Abstract

Intrinsic optical imaging (IOI) has emerged as a very powerful tool to assess neuronal function in small animals. Although it has been used extensively in the brain, its application to the spinal cord is rare. The inability of intrinsic optical techniques to resolve different depths and embedded gray matter hampers their capacity to distinguish larger vasculature contributions of hemodynamic signals originating from motoneuron and interneuron activation. Laminar optical tomography (LOT) is a recently-developed method that fills the gap left between IOI and diffuse optical imaging. With distinct source-detector separations, light that propagates deeper into tissues can be distinguished from light originating from the surface, providing depth sensitivity. In this work, LOT is investigated for the first time to image spinal cord activation with simultaneous IOI of the cortex in rats. Such proof of concept provides a powerful imaging modality to study spinal cord activation and disruption after injury.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. “SPINALCORD: Facts & Figures at a Glance,” http://www.spinalcord.uab.edu .
  2. D. M. Basso, M. S. Beattie, and J. C. Bresnahan, “Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection,” Exp. Neurol. 139(2), 244–256 (1996).
    [CrossRef] [PubMed]
  3. D. M. Basso, M. S. Beattie, and J. C. Bresnahan, “Descending systems contributing to locomotor recovery after mild or moderate spinal cord injury in rats: experimental evidence and a review of literature,” Restor. Neurol. Neurosci. 20(5), 189–218 (2002).
  4. D. S. Magnuson, T. C. Trinder, Y. P. Zhang, D. Burke, D. J. Morassutti, and C. B. Shields, “Comparing deficits following excitotoxic and contusion injuries in the thoracic and lumbar spinal cord of the adult rat,” Exp. Neurol. 156(1), 191–204 (1999).
    [CrossRef] [PubMed]
  5. P. Schucht, O. Raineteau, M. E. Schwab, and K. Fouad, “Anatomical correlates of locomotor recovery following dorsal and ventral lesions of the rat spinal cord,” Exp. Neurol. 176(1), 143–153 (2002).
    [CrossRef] [PubMed]
  6. L. M. Mendell, “Modifiability of spinal synapses,” Physiol. Rev. 64(1), 260–324 (1984).
    [PubMed]
  7. A. Valero-Cabré, J. Forés, and X. Navarro, “Reorganization of reflex responses mediated by different afferent sensory fibers after spinal cord transection,” J. Neurophysiol. 91(6), 2838–2848 (2004).
    [CrossRef] [PubMed]
  8. T. Endo, C. Spenger, E. Westman, T. Tominaga, and L. Olson, “Reorganization of sensory processing below the level of spinal cord injury as revealed by fMRI,” Exp. Neurol. 209(1), 155–160 (2008).
    [CrossRef]
  9. M. Maieron, G. D. Iannetti, J. Bodurka, I. Tracey, P. A. Bandettini, and C. A. Porro, “Functional responses in the human spinal cord during willed motor actions: evidence for side- and rate-dependent activity,” J. Neurosci. 27(15), 4182–4190 (2007).
    [CrossRef] [PubMed]
  10. P.W. Stroman, V. Krause, K.L. Malisza, U.N. Frankenstein, and B. Tomanek, “Extravascular proton-density changes as a non-BOLD component of contrast in fMRI of the human spinal cord,” Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine, vol. 48, Jul. 2002, pp. 122–127.
  11. P.W. Stroman, B. Tomanek, V. Krause, U.N. Frankenstein, and K.L. Malisza, “Functional magnetic resonance imaging of the human brain based on signal enhancement by extravascular protons (SEEP fMRI),” Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine, vol. 49, Mar. 2003, pp. 433–439.
  12. P. W. Stroman, J. Kornelsen, J. Lawrence, and K. L. Malisza, “Functional magnetic resonance imaging based on SEEP contrast: response function and anatomical specificity,” Magn. Reson. Imaging 23(8), 843–850 (2005).
    [CrossRef] [PubMed]
  13. P. W. Stroman and L. N. Ryner, “Functional MRI of motor and sensory activation in the human spinal cord,” Magn. Reson. Imaging 19(1), 27–32 (2001).
    [CrossRef] [PubMed]
  14. N. Govers, J. Béghin, J. W. M. Goethem, J. Michiels, L. Hauwe, E. Vandervliet, and P. M. Parizel, “Functional MRI of the cervical spinal cord on 1.5 T with fingertapping: to what extent is it feasible?” Neuroradiology 49(1), 73–81 (2007).
    [CrossRef]
  15. F. Zhao, M. Williams, X. Meng, D. C. Welsh, A. Coimbra, E. D. Crown, J. J. Cook, M. O. Urban, R. Hargreaves, and D. S. Williams, “BOLD and blood volume-weighted fMRI of rat lumbar spinal cord during non-noxious and noxious electrical hindpaw stimulation,” Neuroimage 40(1), 133–147 (2008).
    [CrossRef] [PubMed]
  16. S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
    [CrossRef] [PubMed]
  17. E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Opt. Lett. 29(14), 1650–1652 (2004).
    [CrossRef] [PubMed]
  18. E. Hillman, A. Devor, and D. Boas, “High-resolution functional optical imaging of living tissues,” Biomedical Imaging: Nano to Macro,2006. 3rd IEEE International Symposium, 2006, pp. 1192–1195.
  19. E. M. C. Hillman, “Laminar optical tomography: high-resolution 3D functional imaging of superficial tissues,” Proc. SPIE, San Diego, CA, USA: 2006, pp. 61431M–61431M–14.
  20. E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
    [CrossRef] [PubMed]
  21. B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).
    [CrossRef] [PubMed]
  22. E. M. C. Hillman, M. Bouchard, A. Devor, A. de Crespigny, and D. A. Boas, “Functional optical imaging of brain activation: a multi-scale, multi-modality approach,” Life Science Systems and Applications Workshop,2006. IEEE/NLM, 2006, pp. 1–2.
  23. C. R. Vogel, “Computational methods for inverse problems,” in Frontiers in Applied Mathematics (Society for Industrial and Applied Mathematics, 2002), pp. 106–108.
  24. A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
    [CrossRef] [PubMed]
  25. W.D. Willis and R.E. Coggeshall, Sensory Mechanisms of the Spinal Cord, 1991.
  26. F. Lesage, N. Brieu, S. Dubeau, and E. Beaumont, “Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats,” Neurosci. Lett. 454(1), 105–109 (2009).
    [CrossRef] [PubMed]

2009 (2)

B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).
[CrossRef] [PubMed]

F. Lesage, N. Brieu, S. Dubeau, and E. Beaumont, “Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats,” Neurosci. Lett. 454(1), 105–109 (2009).
[CrossRef] [PubMed]

2008 (2)

F. Zhao, M. Williams, X. Meng, D. C. Welsh, A. Coimbra, E. D. Crown, J. J. Cook, M. O. Urban, R. Hargreaves, and D. S. Williams, “BOLD and blood volume-weighted fMRI of rat lumbar spinal cord during non-noxious and noxious electrical hindpaw stimulation,” Neuroimage 40(1), 133–147 (2008).
[CrossRef] [PubMed]

T. Endo, C. Spenger, E. Westman, T. Tominaga, and L. Olson, “Reorganization of sensory processing below the level of spinal cord injury as revealed by fMRI,” Exp. Neurol. 209(1), 155–160 (2008).
[CrossRef]

2007 (3)

M. Maieron, G. D. Iannetti, J. Bodurka, I. Tracey, P. A. Bandettini, and C. A. Porro, “Functional responses in the human spinal cord during willed motor actions: evidence for side- and rate-dependent activity,” J. Neurosci. 27(15), 4182–4190 (2007).
[CrossRef] [PubMed]

N. Govers, J. Béghin, J. W. M. Goethem, J. Michiels, L. Hauwe, E. Vandervliet, and P. M. Parizel, “Functional MRI of the cervical spinal cord on 1.5 T with fingertapping: to what extent is it feasible?” Neuroradiology 49(1), 73–81 (2007).
[CrossRef]

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[CrossRef] [PubMed]

2005 (1)

P. W. Stroman, J. Kornelsen, J. Lawrence, and K. L. Malisza, “Functional magnetic resonance imaging based on SEEP contrast: response function and anatomical specificity,” Magn. Reson. Imaging 23(8), 843–850 (2005).
[CrossRef] [PubMed]

2004 (2)

E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Opt. Lett. 29(14), 1650–1652 (2004).
[CrossRef] [PubMed]

A. Valero-Cabré, J. Forés, and X. Navarro, “Reorganization of reflex responses mediated by different afferent sensory fibers after spinal cord transection,” J. Neurophysiol. 91(6), 2838–2848 (2004).
[CrossRef] [PubMed]

2002 (4)

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[CrossRef] [PubMed]

D. M. Basso, M. S. Beattie, and J. C. Bresnahan, “Descending systems contributing to locomotor recovery after mild or moderate spinal cord injury in rats: experimental evidence and a review of literature,” Restor. Neurol. Neurosci. 20(5), 189–218 (2002).

P. Schucht, O. Raineteau, M. E. Schwab, and K. Fouad, “Anatomical correlates of locomotor recovery following dorsal and ventral lesions of the rat spinal cord,” Exp. Neurol. 176(1), 143–153 (2002).
[CrossRef] [PubMed]

2001 (1)

P. W. Stroman and L. N. Ryner, “Functional MRI of motor and sensory activation in the human spinal cord,” Magn. Reson. Imaging 19(1), 27–32 (2001).
[CrossRef] [PubMed]

1999 (1)

D. S. Magnuson, T. C. Trinder, Y. P. Zhang, D. Burke, D. J. Morassutti, and C. B. Shields, “Comparing deficits following excitotoxic and contusion injuries in the thoracic and lumbar spinal cord of the adult rat,” Exp. Neurol. 156(1), 191–204 (1999).
[CrossRef] [PubMed]

1996 (1)

D. M. Basso, M. S. Beattie, and J. C. Bresnahan, “Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection,” Exp. Neurol. 139(2), 244–256 (1996).
[CrossRef] [PubMed]

1984 (1)

L. M. Mendell, “Modifiability of spinal synapses,” Physiol. Rev. 64(1), 260–324 (1984).
[PubMed]

Bacskai, B. J.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[CrossRef] [PubMed]

Bandettini, P. A.

M. Maieron, G. D. Iannetti, J. Bodurka, I. Tracey, P. A. Bandettini, and C. A. Porro, “Functional responses in the human spinal cord during willed motor actions: evidence for side- and rate-dependent activity,” J. Neurosci. 27(15), 4182–4190 (2007).
[CrossRef] [PubMed]

Basso, D. M.

D. M. Basso, M. S. Beattie, and J. C. Bresnahan, “Descending systems contributing to locomotor recovery after mild or moderate spinal cord injury in rats: experimental evidence and a review of literature,” Restor. Neurol. Neurosci. 20(5), 189–218 (2002).

D. M. Basso, M. S. Beattie, and J. C. Bresnahan, “Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection,” Exp. Neurol. 139(2), 244–256 (1996).
[CrossRef] [PubMed]

Beattie, M. S.

D. M. Basso, M. S. Beattie, and J. C. Bresnahan, “Descending systems contributing to locomotor recovery after mild or moderate spinal cord injury in rats: experimental evidence and a review of literature,” Restor. Neurol. Neurosci. 20(5), 189–218 (2002).

D. M. Basso, M. S. Beattie, and J. C. Bresnahan, “Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection,” Exp. Neurol. 139(2), 244–256 (1996).
[CrossRef] [PubMed]

Beaumont, E.

F. Lesage, N. Brieu, S. Dubeau, and E. Beaumont, “Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats,” Neurosci. Lett. 454(1), 105–109 (2009).
[CrossRef] [PubMed]

Béghin, J.

N. Govers, J. Béghin, J. W. M. Goethem, J. Michiels, L. Hauwe, E. Vandervliet, and P. M. Parizel, “Functional MRI of the cervical spinal cord on 1.5 T with fingertapping: to what extent is it feasible?” Neuroradiology 49(1), 73–81 (2007).
[CrossRef]

Boas, D. A.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[CrossRef] [PubMed]

E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Opt. Lett. 29(14), 1650–1652 (2004).
[CrossRef] [PubMed]

Bodurka, J.

M. Maieron, G. D. Iannetti, J. Bodurka, I. Tracey, P. A. Bandettini, and C. A. Porro, “Functional responses in the human spinal cord during willed motor actions: evidence for side- and rate-dependent activity,” J. Neurosci. 27(15), 4182–4190 (2007).
[CrossRef] [PubMed]

Bordier, C.

B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).
[CrossRef] [PubMed]

Bouchard, M. B.

B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).
[CrossRef] [PubMed]

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[CrossRef] [PubMed]

Bresnahan, J. C.

D. M. Basso, M. S. Beattie, and J. C. Bresnahan, “Descending systems contributing to locomotor recovery after mild or moderate spinal cord injury in rats: experimental evidence and a review of literature,” Restor. Neurol. Neurosci. 20(5), 189–218 (2002).

D. M. Basso, M. S. Beattie, and J. C. Bresnahan, “Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection,” Exp. Neurol. 139(2), 244–256 (1996).
[CrossRef] [PubMed]

Brieu, N.

F. Lesage, N. Brieu, S. Dubeau, and E. Beaumont, “Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats,” Neurosci. Lett. 454(1), 105–109 (2009).
[CrossRef] [PubMed]

Burgess, S. A.

B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).
[CrossRef] [PubMed]

Burke, D.

D. S. Magnuson, T. C. Trinder, Y. P. Zhang, D. Burke, D. J. Morassutti, and C. B. Shields, “Comparing deficits following excitotoxic and contusion injuries in the thoracic and lumbar spinal cord of the adult rat,” Exp. Neurol. 156(1), 191–204 (1999).
[CrossRef] [PubMed]

Coimbra, A.

F. Zhao, M. Williams, X. Meng, D. C. Welsh, A. Coimbra, E. D. Crown, J. J. Cook, M. O. Urban, R. Hargreaves, and D. S. Williams, “BOLD and blood volume-weighted fMRI of rat lumbar spinal cord during non-noxious and noxious electrical hindpaw stimulation,” Neuroimage 40(1), 133–147 (2008).
[CrossRef] [PubMed]

Cook, J. J.

F. Zhao, M. Williams, X. Meng, D. C. Welsh, A. Coimbra, E. D. Crown, J. J. Cook, M. O. Urban, R. Hargreaves, and D. S. Williams, “BOLD and blood volume-weighted fMRI of rat lumbar spinal cord during non-noxious and noxious electrical hindpaw stimulation,” Neuroimage 40(1), 133–147 (2008).
[CrossRef] [PubMed]

Crown, E. D.

F. Zhao, M. Williams, X. Meng, D. C. Welsh, A. Coimbra, E. D. Crown, J. J. Cook, M. O. Urban, R. Hargreaves, and D. S. Williams, “BOLD and blood volume-weighted fMRI of rat lumbar spinal cord during non-noxious and noxious electrical hindpaw stimulation,” Neuroimage 40(1), 133–147 (2008).
[CrossRef] [PubMed]

Dale, A. M.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[CrossRef] [PubMed]

E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Opt. Lett. 29(14), 1650–1652 (2004).
[CrossRef] [PubMed]

Devor, A.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[CrossRef] [PubMed]

Dubeau, S.

F. Lesage, N. Brieu, S. Dubeau, and E. Beaumont, “Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats,” Neurosci. Lett. 454(1), 105–109 (2009).
[CrossRef] [PubMed]

Dunn, A. K.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[CrossRef] [PubMed]

E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Opt. Lett. 29(14), 1650–1652 (2004).
[CrossRef] [PubMed]

Endo, T.

T. Endo, C. Spenger, E. Westman, T. Tominaga, and L. Olson, “Reorganization of sensory processing below the level of spinal cord injury as revealed by fMRI,” Exp. Neurol. 209(1), 155–160 (2008).
[CrossRef]

Forés, J.

A. Valero-Cabré, J. Forés, and X. Navarro, “Reorganization of reflex responses mediated by different afferent sensory fibers after spinal cord transection,” J. Neurophysiol. 91(6), 2838–2848 (2004).
[CrossRef] [PubMed]

Fouad, K.

P. Schucht, O. Raineteau, M. E. Schwab, and K. Fouad, “Anatomical correlates of locomotor recovery following dorsal and ventral lesions of the rat spinal cord,” Exp. Neurol. 176(1), 143–153 (2002).
[CrossRef] [PubMed]

Goethem, J. W. M.

N. Govers, J. Béghin, J. W. M. Goethem, J. Michiels, L. Hauwe, E. Vandervliet, and P. M. Parizel, “Functional MRI of the cervical spinal cord on 1.5 T with fingertapping: to what extent is it feasible?” Neuroradiology 49(1), 73–81 (2007).
[CrossRef]

Govers, N.

N. Govers, J. Béghin, J. W. M. Goethem, J. Michiels, L. Hauwe, E. Vandervliet, and P. M. Parizel, “Functional MRI of the cervical spinal cord on 1.5 T with fingertapping: to what extent is it feasible?” Neuroradiology 49(1), 73–81 (2007).
[CrossRef]

Hargreaves, R.

F. Zhao, M. Williams, X. Meng, D. C. Welsh, A. Coimbra, E. D. Crown, J. J. Cook, M. O. Urban, R. Hargreaves, and D. S. Williams, “BOLD and blood volume-weighted fMRI of rat lumbar spinal cord during non-noxious and noxious electrical hindpaw stimulation,” Neuroimage 40(1), 133–147 (2008).
[CrossRef] [PubMed]

Hauwe, L.

N. Govers, J. Béghin, J. W. M. Goethem, J. Michiels, L. Hauwe, E. Vandervliet, and P. M. Parizel, “Functional MRI of the cervical spinal cord on 1.5 T with fingertapping: to what extent is it feasible?” Neuroradiology 49(1), 73–81 (2007).
[CrossRef]

Hillman, E. M. C.

B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).
[CrossRef] [PubMed]

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[CrossRef] [PubMed]

E. M. C. Hillman, D. A. Boas, A. M. Dale, and A. K. Dunn, “Laminar optical tomography: demonstration of millimeter-scale depth-resolved imaging in turbid media,” Opt. Lett. 29(14), 1650–1652 (2004).
[CrossRef] [PubMed]

Iannetti, G. D.

M. Maieron, G. D. Iannetti, J. Bodurka, I. Tracey, P. A. Bandettini, and C. A. Porro, “Functional responses in the human spinal cord during willed motor actions: evidence for side- and rate-dependent activity,” J. Neurosci. 27(15), 4182–4190 (2007).
[CrossRef] [PubMed]

Iranmahboob, A.

B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).
[CrossRef] [PubMed]

Kamino, K.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

Kornelsen, J.

P. W. Stroman, J. Kornelsen, J. Lawrence, and K. L. Malisza, “Functional magnetic resonance imaging based on SEEP contrast: response function and anatomical specificity,” Magn. Reson. Imaging 23(8), 843–850 (2005).
[CrossRef] [PubMed]

Krauss, G. W.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[CrossRef] [PubMed]

Lawrence, J.

P. W. Stroman, J. Kornelsen, J. Lawrence, and K. L. Malisza, “Functional magnetic resonance imaging based on SEEP contrast: response function and anatomical specificity,” Magn. Reson. Imaging 23(8), 843–850 (2005).
[CrossRef] [PubMed]

Lehrer, N.

B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).
[CrossRef] [PubMed]

Lesage, F.

F. Lesage, N. Brieu, S. Dubeau, and E. Beaumont, “Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats,” Neurosci. Lett. 454(1), 105–109 (2009).
[CrossRef] [PubMed]

Magnuson, D. S.

D. S. Magnuson, T. C. Trinder, Y. P. Zhang, D. Burke, D. J. Morassutti, and C. B. Shields, “Comparing deficits following excitotoxic and contusion injuries in the thoracic and lumbar spinal cord of the adult rat,” Exp. Neurol. 156(1), 191–204 (1999).
[CrossRef] [PubMed]

Maieron, M.

M. Maieron, G. D. Iannetti, J. Bodurka, I. Tracey, P. A. Bandettini, and C. A. Porro, “Functional responses in the human spinal cord during willed motor actions: evidence for side- and rate-dependent activity,” J. Neurosci. 27(15), 4182–4190 (2007).
[CrossRef] [PubMed]

Malisza, K. L.

P. W. Stroman, J. Kornelsen, J. Lawrence, and K. L. Malisza, “Functional magnetic resonance imaging based on SEEP contrast: response function and anatomical specificity,” Magn. Reson. Imaging 23(8), 843–850 (2005).
[CrossRef] [PubMed]

Mendell, L. M.

L. M. Mendell, “Modifiability of spinal synapses,” Physiol. Rev. 64(1), 260–324 (1984).
[PubMed]

Meng, X.

F. Zhao, M. Williams, X. Meng, D. C. Welsh, A. Coimbra, E. D. Crown, J. J. Cook, M. O. Urban, R. Hargreaves, and D. S. Williams, “BOLD and blood volume-weighted fMRI of rat lumbar spinal cord during non-noxious and noxious electrical hindpaw stimulation,” Neuroimage 40(1), 133–147 (2008).
[CrossRef] [PubMed]

Michiels, J.

N. Govers, J. Béghin, J. W. M. Goethem, J. Michiels, L. Hauwe, E. Vandervliet, and P. M. Parizel, “Functional MRI of the cervical spinal cord on 1.5 T with fingertapping: to what extent is it feasible?” Neuroradiology 49(1), 73–81 (2007).
[CrossRef]

Miyakawa, N.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

Mochida, H.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

Momose-Sato, Y.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

Morassutti, D. J.

D. S. Magnuson, T. C. Trinder, Y. P. Zhang, D. Burke, D. J. Morassutti, and C. B. Shields, “Comparing deficits following excitotoxic and contusion injuries in the thoracic and lumbar spinal cord of the adult rat,” Exp. Neurol. 156(1), 191–204 (1999).
[CrossRef] [PubMed]

Navarro, X.

A. Valero-Cabré, J. Forés, and X. Navarro, “Reorganization of reflex responses mediated by different afferent sensory fibers after spinal cord transection,” J. Neurophysiol. 91(6), 2838–2848 (2004).
[CrossRef] [PubMed]

Olson, L.

T. Endo, C. Spenger, E. Westman, T. Tominaga, and L. Olson, “Reorganization of sensory processing below the level of spinal cord injury as revealed by fMRI,” Exp. Neurol. 209(1), 155–160 (2008).
[CrossRef]

Parizel, P. M.

N. Govers, J. Béghin, J. W. M. Goethem, J. Michiels, L. Hauwe, E. Vandervliet, and P. M. Parizel, “Functional MRI of the cervical spinal cord on 1.5 T with fingertapping: to what extent is it feasible?” Neuroradiology 49(1), 73–81 (2007).
[CrossRef]

Porro, C. A.

M. Maieron, G. D. Iannetti, J. Bodurka, I. Tracey, P. A. Bandettini, and C. A. Porro, “Functional responses in the human spinal cord during willed motor actions: evidence for side- and rate-dependent activity,” J. Neurosci. 27(15), 4182–4190 (2007).
[CrossRef] [PubMed]

Raineteau, O.

P. Schucht, O. Raineteau, M. E. Schwab, and K. Fouad, “Anatomical correlates of locomotor recovery following dorsal and ventral lesions of the rat spinal cord,” Exp. Neurol. 176(1), 143–153 (2002).
[CrossRef] [PubMed]

Ryner, L. N.

P. W. Stroman and L. N. Ryner, “Functional MRI of motor and sensory activation in the human spinal cord,” Magn. Reson. Imaging 19(1), 27–32 (2001).
[CrossRef] [PubMed]

Sasaki, S.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

Sato, K.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

Schober, R.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[CrossRef] [PubMed]

Schucht, P.

P. Schucht, O. Raineteau, M. E. Schwab, and K. Fouad, “Anatomical correlates of locomotor recovery following dorsal and ventral lesions of the rat spinal cord,” Exp. Neurol. 176(1), 143–153 (2002).
[CrossRef] [PubMed]

Schulze, P. C.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[CrossRef] [PubMed]

Schwab, M. E.

P. Schucht, O. Raineteau, M. E. Schwab, and K. Fouad, “Anatomical correlates of locomotor recovery following dorsal and ventral lesions of the rat spinal cord,” Exp. Neurol. 176(1), 143–153 (2002).
[CrossRef] [PubMed]

Schwarzmaier, H. J.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[CrossRef] [PubMed]

Shields, C. B.

D. S. Magnuson, T. C. Trinder, Y. P. Zhang, D. Burke, D. J. Morassutti, and C. B. Shields, “Comparing deficits following excitotoxic and contusion injuries in the thoracic and lumbar spinal cord of the adult rat,” Exp. Neurol. 156(1), 191–204 (1999).
[CrossRef] [PubMed]

Shinomiya, K.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

Skoch, J.

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[CrossRef] [PubMed]

Spenger, C.

T. Endo, C. Spenger, E. Westman, T. Tominaga, and L. Olson, “Reorganization of sensory processing below the level of spinal cord injury as revealed by fMRI,” Exp. Neurol. 209(1), 155–160 (2008).
[CrossRef]

Stroman, P. W.

P. W. Stroman, J. Kornelsen, J. Lawrence, and K. L. Malisza, “Functional magnetic resonance imaging based on SEEP contrast: response function and anatomical specificity,” Magn. Reson. Imaging 23(8), 843–850 (2005).
[CrossRef] [PubMed]

P. W. Stroman and L. N. Ryner, “Functional MRI of motor and sensory activation in the human spinal cord,” Magn. Reson. Imaging 19(1), 27–32 (2001).
[CrossRef] [PubMed]

Tominaga, T.

T. Endo, C. Spenger, E. Westman, T. Tominaga, and L. Olson, “Reorganization of sensory processing below the level of spinal cord injury as revealed by fMRI,” Exp. Neurol. 209(1), 155–160 (2008).
[CrossRef]

Tracey, I.

M. Maieron, G. D. Iannetti, J. Bodurka, I. Tracey, P. A. Bandettini, and C. A. Porro, “Functional responses in the human spinal cord during willed motor actions: evidence for side- and rate-dependent activity,” J. Neurosci. 27(15), 4182–4190 (2007).
[CrossRef] [PubMed]

Trinder, T. C.

D. S. Magnuson, T. C. Trinder, Y. P. Zhang, D. Burke, D. J. Morassutti, and C. B. Shields, “Comparing deficits following excitotoxic and contusion injuries in the thoracic and lumbar spinal cord of the adult rat,” Exp. Neurol. 156(1), 191–204 (1999).
[CrossRef] [PubMed]

Ulrich, F.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[CrossRef] [PubMed]

Urban, M. O.

F. Zhao, M. Williams, X. Meng, D. C. Welsh, A. Coimbra, E. D. Crown, J. J. Cook, M. O. Urban, R. Hargreaves, and D. S. Williams, “BOLD and blood volume-weighted fMRI of rat lumbar spinal cord during non-noxious and noxious electrical hindpaw stimulation,” Neuroimage 40(1), 133–147 (2008).
[CrossRef] [PubMed]

Valero-Cabré, A.

A. Valero-Cabré, J. Forés, and X. Navarro, “Reorganization of reflex responses mediated by different afferent sensory fibers after spinal cord transection,” J. Neurophysiol. 91(6), 2838–2848 (2004).
[CrossRef] [PubMed]

Vandervliet, E.

N. Govers, J. Béghin, J. W. M. Goethem, J. Michiels, L. Hauwe, E. Vandervliet, and P. M. Parizel, “Functional MRI of the cervical spinal cord on 1.5 T with fingertapping: to what extent is it feasible?” Neuroradiology 49(1), 73–81 (2007).
[CrossRef]

Welsh, D. C.

F. Zhao, M. Williams, X. Meng, D. C. Welsh, A. Coimbra, E. D. Crown, J. J. Cook, M. O. Urban, R. Hargreaves, and D. S. Williams, “BOLD and blood volume-weighted fMRI of rat lumbar spinal cord during non-noxious and noxious electrical hindpaw stimulation,” Neuroimage 40(1), 133–147 (2008).
[CrossRef] [PubMed]

Westman, E.

T. Endo, C. Spenger, E. Westman, T. Tominaga, and L. Olson, “Reorganization of sensory processing below the level of spinal cord injury as revealed by fMRI,” Exp. Neurol. 209(1), 155–160 (2008).
[CrossRef]

Williams, D. S.

F. Zhao, M. Williams, X. Meng, D. C. Welsh, A. Coimbra, E. D. Crown, J. J. Cook, M. O. Urban, R. Hargreaves, and D. S. Williams, “BOLD and blood volume-weighted fMRI of rat lumbar spinal cord during non-noxious and noxious electrical hindpaw stimulation,” Neuroimage 40(1), 133–147 (2008).
[CrossRef] [PubMed]

Williams, M.

F. Zhao, M. Williams, X. Meng, D. C. Welsh, A. Coimbra, E. D. Crown, J. J. Cook, M. O. Urban, R. Hargreaves, and D. S. Williams, “BOLD and blood volume-weighted fMRI of rat lumbar spinal cord during non-noxious and noxious electrical hindpaw stimulation,” Neuroimage 40(1), 133–147 (2008).
[CrossRef] [PubMed]

Yaroslavsky, A. N.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[CrossRef] [PubMed]

Yaroslavsky, I. V.

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[CrossRef] [PubMed]

Yazawa, I.

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

Yuan, B.

B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).
[CrossRef] [PubMed]

Zhang, Y. P.

D. S. Magnuson, T. C. Trinder, Y. P. Zhang, D. Burke, D. J. Morassutti, and C. B. Shields, “Comparing deficits following excitotoxic and contusion injuries in the thoracic and lumbar spinal cord of the adult rat,” Exp. Neurol. 156(1), 191–204 (1999).
[CrossRef] [PubMed]

Zhao, F.

F. Zhao, M. Williams, X. Meng, D. C. Welsh, A. Coimbra, E. D. Crown, J. J. Cook, M. O. Urban, R. Hargreaves, and D. S. Williams, “BOLD and blood volume-weighted fMRI of rat lumbar spinal cord during non-noxious and noxious electrical hindpaw stimulation,” Neuroimage 40(1), 133–147 (2008).
[CrossRef] [PubMed]

Exp. Neurol. (4)

D. M. Basso, M. S. Beattie, and J. C. Bresnahan, “Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection,” Exp. Neurol. 139(2), 244–256 (1996).
[CrossRef] [PubMed]

D. S. Magnuson, T. C. Trinder, Y. P. Zhang, D. Burke, D. J. Morassutti, and C. B. Shields, “Comparing deficits following excitotoxic and contusion injuries in the thoracic and lumbar spinal cord of the adult rat,” Exp. Neurol. 156(1), 191–204 (1999).
[CrossRef] [PubMed]

P. Schucht, O. Raineteau, M. E. Schwab, and K. Fouad, “Anatomical correlates of locomotor recovery following dorsal and ventral lesions of the rat spinal cord,” Exp. Neurol. 176(1), 143–153 (2002).
[CrossRef] [PubMed]

T. Endo, C. Spenger, E. Westman, T. Tominaga, and L. Olson, “Reorganization of sensory processing below the level of spinal cord injury as revealed by fMRI,” Exp. Neurol. 209(1), 155–160 (2008).
[CrossRef]

J. Neurophysiol. (1)

A. Valero-Cabré, J. Forés, and X. Navarro, “Reorganization of reflex responses mediated by different afferent sensory fibers after spinal cord transection,” J. Neurophysiol. 91(6), 2838–2848 (2004).
[CrossRef] [PubMed]

J. Neurosci. (1)

M. Maieron, G. D. Iannetti, J. Bodurka, I. Tracey, P. A. Bandettini, and C. A. Porro, “Functional responses in the human spinal cord during willed motor actions: evidence for side- and rate-dependent activity,” J. Neurosci. 27(15), 4182–4190 (2007).
[CrossRef] [PubMed]

Magn. Reson. Imaging (2)

P. W. Stroman, J. Kornelsen, J. Lawrence, and K. L. Malisza, “Functional magnetic resonance imaging based on SEEP contrast: response function and anatomical specificity,” Magn. Reson. Imaging 23(8), 843–850 (2005).
[CrossRef] [PubMed]

P. W. Stroman and L. N. Ryner, “Functional MRI of motor and sensory activation in the human spinal cord,” Magn. Reson. Imaging 19(1), 27–32 (2001).
[CrossRef] [PubMed]

Neuroimage (3)

F. Zhao, M. Williams, X. Meng, D. C. Welsh, A. Coimbra, E. D. Crown, J. J. Cook, M. O. Urban, R. Hargreaves, and D. S. Williams, “BOLD and blood volume-weighted fMRI of rat lumbar spinal cord during non-noxious and noxious electrical hindpaw stimulation,” Neuroimage 40(1), 133–147 (2008).
[CrossRef] [PubMed]

S. Sasaki, I. Yazawa, N. Miyakawa, H. Mochida, K. Shinomiya, K. Kamino, Y. Momose-Sato, and K. Sato, “Optical imaging of intrinsic signals induced by peripheral nerve stimulation in the in vivo rat spinal cord,” Neuroimage 17(3), 1240–1255 (2002).
[CrossRef] [PubMed]

E. M. C. Hillman, A. Devor, M. B. Bouchard, A. K. Dunn, G. W. Krauss, J. Skoch, B. J. Bacskai, A. M. Dale, and D. A. Boas, “Depth-resolved optical imaging and microscopy of vascular compartment dynamics during somatosensory stimulation,” Neuroimage 35(1), 89–104 (2007).
[CrossRef] [PubMed]

Neuroradiology (1)

N. Govers, J. Béghin, J. W. M. Goethem, J. Michiels, L. Hauwe, E. Vandervliet, and P. M. Parizel, “Functional MRI of the cervical spinal cord on 1.5 T with fingertapping: to what extent is it feasible?” Neuroradiology 49(1), 73–81 (2007).
[CrossRef]

Neurosci. Lett. (1)

F. Lesage, N. Brieu, S. Dubeau, and E. Beaumont, “Optical imaging of vascular and metabolic responses in the lumbar spinal cord after T10 transection in rats,” Neurosci. Lett. 454(1), 105–109 (2009).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Med. Biol. (1)

A. N. Yaroslavsky, P. C. Schulze, I. V. Yaroslavsky, R. Schober, F. Ulrich, and H. J. Schwarzmaier, “Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range,” Phys. Med. Biol. 47(12), 2059–2073 (2002).
[CrossRef] [PubMed]

Physiol. Rev. (1)

L. M. Mendell, “Modifiability of spinal synapses,” Physiol. Rev. 64(1), 260–324 (1984).
[PubMed]

Restor. Neurol. Neurosci. (1)

D. M. Basso, M. S. Beattie, and J. C. Bresnahan, “Descending systems contributing to locomotor recovery after mild or moderate spinal cord injury in rats: experimental evidence and a review of literature,” Restor. Neurol. Neurosci. 20(5), 189–218 (2002).

Rev. Sci. Instrum. (1)

B. Yuan, S. A. Burgess, A. Iranmahboob, M. B. Bouchard, N. Lehrer, C. Bordier, and E. M. C. Hillman, “A system for high-resolution depth-resolved optical imaging of fluorescence and absorption contrast,” Rev. Sci. Instrum. 80(4), 043706 (2009).
[CrossRef] [PubMed]

Other (8)

E. M. C. Hillman, M. Bouchard, A. Devor, A. de Crespigny, and D. A. Boas, “Functional optical imaging of brain activation: a multi-scale, multi-modality approach,” Life Science Systems and Applications Workshop,2006. IEEE/NLM, 2006, pp. 1–2.

C. R. Vogel, “Computational methods for inverse problems,” in Frontiers in Applied Mathematics (Society for Industrial and Applied Mathematics, 2002), pp. 106–108.

W.D. Willis and R.E. Coggeshall, Sensory Mechanisms of the Spinal Cord, 1991.

P.W. Stroman, V. Krause, K.L. Malisza, U.N. Frankenstein, and B. Tomanek, “Extravascular proton-density changes as a non-BOLD component of contrast in fMRI of the human spinal cord,” Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine, vol. 48, Jul. 2002, pp. 122–127.

P.W. Stroman, B. Tomanek, V. Krause, U.N. Frankenstein, and K.L. Malisza, “Functional magnetic resonance imaging of the human brain based on signal enhancement by extravascular protons (SEEP fMRI),” Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine, vol. 49, Mar. 2003, pp. 433–439.

E. Hillman, A. Devor, and D. Boas, “High-resolution functional optical imaging of living tissues,” Biomedical Imaging: Nano to Macro,2006. 3rd IEEE International Symposium, 2006, pp. 1192–1195.

E. M. C. Hillman, “Laminar optical tomography: high-resolution 3D functional imaging of superficial tissues,” Proc. SPIE, San Diego, CA, USA: 2006, pp. 61431M–61431M–14.

“SPINALCORD: Facts & Figures at a Glance,” http://www.spinalcord.uab.edu .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Multi-modal experimental setup, showing LOT system design and CCD based intrinsic imager

Fig. 2
Fig. 2

Representative slices from the volume at 1 mm (A) Numerical complex phantom with 100% contrast, (B) reconstruction from simulated data (C) Reconstruction from experimental data, showing a completely absorbing wire of 150μm diameter placed along x-axis.

Fig. 3
Fig. 3

LOT hemodynamic response with left hind paw stimulus intensity at 0.9 × , 1.2 × and 1.5 × muscle threshold in normal rat, vertical lines indicate stimulus onset and intensity. Black line represents the block-averaged mean signal and shaded area indicates ± 1 standard deviation, N = 29 blocks of 60 seconds. (A) Averaged time course of region 1, which is ipsilateral to stimuli. (B) Top: Imaged area of the exposed spinal cord, the bright spot located at the lower part is due to specular reflection artefacts. Bottom: Time course (red dotted line) of region 2, corresponding to the superficial blood vessel shows ~1 s delayed activation with regard to ipsilateral activation. (C) Time course of region 3, contralateral to stimuli. In this region smaller amplitude and greater deviations are observed when compared to ipsilateral response.

Fig. 4
Fig. 4

(A) Time course of LOT signals, induced by left hind paw stimulation, collected over 15 s at the 0.9 × muscle threshold (detector 1 with a source-detector separation of 575 µm). (B) Photo of the exposed cortex (left) and maximum intrinsic optical signal acquired simultaneously on the somatosensory cortex (right).

Fig. 5
Fig. 5

(A) Depiction of the sensitivity matrix for a given source-detector pair. (B) Histology based segmented model of lumbar spinal cord of the rat, utilized for Monte Carlo simulation of light propagation. Dotted red lines indicate the extent of field of view, (C) 3D map of neural activation in the spinal cord induced by left hind paw stimulation at the 0.9 × muscle threshold. Ipsilateral activation around z = 0.4 mm is consistent with interneuron activation.(D) Reconstruction viewed across the segmented volume along the line in (C).

Metrics