Abstract

Sonification is the process of representing data as non-speech audio signals. In this manuscript, we describe the auditory presentation of OCT data and images. OCT acquisition rates frequently exceed our ability to visually analyze image-based data, and multi-sensory input may therefore facilitate rapid interpretation. This conversion will be especially valuable in time-sensitive surgical or diagnostic procedures. In these scenarios, auditory feedback can complement visual data without requiring the surgeon to constantly monitor the screen, or provide additional feedback in non-imaging procedures such as guided needle biopsies which use only axial-scan data. In this paper we present techniques to translate OCT data and images into sound based on the spatial and spatial frequency properties of the OCT data. Results obtained from parameter-mapped sonification of human adipose and tumor tissues are presented, indicating that audio feedback of OCT data may be useful for the interpretation of OCT images.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
    [CrossRef] [PubMed]
  2. F. T. Nguyen, A. M. Zysk, E. J. Chaney, S. G. Adie, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Optical Coherence Tomography: The Intraoperative Assessment of Lymph Nodes in Breast Cancer,” IEEE Eng. Med. Biol. Mag. 29(2), 63–70 (2010).
    [CrossRef] [PubMed]
  3. A. M. Zysk, F. T. Nguyen, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, P. A. Johnson, K. M. Rowland, and S. A. Boppart, “Clinical feasibility of microscopically-guided breast needle biopsy using a fiber-optic probe with computer-aided detection,” Technol. Cancer Res. Treat. 8(5), 315–321 (2009).
    [PubMed]
  4. W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, New York, 2008).
  5. T. Hermann, “Taxonomy and definitions for sonifications and auditory display,” in Proceedings of the 14th International Conference on Auditory Display (Paris, France 2008).
  6. E. S. Yeung, “Pattern recognition by audio representation of multivariate analytical data,” Anal. Chem. 52(7), 1120–1123 (1980).
    [CrossRef]
  7. S. Barrass and G. Kramer, “Using sonification,” Multimedia Syst. 7(1), 23–31 (1999).
    [CrossRef]
  8. E. Jovanov, K. Wegner, V. Radivojević, D. Starcević, M. S. Quinn, and D. B. Karron, “Tactical audio and acoustic rendering in biomedical applications,” IEEE Trans. Inf. Technol. Biomed. 3(2), 109–118 (1999).
    [CrossRef]
  9. G. Baier, T. Hermann, and U. Stephani, “Event-based sonification of EEG rhythms in real time,” Clin. Neurophysiol. 118(6), 1377–1386 (2007).
    [CrossRef] [PubMed]
  10. M. Ballora, B. Pennycook, P. C. Ivanov, A. Goldberger, and L. Glass, “Detection of obstructive sleep apnea through auditory display of heart rate variability,” in Computers in Cardiology (2000), pp. 739–740.
    [PubMed]
  11. A. D. N. Edwards, G. Hines, and A. Hunt, “Segmentation of Biological Cell Images for Sonification,” in Congress on Image and Signal Processing, cisp (2008), pp. 128–132.
  12. A. C. G. Martins, R. M. Rangayyan, and R. A. Ruschioni, “Audification and sonification of texture in images,” J. Electron. Imaging 10(3), 690–705 (2001).
    [CrossRef]
  13. H. F. Routh, “Doppler ultrasound,” IEEE Eng. Med. Biol. Mag. 15(6), 31–40 (1996).
    [CrossRef]
  14. V. X. D. Yang, M. L. Gordon, S. J. Tang, N. E. Marcon, G. Gardiner, B. Qi, S. Bisland, E. Seng-Yue, S. Lo, J. Pekar, B. C. Wilson, and I. A. Vitkin, “High speed, wide velocity dynamic range Doppler optical coherence tomography (Part III): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts,” Opt. Express 11(19), 2416–2424 (2003).
    [CrossRef] [PubMed]
  15. E. Jovanov, D. Starcevic, V. Radivojevic, A. Samardzic, and V. Simeunovic, “Perceptualization of biomedical data. An experimental environment for visualization and sonification of brain electrical activity,” IEEE Eng. Med. Biol. Mag. 18(1), 50–55 (1999).
    [CrossRef] [PubMed]
  16. A. M. Zysk, D. L. Marks, D. Y. Liu, and S. A. Boppart, “Needle-based reflection refractometry of scattering samples using coherence-gated detection,” Opt. Express 15(8), 4787–4794 (2007).
    [CrossRef] [PubMed]
  17. B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. Halpern, B. E. Bouma, and G. J. Tearney, “Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance,” J. Biomed. Opt. 13(1), 014014–014018 (2008).
    [CrossRef] [PubMed]
  18. T. Hermann and H. Ritter, “Sound and meaning in auditory data display,” Proc. IEEE 92(4), 730–741 (2004).
    [CrossRef]
  19. G. Kramer, ed., Auditory Display-Sonification, Audification, and Auditory Interfaces (Reading, MA: Addison-Wesley, 1994).
  20. S. A. Brewster, P. C. Wright, and A. D. N. Edwards, “A detailed investigation into the effectiveness of earcons,” in Auditory Display, G. Kramer, ed. (Reading, MA: Addison Wesley, 1994), pp. 471–498.
  21. W. W. Gaver, “Synthesizing auditory icons,” in Proceedings of the INTERACT '93 and CHI '93 conference on Human factors in computing systems(ACM, Amsterdam, The Netherlands, 1993), pp. 228–235.
  22. A. M. Zysk and S. A. Boppart, “Computational methods for analysis of human breast tumor tissue in optical coherence tomography images,” J. Biomed. Opt. 11(5), 054015 (2006).
    [CrossRef] [PubMed]
  23. X. Qi, M. V. Sivak, G. Isenberg, J. E. Willis, and A. M. Rollins, “Computer-aided diagnosis of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography,” J. Biomed. Opt. 11(4), 044010 (2006).
    [CrossRef] [PubMed]
  24. K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton, “Texture analysis of optical coherence tomography images: feasibility for tissue classification,” J. Biomed. Opt. 8(3), 570–575 (2003).
    [CrossRef] [PubMed]
  25. E. Zwicker and H. Fastl, Psychoacoustics - Facts and Models (Springer, Berlin, 1999).
  26. H. F. Olson, Music, Physics and Engineering (Dover Publications, 1967).
  27. B. Moore, “Psychoacoustics,” in Springer Handbook of Acoustics, T. D. Rossing, ed., (Springer, 2007), pp. 459–501.
  28. C. Scaletti, “Sound synthesis algorithms for auditory data representations,” in Auditory Display, G. Kramer, ed., (Reading, MA: Addison Wesley, 1994), pp. 471–498.
  29. J. M. Chowning, “The Synthesis of Complex Audio Spectra by Means of Frequency Modulation,” J. Audio Eng. Soc. 21, 526–534 (1973).
  30. H. G. Kaper, E. Wiebel, and S. Tipei, “Data sonification and sound visualization,” Comput. Sci. Eng. 1(4), 48–58 (1999).
    [CrossRef]

2010 (1)

F. T. Nguyen, A. M. Zysk, E. J. Chaney, S. G. Adie, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Optical Coherence Tomography: The Intraoperative Assessment of Lymph Nodes in Breast Cancer,” IEEE Eng. Med. Biol. Mag. 29(2), 63–70 (2010).
[CrossRef] [PubMed]

2009 (2)

A. M. Zysk, F. T. Nguyen, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, P. A. Johnson, K. M. Rowland, and S. A. Boppart, “Clinical feasibility of microscopically-guided breast needle biopsy using a fiber-optic probe with computer-aided detection,” Technol. Cancer Res. Treat. 8(5), 315–321 (2009).
[PubMed]

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

2008 (1)

B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. Halpern, B. E. Bouma, and G. J. Tearney, “Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance,” J. Biomed. Opt. 13(1), 014014–014018 (2008).
[CrossRef] [PubMed]

2007 (2)

2006 (2)

A. M. Zysk and S. A. Boppart, “Computational methods for analysis of human breast tumor tissue in optical coherence tomography images,” J. Biomed. Opt. 11(5), 054015 (2006).
[CrossRef] [PubMed]

X. Qi, M. V. Sivak, G. Isenberg, J. E. Willis, and A. M. Rollins, “Computer-aided diagnosis of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography,” J. Biomed. Opt. 11(4), 044010 (2006).
[CrossRef] [PubMed]

2004 (1)

T. Hermann and H. Ritter, “Sound and meaning in auditory data display,” Proc. IEEE 92(4), 730–741 (2004).
[CrossRef]

2003 (2)

2001 (1)

A. C. G. Martins, R. M. Rangayyan, and R. A. Ruschioni, “Audification and sonification of texture in images,” J. Electron. Imaging 10(3), 690–705 (2001).
[CrossRef]

1999 (4)

S. Barrass and G. Kramer, “Using sonification,” Multimedia Syst. 7(1), 23–31 (1999).
[CrossRef]

E. Jovanov, K. Wegner, V. Radivojević, D. Starcević, M. S. Quinn, and D. B. Karron, “Tactical audio and acoustic rendering in biomedical applications,” IEEE Trans. Inf. Technol. Biomed. 3(2), 109–118 (1999).
[CrossRef]

H. G. Kaper, E. Wiebel, and S. Tipei, “Data sonification and sound visualization,” Comput. Sci. Eng. 1(4), 48–58 (1999).
[CrossRef]

E. Jovanov, D. Starcevic, V. Radivojevic, A. Samardzic, and V. Simeunovic, “Perceptualization of biomedical data. An experimental environment for visualization and sonification of brain electrical activity,” IEEE Eng. Med. Biol. Mag. 18(1), 50–55 (1999).
[CrossRef] [PubMed]

1996 (1)

H. F. Routh, “Doppler ultrasound,” IEEE Eng. Med. Biol. Mag. 15(6), 31–40 (1996).
[CrossRef]

1980 (1)

E. S. Yeung, “Pattern recognition by audio representation of multivariate analytical data,” Anal. Chem. 52(7), 1120–1123 (1980).
[CrossRef]

1973 (1)

J. M. Chowning, “The Synthesis of Complex Audio Spectra by Means of Frequency Modulation,” J. Audio Eng. Soc. 21, 526–534 (1973).

Adie, S. G.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, S. G. Adie, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Optical Coherence Tomography: The Intraoperative Assessment of Lymph Nodes in Breast Cancer,” IEEE Eng. Med. Biol. Mag. 29(2), 63–70 (2010).
[CrossRef] [PubMed]

Baier, G.

G. Baier, T. Hermann, and U. Stephani, “Event-based sonification of EEG rhythms in real time,” Clin. Neurophysiol. 118(6), 1377–1386 (2007).
[CrossRef] [PubMed]

Barrass, S.

S. Barrass and G. Kramer, “Using sonification,” Multimedia Syst. 7(1), 23–31 (1999).
[CrossRef]

Barton, J. K.

K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton, “Texture analysis of optical coherence tomography images: feasibility for tissue classification,” J. Biomed. Opt. 8(3), 570–575 (2003).
[CrossRef] [PubMed]

Bellafiore, F. J.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, S. G. Adie, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Optical Coherence Tomography: The Intraoperative Assessment of Lymph Nodes in Breast Cancer,” IEEE Eng. Med. Biol. Mag. 29(2), 63–70 (2010).
[CrossRef] [PubMed]

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

A. M. Zysk, F. T. Nguyen, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, P. A. Johnson, K. M. Rowland, and S. A. Boppart, “Clinical feasibility of microscopically-guided breast needle biopsy using a fiber-optic probe with computer-aided detection,” Technol. Cancer Res. Treat. 8(5), 315–321 (2009).
[PubMed]

Bisland, S.

Boppart, S. A.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, S. G. Adie, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Optical Coherence Tomography: The Intraoperative Assessment of Lymph Nodes in Breast Cancer,” IEEE Eng. Med. Biol. Mag. 29(2), 63–70 (2010).
[CrossRef] [PubMed]

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

A. M. Zysk, F. T. Nguyen, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, P. A. Johnson, K. M. Rowland, and S. A. Boppart, “Clinical feasibility of microscopically-guided breast needle biopsy using a fiber-optic probe with computer-aided detection,” Technol. Cancer Res. Treat. 8(5), 315–321 (2009).
[PubMed]

A. M. Zysk, D. L. Marks, D. Y. Liu, and S. A. Boppart, “Needle-based reflection refractometry of scattering samples using coherence-gated detection,” Opt. Express 15(8), 4787–4794 (2007).
[CrossRef] [PubMed]

A. M. Zysk and S. A. Boppart, “Computational methods for analysis of human breast tumor tissue in optical coherence tomography images,” J. Biomed. Opt. 11(5), 054015 (2006).
[CrossRef] [PubMed]

Bouma, B. E.

B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. Halpern, B. E. Bouma, and G. J. Tearney, “Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance,” J. Biomed. Opt. 13(1), 014014–014018 (2008).
[CrossRef] [PubMed]

Bressner, J. E.

B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. Halpern, B. E. Bouma, and G. J. Tearney, “Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance,” J. Biomed. Opt. 13(1), 014014–014018 (2008).
[CrossRef] [PubMed]

Chaney, E. J.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, S. G. Adie, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Optical Coherence Tomography: The Intraoperative Assessment of Lymph Nodes in Breast Cancer,” IEEE Eng. Med. Biol. Mag. 29(2), 63–70 (2010).
[CrossRef] [PubMed]

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

A. M. Zysk, F. T. Nguyen, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, P. A. Johnson, K. M. Rowland, and S. A. Boppart, “Clinical feasibility of microscopically-guided breast needle biopsy using a fiber-optic probe with computer-aided detection,” Technol. Cancer Res. Treat. 8(5), 315–321 (2009).
[PubMed]

Chowning, J. M.

J. M. Chowning, “The Synthesis of Complex Audio Spectra by Means of Frequency Modulation,” J. Audio Eng. Soc. 21, 526–534 (1973).

Gardiner, G.

Goldberg, B. D.

B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. Halpern, B. E. Bouma, and G. J. Tearney, “Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance,” J. Biomed. Opt. 13(1), 014014–014018 (2008).
[CrossRef] [PubMed]

Gordon, M. L.

Gossage, K. W.

K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton, “Texture analysis of optical coherence tomography images: feasibility for tissue classification,” J. Biomed. Opt. 8(3), 570–575 (2003).
[CrossRef] [PubMed]

Halpern, E.

B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. Halpern, B. E. Bouma, and G. J. Tearney, “Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance,” J. Biomed. Opt. 13(1), 014014–014018 (2008).
[CrossRef] [PubMed]

Hermann, T.

G. Baier, T. Hermann, and U. Stephani, “Event-based sonification of EEG rhythms in real time,” Clin. Neurophysiol. 118(6), 1377–1386 (2007).
[CrossRef] [PubMed]

T. Hermann and H. Ritter, “Sound and meaning in auditory data display,” Proc. IEEE 92(4), 730–741 (2004).
[CrossRef]

Iftimia, N. V.

B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. Halpern, B. E. Bouma, and G. J. Tearney, “Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance,” J. Biomed. Opt. 13(1), 014014–014018 (2008).
[CrossRef] [PubMed]

Isenberg, G.

X. Qi, M. V. Sivak, G. Isenberg, J. E. Willis, and A. M. Rollins, “Computer-aided diagnosis of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography,” J. Biomed. Opt. 11(4), 044010 (2006).
[CrossRef] [PubMed]

Johnson, P. A.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, S. G. Adie, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Optical Coherence Tomography: The Intraoperative Assessment of Lymph Nodes in Breast Cancer,” IEEE Eng. Med. Biol. Mag. 29(2), 63–70 (2010).
[CrossRef] [PubMed]

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

A. M. Zysk, F. T. Nguyen, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, P. A. Johnson, K. M. Rowland, and S. A. Boppart, “Clinical feasibility of microscopically-guided breast needle biopsy using a fiber-optic probe with computer-aided detection,” Technol. Cancer Res. Treat. 8(5), 315–321 (2009).
[PubMed]

Jovanov, E.

E. Jovanov, D. Starcevic, V. Radivojevic, A. Samardzic, and V. Simeunovic, “Perceptualization of biomedical data. An experimental environment for visualization and sonification of brain electrical activity,” IEEE Eng. Med. Biol. Mag. 18(1), 50–55 (1999).
[CrossRef] [PubMed]

E. Jovanov, K. Wegner, V. Radivojević, D. Starcević, M. S. Quinn, and D. B. Karron, “Tactical audio and acoustic rendering in biomedical applications,” IEEE Trans. Inf. Technol. Biomed. 3(2), 109–118 (1999).
[CrossRef]

Kaper, H. G.

H. G. Kaper, E. Wiebel, and S. Tipei, “Data sonification and sound visualization,” Comput. Sci. Eng. 1(4), 48–58 (1999).
[CrossRef]

Karron, D. B.

E. Jovanov, K. Wegner, V. Radivojević, D. Starcević, M. S. Quinn, and D. B. Karron, “Tactical audio and acoustic rendering in biomedical applications,” IEEE Trans. Inf. Technol. Biomed. 3(2), 109–118 (1999).
[CrossRef]

Kotynek, J. G.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, S. G. Adie, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Optical Coherence Tomography: The Intraoperative Assessment of Lymph Nodes in Breast Cancer,” IEEE Eng. Med. Biol. Mag. 29(2), 63–70 (2010).
[CrossRef] [PubMed]

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

A. M. Zysk, F. T. Nguyen, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, P. A. Johnson, K. M. Rowland, and S. A. Boppart, “Clinical feasibility of microscopically-guided breast needle biopsy using a fiber-optic probe with computer-aided detection,” Technol. Cancer Res. Treat. 8(5), 315–321 (2009).
[PubMed]

Kramer, G.

S. Barrass and G. Kramer, “Using sonification,” Multimedia Syst. 7(1), 23–31 (1999).
[CrossRef]

Liu, D. Y.

Lo, S.

Marcon, N. E.

Marks, D. L.

Martins, A. C. G.

A. C. G. Martins, R. M. Rangayyan, and R. A. Ruschioni, “Audification and sonification of texture in images,” J. Electron. Imaging 10(3), 690–705 (2001).
[CrossRef]

Nguyen, F. T.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, S. G. Adie, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Optical Coherence Tomography: The Intraoperative Assessment of Lymph Nodes in Breast Cancer,” IEEE Eng. Med. Biol. Mag. 29(2), 63–70 (2010).
[CrossRef] [PubMed]

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

A. M. Zysk, F. T. Nguyen, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, P. A. Johnson, K. M. Rowland, and S. A. Boppart, “Clinical feasibility of microscopically-guided breast needle biopsy using a fiber-optic probe with computer-aided detection,” Technol. Cancer Res. Treat. 8(5), 315–321 (2009).
[PubMed]

Oliphant, U. J.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, S. G. Adie, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Optical Coherence Tomography: The Intraoperative Assessment of Lymph Nodes in Breast Cancer,” IEEE Eng. Med. Biol. Mag. 29(2), 63–70 (2010).
[CrossRef] [PubMed]

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

A. M. Zysk, F. T. Nguyen, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, P. A. Johnson, K. M. Rowland, and S. A. Boppart, “Clinical feasibility of microscopically-guided breast needle biopsy using a fiber-optic probe with computer-aided detection,” Technol. Cancer Res. Treat. 8(5), 315–321 (2009).
[PubMed]

Pekar, J.

Pitman, M. B.

B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. Halpern, B. E. Bouma, and G. J. Tearney, “Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance,” J. Biomed. Opt. 13(1), 014014–014018 (2008).
[CrossRef] [PubMed]

Qi, B.

Qi, X.

X. Qi, M. V. Sivak, G. Isenberg, J. E. Willis, and A. M. Rollins, “Computer-aided diagnosis of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography,” J. Biomed. Opt. 11(4), 044010 (2006).
[CrossRef] [PubMed]

Quinn, M. S.

E. Jovanov, K. Wegner, V. Radivojević, D. Starcević, M. S. Quinn, and D. B. Karron, “Tactical audio and acoustic rendering in biomedical applications,” IEEE Trans. Inf. Technol. Biomed. 3(2), 109–118 (1999).
[CrossRef]

Radivojevic, V.

E. Jovanov, K. Wegner, V. Radivojević, D. Starcević, M. S. Quinn, and D. B. Karron, “Tactical audio and acoustic rendering in biomedical applications,” IEEE Trans. Inf. Technol. Biomed. 3(2), 109–118 (1999).
[CrossRef]

E. Jovanov, D. Starcevic, V. Radivojevic, A. Samardzic, and V. Simeunovic, “Perceptualization of biomedical data. An experimental environment for visualization and sonification of brain electrical activity,” IEEE Eng. Med. Biol. Mag. 18(1), 50–55 (1999).
[CrossRef] [PubMed]

Rangayyan, R. M.

A. C. G. Martins, R. M. Rangayyan, and R. A. Ruschioni, “Audification and sonification of texture in images,” J. Electron. Imaging 10(3), 690–705 (2001).
[CrossRef]

Ritter, H.

T. Hermann and H. Ritter, “Sound and meaning in auditory data display,” Proc. IEEE 92(4), 730–741 (2004).
[CrossRef]

Rodriguez, J. J.

K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton, “Texture analysis of optical coherence tomography images: feasibility for tissue classification,” J. Biomed. Opt. 8(3), 570–575 (2003).
[CrossRef] [PubMed]

Rollins, A. M.

X. Qi, M. V. Sivak, G. Isenberg, J. E. Willis, and A. M. Rollins, “Computer-aided diagnosis of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography,” J. Biomed. Opt. 11(4), 044010 (2006).
[CrossRef] [PubMed]

Routh, H. F.

H. F. Routh, “Doppler ultrasound,” IEEE Eng. Med. Biol. Mag. 15(6), 31–40 (1996).
[CrossRef]

Rowland, K. M.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, S. G. Adie, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Optical Coherence Tomography: The Intraoperative Assessment of Lymph Nodes in Breast Cancer,” IEEE Eng. Med. Biol. Mag. 29(2), 63–70 (2010).
[CrossRef] [PubMed]

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

A. M. Zysk, F. T. Nguyen, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, P. A. Johnson, K. M. Rowland, and S. A. Boppart, “Clinical feasibility of microscopically-guided breast needle biopsy using a fiber-optic probe with computer-aided detection,” Technol. Cancer Res. Treat. 8(5), 315–321 (2009).
[PubMed]

Ruschioni, R. A.

A. C. G. Martins, R. M. Rangayyan, and R. A. Ruschioni, “Audification and sonification of texture in images,” J. Electron. Imaging 10(3), 690–705 (2001).
[CrossRef]

Samardzic, A.

E. Jovanov, D. Starcevic, V. Radivojevic, A. Samardzic, and V. Simeunovic, “Perceptualization of biomedical data. An experimental environment for visualization and sonification of brain electrical activity,” IEEE Eng. Med. Biol. Mag. 18(1), 50–55 (1999).
[CrossRef] [PubMed]

Seng-Yue, E.

Simeunovic, V.

E. Jovanov, D. Starcevic, V. Radivojevic, A. Samardzic, and V. Simeunovic, “Perceptualization of biomedical data. An experimental environment for visualization and sonification of brain electrical activity,” IEEE Eng. Med. Biol. Mag. 18(1), 50–55 (1999).
[CrossRef] [PubMed]

Sivak, M. V.

X. Qi, M. V. Sivak, G. Isenberg, J. E. Willis, and A. M. Rollins, “Computer-aided diagnosis of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography,” J. Biomed. Opt. 11(4), 044010 (2006).
[CrossRef] [PubMed]

Starcevic, D.

E. Jovanov, K. Wegner, V. Radivojević, D. Starcević, M. S. Quinn, and D. B. Karron, “Tactical audio and acoustic rendering in biomedical applications,” IEEE Trans. Inf. Technol. Biomed. 3(2), 109–118 (1999).
[CrossRef]

E. Jovanov, D. Starcevic, V. Radivojevic, A. Samardzic, and V. Simeunovic, “Perceptualization of biomedical data. An experimental environment for visualization and sonification of brain electrical activity,” IEEE Eng. Med. Biol. Mag. 18(1), 50–55 (1999).
[CrossRef] [PubMed]

Stephani, U.

G. Baier, T. Hermann, and U. Stephani, “Event-based sonification of EEG rhythms in real time,” Clin. Neurophysiol. 118(6), 1377–1386 (2007).
[CrossRef] [PubMed]

Tang, S. J.

Tearney, G. J.

B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. Halpern, B. E. Bouma, and G. J. Tearney, “Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance,” J. Biomed. Opt. 13(1), 014014–014018 (2008).
[CrossRef] [PubMed]

Tipei, S.

H. G. Kaper, E. Wiebel, and S. Tipei, “Data sonification and sound visualization,” Comput. Sci. Eng. 1(4), 48–58 (1999).
[CrossRef]

Tkaczyk, T. S.

K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton, “Texture analysis of optical coherence tomography images: feasibility for tissue classification,” J. Biomed. Opt. 8(3), 570–575 (2003).
[CrossRef] [PubMed]

Vitkin, I. A.

Wegner, K.

E. Jovanov, K. Wegner, V. Radivojević, D. Starcević, M. S. Quinn, and D. B. Karron, “Tactical audio and acoustic rendering in biomedical applications,” IEEE Trans. Inf. Technol. Biomed. 3(2), 109–118 (1999).
[CrossRef]

Wiebel, E.

H. G. Kaper, E. Wiebel, and S. Tipei, “Data sonification and sound visualization,” Comput. Sci. Eng. 1(4), 48–58 (1999).
[CrossRef]

Willis, J. E.

X. Qi, M. V. Sivak, G. Isenberg, J. E. Willis, and A. M. Rollins, “Computer-aided diagnosis of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography,” J. Biomed. Opt. 11(4), 044010 (2006).
[CrossRef] [PubMed]

Wilson, B. C.

Yang, V. X. D.

Yeung, E. S.

E. S. Yeung, “Pattern recognition by audio representation of multivariate analytical data,” Anal. Chem. 52(7), 1120–1123 (1980).
[CrossRef]

Zysk, A. M.

F. T. Nguyen, A. M. Zysk, E. J. Chaney, S. G. Adie, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Optical Coherence Tomography: The Intraoperative Assessment of Lymph Nodes in Breast Cancer,” IEEE Eng. Med. Biol. Mag. 29(2), 63–70 (2010).
[CrossRef] [PubMed]

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

A. M. Zysk, F. T. Nguyen, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, P. A. Johnson, K. M. Rowland, and S. A. Boppart, “Clinical feasibility of microscopically-guided breast needle biopsy using a fiber-optic probe with computer-aided detection,” Technol. Cancer Res. Treat. 8(5), 315–321 (2009).
[PubMed]

A. M. Zysk, D. L. Marks, D. Y. Liu, and S. A. Boppart, “Needle-based reflection refractometry of scattering samples using coherence-gated detection,” Opt. Express 15(8), 4787–4794 (2007).
[CrossRef] [PubMed]

A. M. Zysk and S. A. Boppart, “Computational methods for analysis of human breast tumor tissue in optical coherence tomography images,” J. Biomed. Opt. 11(5), 054015 (2006).
[CrossRef] [PubMed]

Anal. Chem. (1)

E. S. Yeung, “Pattern recognition by audio representation of multivariate analytical data,” Anal. Chem. 52(7), 1120–1123 (1980).
[CrossRef]

Cancer Res. (1)

F. T. Nguyen, A. M. Zysk, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Intraoperative evaluation of breast tumor margins with optical coherence tomography,” Cancer Res. 69(22), 8790–8796 (2009).
[CrossRef] [PubMed]

Clin. Neurophysiol. (1)

G. Baier, T. Hermann, and U. Stephani, “Event-based sonification of EEG rhythms in real time,” Clin. Neurophysiol. 118(6), 1377–1386 (2007).
[CrossRef] [PubMed]

Comput. Sci. Eng. (1)

H. G. Kaper, E. Wiebel, and S. Tipei, “Data sonification and sound visualization,” Comput. Sci. Eng. 1(4), 48–58 (1999).
[CrossRef]

IEEE Eng. Med. Biol. Mag. (3)

E. Jovanov, D. Starcevic, V. Radivojevic, A. Samardzic, and V. Simeunovic, “Perceptualization of biomedical data. An experimental environment for visualization and sonification of brain electrical activity,” IEEE Eng. Med. Biol. Mag. 18(1), 50–55 (1999).
[CrossRef] [PubMed]

F. T. Nguyen, A. M. Zysk, E. J. Chaney, S. G. Adie, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, K. M. Rowland, P. A. Johnson, and S. A. Boppart, “Optical Coherence Tomography: The Intraoperative Assessment of Lymph Nodes in Breast Cancer,” IEEE Eng. Med. Biol. Mag. 29(2), 63–70 (2010).
[CrossRef] [PubMed]

H. F. Routh, “Doppler ultrasound,” IEEE Eng. Med. Biol. Mag. 15(6), 31–40 (1996).
[CrossRef]

IEEE Trans. Inf. Technol. Biomed. (1)

E. Jovanov, K. Wegner, V. Radivojević, D. Starcević, M. S. Quinn, and D. B. Karron, “Tactical audio and acoustic rendering in biomedical applications,” IEEE Trans. Inf. Technol. Biomed. 3(2), 109–118 (1999).
[CrossRef]

J. Audio Eng. Soc. (1)

J. M. Chowning, “The Synthesis of Complex Audio Spectra by Means of Frequency Modulation,” J. Audio Eng. Soc. 21, 526–534 (1973).

J. Biomed. Opt. (4)

B. D. Goldberg, N. V. Iftimia, J. E. Bressner, M. B. Pitman, E. Halpern, B. E. Bouma, and G. J. Tearney, “Automated algorithm for differentiation of human breast tissue using low coherence interferometry for fine needle aspiration biopsy guidance,” J. Biomed. Opt. 13(1), 014014–014018 (2008).
[CrossRef] [PubMed]

A. M. Zysk and S. A. Boppart, “Computational methods for analysis of human breast tumor tissue in optical coherence tomography images,” J. Biomed. Opt. 11(5), 054015 (2006).
[CrossRef] [PubMed]

X. Qi, M. V. Sivak, G. Isenberg, J. E. Willis, and A. M. Rollins, “Computer-aided diagnosis of dysplasia in Barrett’s esophagus using endoscopic optical coherence tomography,” J. Biomed. Opt. 11(4), 044010 (2006).
[CrossRef] [PubMed]

K. W. Gossage, T. S. Tkaczyk, J. J. Rodriguez, and J. K. Barton, “Texture analysis of optical coherence tomography images: feasibility for tissue classification,” J. Biomed. Opt. 8(3), 570–575 (2003).
[CrossRef] [PubMed]

J. Electron. Imaging (1)

A. C. G. Martins, R. M. Rangayyan, and R. A. Ruschioni, “Audification and sonification of texture in images,” J. Electron. Imaging 10(3), 690–705 (2001).
[CrossRef]

Multimedia Syst. (1)

S. Barrass and G. Kramer, “Using sonification,” Multimedia Syst. 7(1), 23–31 (1999).
[CrossRef]

Opt. Express (2)

Proc. IEEE (1)

T. Hermann and H. Ritter, “Sound and meaning in auditory data display,” Proc. IEEE 92(4), 730–741 (2004).
[CrossRef]

Technol. Cancer Res. Treat. (1)

A. M. Zysk, F. T. Nguyen, E. J. Chaney, J. G. Kotynek, U. J. Oliphant, F. J. Bellafiore, P. A. Johnson, K. M. Rowland, and S. A. Boppart, “Clinical feasibility of microscopically-guided breast needle biopsy using a fiber-optic probe with computer-aided detection,” Technol. Cancer Res. Treat. 8(5), 315–321 (2009).
[PubMed]

Other (11)

W. Drexler and J. G. Fujimoto, Optical Coherence Tomography: Technology and Applications (Springer, New York, 2008).

T. Hermann, “Taxonomy and definitions for sonifications and auditory display,” in Proceedings of the 14th International Conference on Auditory Display (Paris, France 2008).

M. Ballora, B. Pennycook, P. C. Ivanov, A. Goldberger, and L. Glass, “Detection of obstructive sleep apnea through auditory display of heart rate variability,” in Computers in Cardiology (2000), pp. 739–740.
[PubMed]

A. D. N. Edwards, G. Hines, and A. Hunt, “Segmentation of Biological Cell Images for Sonification,” in Congress on Image and Signal Processing, cisp (2008), pp. 128–132.

G. Kramer, ed., Auditory Display-Sonification, Audification, and Auditory Interfaces (Reading, MA: Addison-Wesley, 1994).

S. A. Brewster, P. C. Wright, and A. D. N. Edwards, “A detailed investigation into the effectiveness of earcons,” in Auditory Display, G. Kramer, ed. (Reading, MA: Addison Wesley, 1994), pp. 471–498.

W. W. Gaver, “Synthesizing auditory icons,” in Proceedings of the INTERACT '93 and CHI '93 conference on Human factors in computing systems(ACM, Amsterdam, The Netherlands, 1993), pp. 228–235.

E. Zwicker and H. Fastl, Psychoacoustics - Facts and Models (Springer, Berlin, 1999).

H. F. Olson, Music, Physics and Engineering (Dover Publications, 1967).

B. Moore, “Psychoacoustics,” in Springer Handbook of Acoustics, T. D. Rossing, ed., (Springer, 2007), pp. 459–501.

C. Scaletti, “Sound synthesis algorithms for auditory data representations,” in Auditory Display, G. Kramer, ed., (Reading, MA: Addison Wesley, 1994), pp. 471–498.

Supplementary Material (3)

» Media 1: MOV (2707 KB)     
» Media 2: MOV (13162 KB)     
» Media 3: MOV (4108 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Parameter-mapped sonification for OCT.

Fig. 2
Fig. 2

OCT image and data analysis from human breast (a) adipose tissue and (b) tumor tissue. (c) A-scan corresponding to the highlighted line from the adipose tissue. (d) A-scan corresponding to the highlighted line from the tumor tissue. (e) Normalized Fourier transforms (average of 150 A-scans). Roman numerals indicate the regions corresponding to the three spectral parameters. Scale bars represent 200 μm. The superimposed lines in (c) and (d) represent the 1st order fit to the A-scan for calculation of slope.

Fig. 3
Fig. 3

Frequency Modulation (FM) synthesis. (a) Spectral components in FM synthesis. (b) Mapping of parameters for sonification via FM synthesis.

Fig. 4
Fig. 4

Block diagram for image-mode sonification.

Fig. 5
Fig. 5

Sonification using the A-scan mode (Media 1 – both video and audio). (a) Human breast tissue containing a tumor margin with tumor (left side of the image) and adipose (right side of the image). (b) Audio spectrogram of the output sound, where each column in the spectrogram corresponds to 10 A-scans in the OCT image in (a).

Fig. 6
Fig. 6

Sonification using the image mode (Media 2 (13 MB) – both video and audio), (Media 3 (4 MB) – low display resolution video and audio). (a) A single frame from a three-dimensional volumetric data set, which consists of 450 frames played at 10 frames per second. (b) Audio spectrogram of the output sound where each frame in the three-dimensional volume now corresponds to a playback time of 100 ms, and the audio spectrum from each frame is represented by a single column in this spectrogram.

Tables (1)

Tables Icon

Table 1 A-scan parameter mapping for FM synthesis.

Metrics