[CrossRef]

Joshi, A.

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[CrossRef] [PubMed]

Kang, T.

G. L. Liu, Y. T. Long, Y. Choi, T. Kang, and L. P. Lee, “Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer,” Nat. Methods 4(12), 1015–1017 (2007).
[CrossRef] [PubMed]

Kao, F. J.

V. Ghukasyan and F. J. Kao, “Monitoring Cellular Metabolism with Fluorescence Lifetime of Reduced Nicotinamide Adenine Dinucleotide,” J. Phys. Chem. C 113(27), 11532–11540 (2009).
[CrossRef]

V. Ghukasyan, Y. Y. Hsu, S. H. Kung, and F. J. Kao, “Application of fluorescence resonance energy transfer resolved by fluorescence lifetime imaging microscopy for the detection of enterovirus 71 infection in cells,” J. Biomed. Opt. 12(2), 024016 (2007).
[CrossRef] [PubMed]

Klar, T. A.

T. Soller, M. Ringler, M. Wunderlich, T. A. Klar, J. Feldmann, H. P. Josel, Y. Markert, A. Nichtl, and K. Kürzinger, “Radiative and nonradiative rates of phosphors attached to gold nanoparticles,” Nano Lett. 7(7), 1941–1946 (2007).
[CrossRef]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Kleppner, D.

D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47(4), 233–236 (1981).
[CrossRef]

Komarala, V. K.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89(25), 253118 (2006).
[CrossRef]

Kong, B.

Y. S. Chi, H. R. Byon, B. S. Lee, B. Kong, H. C. Choi, and I. S. Choi, “Polymeric Rulers: Distance-Dependent Emission Behaviors of Fluorophores on Flat Gold Surfaces and Bioassay Platforms Using Plasmonic Fluorescence Enhancement,” Adv. Funct. Mater. 18(21), 3395–3402 (2008).
[CrossRef]

Koop, N.

X. Qu, J. Wang, Z. Zhang, N. Koop, R. Rahmanzadeh, and G. Hüttmann, “Imaging of cancer cells by multiphoton microscopy using gold nanoparticles and fluorescent dyes,” J. Biomed. Opt. 13(3), 031217 (2008).
[CrossRef] [PubMed]

Korgel, B. A.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Kotov, N. A.

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Forster energy transfer in optically excited semiconductor and metal nanoparitcles,” Phys. Rev. B 76(12), 125308 (2007).
[CrossRef]

J. Lee, A. O. Govorov, J. Dulka, and N. A. Kotov, “Bioconjugates of CdTe nanowires and Au nanoparticles: Plasmon-excition interactions, luminescence enhancement, and collective effects,” Nano Lett. 4(12), 2323–2330 (2004).
[CrossRef]

Kou, X. S.

Z. Yang, W. H. Ni, X. S. Kou, S. Z. Zhang, Z. H. Sun, L. D. Sun, J. F. Wang, and C. H. Yan, “Incorporation of Gold Nanorods and Their Enhancement of Fluorescence in Mesostructured Silica Thin Films,” J. Phys. Chem. C 112, 18895–188903 (2008).

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Kulakovich, O.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2(12), 1449–1452 (2002).
[CrossRef]

Kung, S. H.

V. Ghukasyan, Y. Y. Hsu, S. H. Kung, and F. J. Kao, “Application of fluorescence resonance energy transfer resolved by fluorescence lifetime imaging microscopy for the detection of enterovirus 71 infection in cells,” J. Biomed. Opt. 12(2), 024016 (2007).
[CrossRef] [PubMed]

Kürzinger, K.

T. Soller, M. Ringler, M. Wunderlich, T. A. Klar, J. Feldmann, H. P. Josel, Y. Markert, A. Nichtl, and K. Kürzinger, “Radiative and nonradiative rates of phosphors attached to gold nanoparticles,” Nano Lett. 7(7), 1941–1946 (2007).
[CrossRef]

Lai, C. W.

Y. P. Hsieh, C. T. Liang, Y. F. Chen, C. W. Lai, and P. T. Chou, “Mechanism of giant enhancement of light emission from Au/CdSe nanocomposites,” Nanotechnology 18(41), 415707 (2007).
[CrossRef]

Lakowicz, J. R.

Larson, T.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Lee, B. S.

Y. S. Chi, H. R. Byon, B. S. Lee, B. Kong, H. C. Choi, and I. S. Choi, “Polymeric Rulers: Distance-Dependent Emission Behaviors of Fluorophores on Flat Gold Surfaces and Bioassay Platforms Using Plasmonic Fluorescence Enhancement,” Adv. Funct. Mater. 18(21), 3395–3402 (2008).
[CrossRef]

Lee, J.

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Forster energy transfer in optically excited semiconductor and metal nanoparitcles,” Phys. Rev. B 76(12), 125308 (2007).
[CrossRef]

J. Lee, A. O. Govorov, J. Dulka, and N. A. Kotov, “Bioconjugates of CdTe nanowires and Au nanoparticles: Plasmon-excition interactions, luminescence enhancement, and collective effects,” Nano Lett. 4(12), 2323–2330 (2004).
[CrossRef]

Lee, K. S.

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

Lee, L. P.

G. L. Liu, Y. T. Long, Y. Choi, T. Kang, and L. P. Lee, “Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer,” Nat. Methods 4(12), 1015–1017 (2007).
[CrossRef] [PubMed]

Levi, S. A.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Li, X.

Q. Q. Zhan, J. Qian, X. Li, and S. He, “A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging,” Nanotechnology 21(5), 055704 (2010).
[CrossRef]

X. Li, J. Qian, L. Jiang, and S. He, “Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection,” Appl. Phys. Lett. 94(6), 063111 (2009).
[CrossRef]

X. Li, J. Qian, and S. He, “Impact of the self-assembly of multilayer polyelectrolyte functionalized gold nanorods and its application to biosensing,” Nanotechnology 19(35), 355501 (2008).
[CrossRef] [PubMed]

Liang, C. T.

Y. P. Hsieh, C. T. Liang, Y. F. Chen, C. W. Lai, and P. T. Chou, “Mechanism of giant enhancement of light emission from Au/CdSe nanocomposites,” Nanotechnology 18(41), 415707 (2007).
[CrossRef]

Lin, Y. P.

C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, and Y. C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[CrossRef] [PubMed]

Link, S.

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
[CrossRef]

Liu, G. L.

G. L. Liu, Y. T. Long, Y. Choi, T. Kang, and L. P. Lee, “Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer,” Nat. Methods 4(12), 1015–1017 (2007).
[CrossRef] [PubMed]

Long, Y. T.

G. L. Liu, Y. T. Long, Y. Choi, T. Kang, and L. P. Lee, “Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer,” Nat. Methods 4(12), 1015–1017 (2007).
[CrossRef] [PubMed]

Ma, Z.

C. Wang, Z. Ma, T. Wang, and Z. Su, “Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing,” Adv. Funct. Mater. 16(13), 1673–1678 (2006).
[CrossRef]

Mahboub, O.

Markert, Y.

T. Soller, M. Ringler, M. Wunderlich, T. A. Klar, J. Feldmann, H. P. Josel, Y. Markert, A. Nichtl, and K. Kürzinger, “Radiative and nonradiative rates of phosphors attached to gold nanoparticles,” Nano Lett. 7(7), 1941–1946 (2007).
[CrossRef]

Maskevich, S.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2(12), 1449–1452 (2002).
[CrossRef]

Mattoussi, H.

A. R. Clapp, I. L. Medintz, B. R. Fisher, G. P. Anderson, and H. Mattoussi, “Can luminescent quantum dots be efficient energy acceptors with organic dye donors?” J. Am. Chem. Soc. 127(4), 1242–1250 (2005).
[CrossRef] [PubMed]

Medintz, I. L.

A. R. Clapp, I. L. Medintz, B. R. Fisher, G. P. Anderson, and H. Mattoussi, “Can luminescent quantum dots be efficient energy acceptors with organic dye donors?” J. Am. Chem. Soc. 127(4), 1242–1250 (2005).
[CrossRef] [PubMed]

Mikhailovsky, A.

J. C. Ostrowski, A. Mikhailovsky, D. A. Bussian, M. A. Summers, S. K. Buratto, and G. C. Bazan, “Enhancement of phosphorescence by surface-plasmon resonances in colloidal metal nanoparticles: The role of aggregates,” Adv. Funct. Mater. 16(9), 1221–1227 (2006).
[CrossRef]

Mohamed, M. B.

O. P. Varnavski, M. B. Mohamed, M. A. El-Sayed, and T. Goodson, “Relative enhancement of ultrafast emission in gold nanorods,” J. Phys. Chem. B 107(14), 3101–3104 (2003).
[CrossRef]

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
[CrossRef]

Möller, M.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Moronne, M.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

Morteani, A. C.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Munechika, K.

Y. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
[CrossRef]

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7(3), 690–696 (2007).
[CrossRef] [PubMed]

Munro, A. M.

Y. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
[CrossRef]

Murphy, C. J.

R. S. Norman, J. W. Stone, A. Gole, C. J. Murphy, and T. L. Sabo-Attwood, “Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods,” Nano Lett. 8(1), 302–306 (2008).
[CrossRef]

Nabiev, I.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2(12), 1449–1452 (2002).
[CrossRef]

Ni, W. H.

Z. Yang, W. H. Ni, X. S. Kou, S. Z. Zhang, Z. H. Sun, L. D. Sun, J. F. Wang, and C. H. Yan, “Incorporation of Gold Nanorods and Their Enhancement of Fluorescence in Mesostructured Silica Thin Films,” J. Phys. Chem. C 112, 18895–188903 (2008).

Nichtl, A.

T. Soller, M. Ringler, M. Wunderlich, T. A. Klar, J. Feldmann, H. P. Josel, Y. Markert, A. Nichtl, and K. Kürzinger, “Radiative and nonradiative rates of phosphors attached to gold nanoparticles,” Nano Lett. 7(7), 1941–1946 (2007).
[CrossRef]

Nie, S.

W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281(5385), 2016–2018 (1998).
[CrossRef] [PubMed]

Niedereichholz, T.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, “Surface-enhanced Raman scattering studies on aggregated gold nanorods,” J. Phys. Chem. A 107(18), 3372–3378 (2003).
[CrossRef]

B. Nikoobakht, J. Wang, and M. A. El-Sayed, “Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition,” Chem. Phys. Lett. 366(1-2), 17–23 (2002).
[CrossRef]

Norman, R. S.

R. S. Norman, J. W. Stone, A. Gole, C. J. Murphy, and T. L. Sabo-Attwood, “Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods,” Nano Lett. 8(1), 302–306 (2008).
[CrossRef]

Novotny, L.

P. Bharadwaj and L. Novotny, “Spectral dependence of single molecule fluorescence enhancement,” Opt. Express 15(21), 14266–14274 (2007).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Ostrowski, J. C.

J. C. Ostrowski, A. Mikhailovsky, D. A. Bussian, M. A. Summers, S. K. Buratto, and G. C. Bazan, “Enhancement of phosphorescence by surface-plasmon resonances in colloidal metal nanoparticles: The role of aggregates,” Adv. Funct. Mater. 16(9), 1221–1227 (2006).
[CrossRef]

Peterson, S.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

Plain, J.

P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010).
[CrossRef] [PubMed]

Popov, E.

Prasad, P. N.

R. Hu, K. T. Yong, I. Roy, H. Ding, S. He, and P. N. Prasad, “Metallic Nanostructures as Localized Plasmon Resonance Enhanced Scattering Probes for Multiplex Dark-Field Targeted Imaging of Cancer Cells,” J. Phys. Chem. C 113(7), 2676–2684 (2009).
[CrossRef]

Purcell, E. M.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Qian, J.

Q. Q. Zhan, J. Qian, X. Li, and S. He, “A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging,” Nanotechnology 21(5), 055704 (2010).
[CrossRef]

X. Li, J. Qian, L. Jiang, and S. He, “Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection,” Appl. Phys. Lett. 94(6), 063111 (2009).
[CrossRef]

X. Li, J. Qian, and S. He, “Impact of the self-assembly of multilayer polyelectrolyte functionalized gold nanorods and its application to biosensing,” Nanotechnology 19(35), 355501 (2008).
[CrossRef] [PubMed]

Qian, W.

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

Qu, X.

X. Qu, J. Wang, Z. Zhang, N. Koop, R. Rahmanzadeh, and G. Hüttmann, “Imaging of cancer cells by multiphoton microscopy using gold nanoparticles and fluorescent dyes,” J. Biomed. Opt. 13(3), 031217 (2008).
[CrossRef] [PubMed]

Rahmanzadeh, R.

X. Qu, J. Wang, Z. Zhang, N. Koop, R. Rahmanzadeh, and G. Hüttmann, “Imaging of cancer cells by multiphoton microscopy using gold nanoparticles and fluorescent dyes,” J. Biomed. Opt. 13(3), 031217 (2008).
[CrossRef] [PubMed]

Rakovich, Y. P.

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89(25), 253118 (2006).
[CrossRef]

Reich, N. O.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

Reinhoudt, D. N.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Rigneault, H.

Ringler, M.

T. Soller, M. Ringler, M. Wunderlich, T. A. Klar, J. Feldmann, H. P. Josel, Y. Markert, A. Nichtl, and K. Kürzinger, “Radiative and nonradiative rates of phosphors attached to gold nanoparticles,” Nano Lett. 7(7), 1941–1946 (2007).
[CrossRef]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Roy, I.

R. Hu, K. T. Yong, I. Roy, H. Ding, S. He, and P. N. Prasad, “Metallic Nanostructures as Localized Plasmon Resonance Enhanced Scattering Probes for Multiplex Dark-Field Targeted Imaging of Cancer Cells,” J. Phys. Chem. C 113(7), 2676–2684 (2009).
[CrossRef]

Royer, P.

P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010).
[CrossRef] [PubMed]

Sabo-Attwood, T. L.

R. S. Norman, J. W. Stone, A. Gole, C. J. Murphy, and T. L. Sabo-Attwood, “Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods,” Nano Lett. 8(1), 302–306 (2008).
[CrossRef]

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

Skrabalak, S. E.

Y. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
[CrossRef]

Smith, D. K.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Sokolov, K.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Soller, T.

T. Soller, M. Ringler, M. Wunderlich, T. A. Klar, J. Feldmann, H. P. Josel, Y. Markert, A. Nichtl, and K. Kürzinger, “Radiative and nonradiative rates of phosphors attached to gold nanoparticles,” Nano Lett. 7(7), 1941–1946 (2007).
[CrossRef]

Stefani, F. D.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10(10), 105005 (2008).
[CrossRef]

Stone, J. W.

R. S. Norman, J. W. Stone, A. Gole, C. J. Murphy, and T. L. Sabo-Attwood, “Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods,” Nano Lett. 8(1), 302–306 (2008).
[CrossRef]

Strekal, N.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2(12), 1449–1452 (2002).
[CrossRef]

Strouse, G. F.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

Su, Z.

C. Wang, Z. Ma, T. Wang, and Z. Su, “Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing,” Adv. Funct. Mater. 16(13), 1673–1678 (2006).
[CrossRef]

Summers, M. A.

J. C. Ostrowski, A. Mikhailovsky, D. A. Bussian, M. A. Summers, S. K. Buratto, and G. C. Bazan, “Enhancement of phosphorescence by surface-plasmon resonances in colloidal metal nanoparticles: The role of aggregates,” Adv. Funct. Mater. 16(9), 1221–1227 (2006).
[CrossRef]

Sun, L. D.

Z. Yang, W. H. Ni, X. S. Kou, S. Z. Zhang, Z. H. Sun, L. D. Sun, J. F. Wang, and C. H. Yan, “Incorporation of Gold Nanorods and Their Enhancement of Fluorescence in Mesostructured Silica Thin Films,” J. Phys. Chem. C 112, 18895–188903 (2008).

Sun, Z. H.

Z. Yang, W. H. Ni, X. S. Kou, S. Z. Zhang, Z. H. Sun, L. D. Sun, J. F. Wang, and C. H. Yan, “Incorporation of Gold Nanorods and Their Enhancement of Fluorescence in Mesostructured Silica Thin Films,” J. Phys. Chem. C 112, 18895–188903 (2008).

Tam, F.

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

Taminiau, T. H.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10(10), 105005 (2008).
[CrossRef]

Thomas, M.

M. Thomas, J. J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85(17), 3863 (2004).
[CrossRef]

Tzeng, H. C.

C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, and Y. C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[CrossRef] [PubMed]

van Hulst, N. F.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10(10), 105005 (2008).
[CrossRef]

van Veggel, F. C. J. M.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

Varnavski, O. P.

O. P. Varnavski, M. B. Mohamed, M. A. El-Sayed, and T. Goodson, “Relative enhancement of ultrafast emission in gold nanorods,” J. Phys. Chem. B 107(14), 3101–3104 (2003).
[CrossRef]

Vial, A.

P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010).
[CrossRef] [PubMed]

Viste, P.

P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010).
[CrossRef] [PubMed]

Wang, C.

C. Wang, Z. Ma, T. Wang, and Z. Su, “Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing,” Adv. Funct. Mater. 16(13), 1673–1678 (2006).
[CrossRef]

Wang, C. W.

C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, and Y. C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[CrossRef] [PubMed]

Wang, J.

X. Qu, J. Wang, Z. Zhang, N. Koop, R. Rahmanzadeh, and G. Hüttmann, “Imaging of cancer cells by multiphoton microscopy using gold nanoparticles and fluorescent dyes,” J. Biomed. Opt. 13(3), 031217 (2008).
[CrossRef] [PubMed]

B. Nikoobakht, J. Wang, and M. A. El-Sayed, “Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition,” Chem. Phys. Lett. 366(1-2), 17–23 (2002).
[CrossRef]

Wang, J. F.

Z. Yang, W. H. Ni, X. S. Kou, S. Z. Zhang, Z. H. Sun, L. D. Sun, J. F. Wang, and C. H. Yan, “Incorporation of Gold Nanorods and Their Enhancement of Fluorescence in Mesostructured Silica Thin Films,” J. Phys. Chem. C 112, 18895–188903 (2008).

Wang, T.

C. Wang, Z. Ma, T. Wang, and Z. Su, “Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing,” Adv. Funct. Mater. 16(13), 1673–1678 (2006).
[CrossRef]

Weiss, S.

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

Wenger, J.

Woggon, U.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2(12), 1449–1452 (2002).
[CrossRef]

Wu, C. H.

C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, and Y. C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[CrossRef] [PubMed]

Wu, Y. C.

C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, and Y. C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[CrossRef] [PubMed]

Wunderlich, M.

T. Soller, M. Ringler, M. Wunderlich, T. A. Klar, J. Feldmann, H. P. Josel, Y. Markert, A. Nichtl, and K. Kürzinger, “Radiative and nonradiative rates of phosphors attached to gold nanoparticles,” Nano Lett. 7(7), 1941–1946 (2007).
[CrossRef]

Xia, Y.

Y. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yan, C. H.

Z. Yang, W. H. Ni, X. S. Kou, S. Z. Zhang, Z. H. Sun, L. D. Sun, J. F. Wang, and C. H. Yan, “Incorporation of Gold Nanorods and Their Enhancement of Fluorescence in Mesostructured Silica Thin Films,” J. Phys. Chem. C 112, 18895–188903 (2008).

Yang, Z.

Z. Yang, W. H. Ni, X. S. Kou, S. Z. Zhang, Z. H. Sun, L. D. Sun, J. F. Wang, and C. H. Yan, “Incorporation of Gold Nanorods and Their Enhancement of Fluorescence in Mesostructured Silica Thin Films,” J. Phys. Chem. C 112, 18895–188903 (2008).

Yaroshevich, A.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2(12), 1449–1452 (2002).
[CrossRef]

Ye, Y.

S. He, Y. Cui, Y. Ye, P. Zhang, and Y. Jin, “Optical nano-antennas and metamaterials,” Mater. Today 12(12), 16–24 (2009).
[CrossRef]

Yong, K. T.

R. Hu, K. T. Yong, I. Roy, H. Ding, S. He, and P. N. Prasad, “Metallic Nanostructures as Localized Plasmon Resonance Enhanced Scattering Probes for Multiplex Dark-Field Targeted Imaging of Cancer Cells,” J. Phys. Chem. C 113(7), 2676–2684 (2009).
[CrossRef]

Yun, C. S.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

Zhan, Q. Q.

Q. Q. Zhan, J. Qian, X. Li, and S. He, “A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging,” Nanotechnology 21(5), 055704 (2010).
[CrossRef]

Zhang, J.

Zhang, P.

S. He, Y. Cui, Y. Ye, P. Zhang, and Y. Jin, “Optical nano-antennas and metamaterials,” Mater. Today 12(12), 16–24 (2009).
[CrossRef]

Zhang, S. Z.

Z. Yang, W. H. Ni, X. S. Kou, S. Z. Zhang, Z. H. Sun, L. D. Sun, J. F. Wang, and C. H. Yan, “Incorporation of Gold Nanorods and Their Enhancement of Fluorescence in Mesostructured Silica Thin Films,” J. Phys. Chem. C 112, 18895–188903 (2008).

Zhang, Z.

X. Qu, J. Wang, Z. Zhang, N. Koop, R. Rahmanzadeh, and G. Hüttmann, “Imaging of cancer cells by multiphoton microscopy using gold nanoparticles and fluorescent dyes,” J. Biomed. Opt. 13(3), 031217 (2008).
[CrossRef] [PubMed]

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

ACS Nano

P. Viste, J. Plain, R. Jaffiol, A. Vial, P. M. Adam, and P. Royer, “Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources,” ACS Nano 4(2), 759–764 (2010).
[CrossRef] [PubMed]

R. Bardhan, N. K. Grady, J. R. Cole, A. Joshi, and N. J. Halas, “Fluorescence enhancement by Au nanostructures: nanoshells and nanorods,” ACS Nano 3(3), 744–752 (2009).
[CrossRef] [PubMed]

Adv. Funct. Mater.

C. Wang, Z. Ma, T. Wang, and Z. Su, “Synthesis, assembly, and biofunctionalization of silica-coated gold nanorods for colorimetric biosensing,” Adv. Funct. Mater. 16(13), 1673–1678 (2006).
[CrossRef]

J. C. Ostrowski, A. Mikhailovsky, D. A. Bussian, M. A. Summers, S. K. Buratto, and G. C. Bazan, “Enhancement of phosphorescence by surface-plasmon resonances in colloidal metal nanoparticles: The role of aggregates,” Adv. Funct. Mater. 16(9), 1221–1227 (2006).
[CrossRef]

Y. S. Chi, H. R. Byon, B. S. Lee, B. Kong, H. C. Choi, and I. S. Choi, “Polymeric Rulers: Distance-Dependent Emission Behaviors of Fluorophores on Flat Gold Surfaces and Bioassay Platforms Using Plasmonic Fluorescence Enhancement,” Adv. Funct. Mater. 18(21), 3395–3402 (2008).
[CrossRef]

Appl. Phys. Lett.

M. Thomas, J. J. Greffet, R. Carminati, and J. R. Arias-Gonzalez, “Single-molecule spontaneous emission close to absorbing nanostructures,” Appl. Phys. Lett. 85(17), 3863 (2004).
[CrossRef]

V. K. Komarala, Y. P. Rakovich, A. L. Bradley, S. J. Byrne, Y. K. Gun’ko, N. Gaponik, and A. Eychmüller, “Off-resonance surface plasmon enhanced spontaneous emission from CdTe quantum dots,” Appl. Phys. Lett. 89(25), 253118 (2006).
[CrossRef]

Y. Chen, K. Munechika, I. Jen-La Plante, A. M. Munro, S. E. Skrabalak, Y. Xia, and D. S. Ginger, “Excitation enhancement of CdSe quantum dots by single metal nanoparticles,” Appl. Phys. Lett. 93(5), 053106 (2008).
[CrossRef]

X. Li, J. Qian, L. Jiang, and S. He, “Fluorescence quenching of quantum dots by gold nanorods and its application to DNA detection,” Appl. Phys. Lett. 94(6), 063111 (2009).
[CrossRef]

Chem. Phys. Lett.

B. Nikoobakht, J. Wang, and M. A. El-Sayed, “Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition,” Chem. Phys. Lett. 366(1-2), 17–23 (2002).
[CrossRef]

J. Am. Chem. Soc.

C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, and G. F. Strouse, “Nanometal surface energy transfer in optical rulers, breaking the FRET barrier,” J. Am. Chem. Soc. 127(9), 3115–3119 (2005).
[CrossRef] [PubMed]

X. Huang, I. H. El-Sayed, W. Qian, and M. A. El-Sayed, “Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods,” J. Am. Chem. Soc. 128(6), 2115–2120 (2006).
[CrossRef] [PubMed]

C. C. Chen, Y. P. Lin, C. W. Wang, H. C. Tzeng, C. H. Wu, Y. C. Chen, C. P. Chen, L. C. Chen, and Y. C. Wu, “DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation,” J. Am. Chem. Soc. 128(11), 3709–3715 (2006).
[CrossRef] [PubMed]

A. R. Clapp, I. L. Medintz, B. R. Fisher, G. P. Anderson, and H. Mattoussi, “Can luminescent quantum dots be efficient energy acceptors with organic dye donors?” J. Am. Chem. Soc. 127(4), 1242–1250 (2005).
[CrossRef] [PubMed]

J. Biomed. Opt.

X. Qu, J. Wang, Z. Zhang, N. Koop, R. Rahmanzadeh, and G. Hüttmann, “Imaging of cancer cells by multiphoton microscopy using gold nanoparticles and fluorescent dyes,” J. Biomed. Opt. 13(3), 031217 (2008).
[CrossRef] [PubMed]

V. Ghukasyan, Y. Y. Hsu, S. H. Kung, and F. J. Kao, “Application of fluorescence resonance energy transfer resolved by fluorescence lifetime imaging microscopy for the detection of enterovirus 71 infection in cells,” J. Biomed. Opt. 12(2), 024016 (2007).
[CrossRef] [PubMed]

J. Phys. Chem. A

B. Nikoobakht and M. A. El-Sayed, “Surface-enhanced Raman scattering studies on aggregated gold nanorods,” J. Phys. Chem. A 107(18), 3372–3378 (2003).
[CrossRef]

J. Phys. Chem. B

S. Link, M. B. Mohamed, and M. A. El-Sayed, “Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant,” J. Phys. Chem. B 103(16), 3073–3077 (1999).
[CrossRef]

O. P. Varnavski, M. B. Mohamed, M. A. El-Sayed, and T. Goodson, “Relative enhancement of ultrafast emission in gold nanorods,” J. Phys. Chem. B 107(14), 3101–3104 (2003).
[CrossRef]

P. K. Jain, K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, “Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine,” J. Phys. Chem. B 110(14), 7238–7248 (2006).
[CrossRef] [PubMed]

J. Phys. Chem. C

Z. Yang, W. H. Ni, X. S. Kou, S. Z. Zhang, Z. H. Sun, L. D. Sun, J. F. Wang, and C. H. Yan, “Incorporation of Gold Nanorods and Their Enhancement of Fluorescence in Mesostructured Silica Thin Films,” J. Phys. Chem. C 112, 18895–188903 (2008).

V. Ghukasyan and F. J. Kao, “Monitoring Cellular Metabolism with Fluorescence Lifetime of Reduced Nicotinamide Adenine Dinucleotide,” J. Phys. Chem. C 113(27), 11532–11540 (2009).
[CrossRef]

R. Hu, K. T. Yong, I. Roy, H. Ding, S. He, and P. N. Prasad, “Metallic Nanostructures as Localized Plasmon Resonance Enhanced Scattering Probes for Multiplex Dark-Field Targeted Imaging of Cancer Cells,” J. Phys. Chem. C 113(7), 2676–2684 (2009).
[CrossRef]

Mater. Today

S. He, Y. Cui, Y. Ye, P. Zhang, and Y. Jin, “Optical nano-antennas and metamaterials,” Mater. Today 12(12), 16–24 (2009).
[CrossRef]

N. J. Phys.

T. H. Taminiau, F. D. Stefani, and N. F. van Hulst, “Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency,” N. J. Phys. 10(10), 105005 (2008).
[CrossRef]

Nano Lett.

O. Kulakovich, N. Strekal, A. Yaroshevich, S. Maskevich, S. Gaponenko, I. Nabiev, U. Woggon, and M. Artemyev, “Enhanced luminescence of CdSe quantum dots on gold colloids,” Nano Lett. 2(12), 1449–1452 (2002).
[CrossRef]

J. Lee, A. O. Govorov, J. Dulka, and N. A. Kotov, “Bioconjugates of CdTe nanowires and Au nanoparticles: Plasmon-excition interactions, luminescence enhancement, and collective effects,” Nano Lett. 4(12), 2323–2330 (2004).
[CrossRef]

R. S. Norman, J. W. Stone, A. Gole, C. J. Murphy, and T. L. Sabo-Attwood, “Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods,” Nano Lett. 8(1), 302–306 (2008).
[CrossRef]

F. Tam, G. P. Goodrich, B. R. Johnson, and N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007).
[CrossRef] [PubMed]

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett. 7(4), 941–945 (2007).
[CrossRef] [PubMed]

Y. Chen, K. Munechika, and D. S. Ginger, “Dependence of fluorescence intensity on the spectral overlap between fluorophores and plasmon resonant single silver nanoparticles,” Nano Lett. 7(3), 690–696 (2007).
[CrossRef] [PubMed]

T. Soller, M. Ringler, M. Wunderlich, T. A. Klar, J. Feldmann, H. P. Josel, Y. Markert, A. Nichtl, and K. Kürzinger, “Radiative and nonradiative rates of phosphors attached to gold nanoparticles,” Nano Lett. 7(7), 1941–1946 (2007).
[CrossRef]

Nanotechnology

X. Li, J. Qian, and S. He, “Impact of the self-assembly of multilayer polyelectrolyte functionalized gold nanorods and its application to biosensing,” Nanotechnology 19(35), 355501 (2008).
[CrossRef] [PubMed]

Q. Q. Zhan, J. Qian, X. Li, and S. He, “A study of mesoporous silica-encapsulated gold nanorods as enhanced light scattering probes for cancer cell imaging,” Nanotechnology 21(5), 055704 (2010).
[CrossRef]

Y. P. Hsieh, C. T. Liang, Y. F. Chen, C. W. Lai, and P. T. Chou, “Mechanism of giant enhancement of light emission from Au/CdSe nanocomposites,” Nanotechnology 18(41), 415707 (2007).
[CrossRef]

Nat. Methods

G. L. Liu, Y. T. Long, Y. Choi, T. Kang, and L. P. Lee, “Quantized plasmon quenching dips nanospectroscopy via plasmon resonance energy transfer,” Nat. Methods 4(12), 1015–1017 (2007).
[CrossRef] [PubMed]

Nature

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459(7245), 410–413 (2009).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev.

E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).

Phys. Rev. B

A. O. Govorov, J. Lee, and N. A. Kotov, “Theory of plasmon-enhanced Forster energy transfer in optically excited semiconductor and metal nanoparitcles,” Phys. Rev. B 76(12), 125308 (2007).
[CrossRef]

Phys. Rev. Lett.

D. Kleppner, “Inhibited spontaneous emission,” Phys. Rev. Lett. 47(4), 233–236 (1981).
[CrossRef]

E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Möller, and D. I. Gittins, “Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects,” Phys. Rev. Lett. 89(20), 203002 (2002).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[CrossRef] [PubMed]

Science

M. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, “Semiconductor nanocrystals as fluorescent biological labels,” Science 281(5385), 2013–2016 (1998).
[CrossRef] [PubMed]

W. C. W. Chan and S. Nie, “Quantum dot bioconjugates for ultrasensitive nonisotopic detection,” Science 281(5385), 2016–2018 (1998).
[CrossRef] [PubMed]

Other

H. C. Van de Hulst, Light scattering by small particles, (Wiley-Interscience, New York, 1957).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the FLIM system

Fig. 2
Fig. 2

(a) UV-visible absorbance spectra of GNRs with LSPR peaks at 600, 650 and 730 nm are shown as solid curves. UV-visible absorbance spectra of GNRs that were coated with 13 nm-thick silica with LSPR peaks at 615 nm, 665 nm, and 750 nm are shown as dashed curves. The emission spectrum of QDs with the peak at 605 nm is shown as a dotted curve. (b)-(d) TEM images of 650 nm-GNRs, 650 nm-GNRs coated with 8 nm silica and 13 nm silica. (e)-(g) TEM images of QDs conjugated with 650 nm-GNRs, 650 nm-GNRs coated with 8 nm silica and 13 nm silica.

Fig. 3
Fig. 3

(a) Fluorescence lifetimes of QDs conjugated with 600, 650, and 730 nm-GNRs (square) and GNR_SiO2 (triangle), with corresponding LSPR peaks at 615, 665 and 750 nm under single-photon excitation at 470nm. (b) Ratios of fluorescence intensities (I) of QDs conjugated with GNRs (solid) and GNR_SiO2 (shadow) with corresponding LSPR peaks to original intensity (I0) of QDs without GNRs-conjugation under single-photon excitation at 470 nm.

Fig. 4
Fig. 4

(A) Normalized fluorescence decay curves of QDs, 650 nm-GNRs, QDs-650 nm-GNRs and QDs-665 nm-GNR_SiO2 under two-photon excitation at 750 nm; inset shows magnified fitting decay curves. (B) Emission spectra of QD-650 nm-GNRs, 650 nm-GNRs to which are added QD-emission spectra, QD-665 nm-GNR_SiO2, and QD-750 nm-GNR_SiO2 (from a to d) under two-photon excitation at 750 nm.

Scheme 1
Scheme 1

GNR, silica coated on GNR using TEOS, and both GNR and GNR_SiO2 conjugated with QDs and anti-CEAcam8.

Fig. 5
Fig. 5

Images made by transmitted light (left), one-photon (middle) and two-photon FLIM images (right) of HeLa cells treated with (a)-(c) QDs and anti-CEA8, (d)-(f) QD-750 nm-GNR composites functionalized with anti-CEA8, (g)-(i) QD-GNR_SiO2 composites functionalized with anti-CEA8. Color bar shows different colors, used in the images to represent varying fluorescence lifetime.

Fig. 6
Fig. 6

Dark-field images (left) and one-photon fluorescence images (right) of HeLa cells treated with (a),(b) QD-GNR_SiO2 composites and (c),(d) QD-GNR composites that had been functionalized with anti-CEA8.

Tables (1)

Tables Icon

Table 1 Fluorescence intensities, lifetimes and enhancement factors of radiative decay rate of QDs at different separations from GNRs and without GNRs.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

γ e m = γ e x c κ η = γ e x c κ R r a d R r a d + R n o n r a d

Metrics