Abstract

Serial time-encoded amplified microscopy (STEAM) is an entirely new imaging modality that enables ultrafast continuous real-time imaging with high sensitivity. By means of optical image amplification, STEAM overcomes the fundamental tradeoff between sensitivity and speed that affects virtually all optical imaging systems. Unlike the conventional microscope systems, the performance of STEAM depends not only on the lenses, but also on the properties of other components that are unique to STEAM, namely the spatial disperser, the group velocity dispersion element, and the back-end electronic digitizer. In this paper, we present an analysis that shows how these considerations affect the spatial resolution, and how they create a trade-off between the number of pixels and the frame rate of the STEAM imager. We also quantify how STEAM’s optical image amplification feature improves the imaging sensitivity. These analyses not only provide valuable insight into the operation of STEAM technology but also serve as a blue print for implementation and optimization of this new imaging technology.

© 2010 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pawley, ed., Handbook of biological confocal microscopy, 3rd ed., Springer (2006).
  2. S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6(1), 24–32 (2009).
    [CrossRef] [PubMed]
  3. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
    [CrossRef] [PubMed]
  4. B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
    [CrossRef] [PubMed]
  5. H. R. Petty, “Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology,” Biosystems 83(2–3), 217–224 (2004).
    [CrossRef]
  6. H. R. Petty, “High speed microscopy,” Opt. Photonics News , 34–40 (2004).
  7. J. V. Watson, Introduction to flow cytometry, (Cambridge Univ. Press, Oxford, U. K. 2004).
  8. J. R. Janesick, Scientific Charge-Coupled Devices, (SPIE Publications, 2001).
  9. G. C. Holst, and T. S. Lomheim, CMOS/CCD Sensors and Camera Systems, SPIE-International Society for Optical Engine (2007).
  10. K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
    [CrossRef]
  11. K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
    [CrossRef] [PubMed]
  12. J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
    [CrossRef]
  13. D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
    [CrossRef]
  14. J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 111102 (2008).
    [CrossRef]
  15. K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
    [CrossRef]
  16. G. J. Tearney, M. Shishkov, and B. E. Bouma, “Spectrally encoded miniature endoscopy,” Opt. Lett. 27(6), 412–414 (2002).
    [CrossRef]
  17. C. Pitris, B. Bouma, M. Shiskov, and G. Tearney, “A GRISM-based probe for spectrally encoded confocal microscopy,” Opt. Express 11(2), 120–124 (2003).
    [CrossRef] [PubMed]
  18. Z. Yaqoob and N. A. Riza, “Eye-safe passive-optics no-moving parts barcode scanners,” IEEE Photon. Technol. Lett. 16(3), 954–956 (2004).
    [CrossRef]
  19. S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually-imaged phased-array spectral dispersers based on paraxial-wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
    [CrossRef]
  20. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
    [CrossRef] [PubMed]
  21. S. Xiao and A. M. Weiner, “2-D wavelength demultiplexer with potential for >/= 1000 channels in the C-band,” Opt. Express 12(13), 2895–2902 (2004).
    [CrossRef] [PubMed]
  22. K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett. 34(14), 2099–2101 (2009).
    [CrossRef] [PubMed]
  23. Y. Han and B. Jalali, “Continuous-time time-stretched analog-to-digital converter array implemented using virtual time gating,” IEEE Trans. Circ. Syst. 52(8), 1502–1507 (2005).
    [CrossRef]
  24. G. P. Agrawal, Fiber Optic Communication Systems, 3rd Ed., Wiley-Interscience (2002).
  25. V. E. Perlin and H. G. Winful, “On Distributed Raman Amplification for Ultrabroad-Band Long-Haul WDM Systems,” J. Lightwave Technol. 20(3), 409–416 (2002).
    [CrossRef]
  26. M. T. Tilli, M. C. Cabrera, A. R. Parrish, K. M. Torre, M. K. Sidawy, A. L. Gallagher, E. Makariou, S. A. Polin, M. C. Liu, and P. A. Furth, “Real-time imaging and characterization of human breast tissue by reflectance confocal microscopy,” J. Biomed. Opt. 12(5), 051901 (2007).
    [CrossRef] [PubMed]
  27. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
    [CrossRef]
  28. J. V. Watson, Introduction to flow cytometry, Cambridge Univ. Press, Oxford, U. K. (2004).
  29. M. Fleisher, “Circulating tumor cells – a new opportunity for therapeutic management of cancer patients,” Clin. Lab. News 34, 10 (2008).

2009 (4)

S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6(1), 24–32 (2009).
[CrossRef] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[CrossRef]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett. 34(14), 2099–2101 (2009).
[CrossRef] [PubMed]

2008 (5)

M. Fleisher, “Circulating tumor cells – a new opportunity for therapeutic management of cancer patients,” Clin. Lab. News 34, 10 (2008).

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
[CrossRef]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[CrossRef]

J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 111102 (2008).
[CrossRef]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[CrossRef] [PubMed]

2007 (3)

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[CrossRef]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[CrossRef] [PubMed]

M. T. Tilli, M. C. Cabrera, A. R. Parrish, K. M. Torre, M. K. Sidawy, A. L. Gallagher, E. Makariou, S. A. Polin, M. C. Liu, and P. A. Furth, “Real-time imaging and characterization of human breast tissue by reflectance confocal microscopy,” J. Biomed. Opt. 12(5), 051901 (2007).
[CrossRef] [PubMed]

2006 (1)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

2005 (2)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Y. Han and B. Jalali, “Continuous-time time-stretched analog-to-digital converter array implemented using virtual time gating,” IEEE Trans. Circ. Syst. 52(8), 1502–1507 (2005).
[CrossRef]

2004 (5)

H. R. Petty, “Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology,” Biosystems 83(2–3), 217–224 (2004).
[CrossRef]

H. R. Petty, “High speed microscopy,” Opt. Photonics News , 34–40 (2004).

S. Xiao and A. M. Weiner, “2-D wavelength demultiplexer with potential for >/= 1000 channels in the C-band,” Opt. Express 12(13), 2895–2902 (2004).
[CrossRef] [PubMed]

Z. Yaqoob and N. A. Riza, “Eye-safe passive-optics no-moving parts barcode scanners,” IEEE Photon. Technol. Lett. 16(3), 954–956 (2004).
[CrossRef]

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually-imaged phased-array spectral dispersers based on paraxial-wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[CrossRef]

2003 (1)

2002 (2)

Bates, M.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[CrossRef] [PubMed]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Bouma, B.

Bouma, B. E.

Boyraz, O.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[CrossRef]

Cabrera, M. C.

M. T. Tilli, M. C. Cabrera, A. R. Parrish, K. M. Torre, M. K. Sidawy, A. L. Gallagher, E. Makariou, S. A. Polin, M. C. Liu, and P. A. Furth, “Real-time imaging and characterization of human breast tissue by reflectance confocal microscopy,” J. Biomed. Opt. 12(5), 051901 (2007).
[CrossRef] [PubMed]

Capewell, D.

Chou, J.

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[CrossRef]

J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 111102 (2008).
[CrossRef]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[CrossRef]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Diddams, S. A.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[CrossRef] [PubMed]

Fleisher, M.

M. Fleisher, “Circulating tumor cells – a new opportunity for therapeutic management of cancer patients,” Clin. Lab. News 34, 10 (2008).

Furth, P. A.

M. T. Tilli, M. C. Cabrera, A. R. Parrish, K. M. Torre, M. K. Sidawy, A. L. Gallagher, E. Makariou, S. A. Polin, M. C. Liu, and P. A. Furth, “Real-time imaging and characterization of human breast tissue by reflectance confocal microscopy,” J. Biomed. Opt. 12(5), 051901 (2007).
[CrossRef] [PubMed]

Gallagher, A. L.

M. T. Tilli, M. C. Cabrera, A. R. Parrish, K. M. Torre, M. K. Sidawy, A. L. Gallagher, E. Makariou, S. A. Polin, M. C. Liu, and P. A. Furth, “Real-time imaging and characterization of human breast tissue by reflectance confocal microscopy,” J. Biomed. Opt. 12(5), 051901 (2007).
[CrossRef] [PubMed]

Goda, K.

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett. 34(14), 2099–2101 (2009).
[CrossRef] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
[CrossRef]

Han, Y.

Y. Han and B. Jalali, “Continuous-time time-stretched analog-to-digital converter array implemented using virtual time gating,” IEEE Trans. Circ. Syst. 52(8), 1502–1507 (2005).
[CrossRef]

Hell, S. W.

S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6(1), 24–32 (2009).
[CrossRef] [PubMed]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[CrossRef] [PubMed]

Huang, B.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[CrossRef] [PubMed]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Jalali, B.

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett. 34(14), 2099–2101 (2009).
[CrossRef] [PubMed]

J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 111102 (2008).
[CrossRef]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
[CrossRef]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[CrossRef]

Y. Han and B. Jalali, “Continuous-time time-stretched analog-to-digital converter array implemented using virtual time gating,” IEEE Trans. Circ. Syst. 52(8), 1502–1507 (2005).
[CrossRef]

Lin, C.

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually-imaged phased-array spectral dispersers based on paraxial-wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[CrossRef]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Liu, M. C.

M. T. Tilli, M. C. Cabrera, A. R. Parrish, K. M. Torre, M. K. Sidawy, A. L. Gallagher, E. Makariou, S. A. Polin, M. C. Liu, and P. A. Furth, “Real-time imaging and characterization of human breast tissue by reflectance confocal microscopy,” J. Biomed. Opt. 12(5), 051901 (2007).
[CrossRef] [PubMed]

Makariou, E.

M. T. Tilli, M. C. Cabrera, A. R. Parrish, K. M. Torre, M. K. Sidawy, A. L. Gallagher, E. Makariou, S. A. Polin, M. C. Liu, and P. A. Furth, “Real-time imaging and characterization of human breast tissue by reflectance confocal microscopy,” J. Biomed. Opt. 12(5), 051901 (2007).
[CrossRef] [PubMed]

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[CrossRef] [PubMed]

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Parrish, A. R.

M. T. Tilli, M. C. Cabrera, A. R. Parrish, K. M. Torre, M. K. Sidawy, A. L. Gallagher, E. Makariou, S. A. Polin, M. C. Liu, and P. A. Furth, “Real-time imaging and characterization of human breast tissue by reflectance confocal microscopy,” J. Biomed. Opt. 12(5), 051901 (2007).
[CrossRef] [PubMed]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Perlin, V. E.

Petty, H. R.

H. R. Petty, “Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology,” Biosystems 83(2–3), 217–224 (2004).
[CrossRef]

H. R. Petty, “High speed microscopy,” Opt. Photonics News , 34–40 (2004).

Pitris, C.

Polin, S. A.

M. T. Tilli, M. C. Cabrera, A. R. Parrish, K. M. Torre, M. K. Sidawy, A. L. Gallagher, E. Makariou, S. A. Polin, M. C. Liu, and P. A. Furth, “Real-time imaging and characterization of human breast tissue by reflectance confocal microscopy,” J. Biomed. Opt. 12(5), 051901 (2007).
[CrossRef] [PubMed]

Riza, N. A.

Z. Yaqoob and N. A. Riza, “Eye-safe passive-optics no-moving parts barcode scanners,” IEEE Photon. Technol. Lett. 16(3), 954–956 (2004).
[CrossRef]

Shishkov, M.

Shiskov, M.

Sidawy, M. K.

M. T. Tilli, M. C. Cabrera, A. R. Parrish, K. M. Torre, M. K. Sidawy, A. L. Gallagher, E. Makariou, S. A. Polin, M. C. Liu, and P. A. Furth, “Real-time imaging and characterization of human breast tissue by reflectance confocal microscopy,” J. Biomed. Opt. 12(5), 051901 (2007).
[CrossRef] [PubMed]

Solli, D.

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[CrossRef]

Solli, D. R.

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[CrossRef]

J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 111102 (2008).
[CrossRef]

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[CrossRef]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

Tearney, G.

Tearney, G. J.

Tilli, M. T.

M. T. Tilli, M. C. Cabrera, A. R. Parrish, K. M. Torre, M. K. Sidawy, A. L. Gallagher, E. Makariou, S. A. Polin, M. C. Liu, and P. A. Furth, “Real-time imaging and characterization of human breast tissue by reflectance confocal microscopy,” J. Biomed. Opt. 12(5), 051901 (2007).
[CrossRef] [PubMed]

Torre, K. M.

M. T. Tilli, M. C. Cabrera, A. R. Parrish, K. M. Torre, M. K. Sidawy, A. L. Gallagher, E. Makariou, S. A. Polin, M. C. Liu, and P. A. Furth, “Real-time imaging and characterization of human breast tissue by reflectance confocal microscopy,” J. Biomed. Opt. 12(5), 051901 (2007).
[CrossRef] [PubMed]

Tsia, K. K.

K. K. Tsia, K. Goda, D. Capewell, and B. Jalali, “Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery,” Opt. Lett. 34(14), 2099–2101 (2009).
[CrossRef] [PubMed]

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[CrossRef]

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
[CrossRef]

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Wang, W.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[CrossRef] [PubMed]

Weiner, A. M.

S. Xiao and A. M. Weiner, “2-D wavelength demultiplexer with potential for >/= 1000 channels in the C-band,” Opt. Express 12(13), 2895–2902 (2004).
[CrossRef] [PubMed]

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually-imaged phased-array spectral dispersers based on paraxial-wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[CrossRef]

Winful, H. G.

Xiao, S.

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually-imaged phased-array spectral dispersers based on paraxial-wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[CrossRef]

S. Xiao and A. M. Weiner, “2-D wavelength demultiplexer with potential for >/= 1000 channels in the C-band,” Opt. Express 12(13), 2895–2902 (2004).
[CrossRef] [PubMed]

Yaqoob, Z.

Z. Yaqoob and N. A. Riza, “Eye-safe passive-optics no-moving parts barcode scanners,” IEEE Photon. Technol. Lett. 16(3), 954–956 (2004).
[CrossRef]

Zhuang, X.

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[CrossRef] [PubMed]

Appl. Phys. B (1)

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81(8), 1015–1047 (2005).
[CrossRef]

Appl. Phys. Lett. (3)

K. Goda, K. K. Tsia, and B. Jalali, “Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading,” Appl. Phys. Lett. 93(13), 131109 (2008).
[CrossRef]

J. Chou, O. Boyraz, D. Solli, and B. Jalali, “Femtosecond real-time single-shot digitizer,” Appl. Phys. Lett. 91(16), 161105 (2007).
[CrossRef]

J. Chou, D. R. Solli, and B. Jalali, “Real-time spectroscopy with subgigahertz resolution using amplified dispersive Fourier transformation,” Appl. Phys. Lett. 92(11), 111102 (2008).
[CrossRef]

Biosystems (1)

H. R. Petty, “Spatiotemporal chemical dynamics in living cells: from information trafficking to cell physiology,” Biosystems 83(2–3), 217–224 (2004).
[CrossRef]

Clin. Lab. News (1)

M. Fleisher, “Circulating tumor cells – a new opportunity for therapeutic management of cancer patients,” Clin. Lab. News 34, 10 (2008).

IEEE J. Quantum Electron. (1)

S. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually-imaged phased-array spectral dispersers based on paraxial-wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

Z. Yaqoob and N. A. Riza, “Eye-safe passive-optics no-moving parts barcode scanners,” IEEE Photon. Technol. Lett. 16(3), 954–956 (2004).
[CrossRef]

IEEE Trans. Circ. Syst. (1)

Y. Han and B. Jalali, “Continuous-time time-stretched analog-to-digital converter array implemented using virtual time gating,” IEEE Trans. Circ. Syst. 52(8), 1502–1507 (2005).
[CrossRef]

J. Biomed. Opt. (1)

M. T. Tilli, M. C. Cabrera, A. R. Parrish, K. M. Torre, M. K. Sidawy, A. L. Gallagher, E. Makariou, S. A. Polin, M. C. Liu, and P. A. Furth, “Real-time imaging and characterization of human breast tissue by reflectance confocal microscopy,” J. Biomed. Opt. 12(5), 051901 (2007).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

Nat. Methods (1)

S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6(1), 24–32 (2009).
[CrossRef] [PubMed]

Nat. Photonics (1)

D. R. Solli, J. Chou, and B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008).
[CrossRef]

Nature (2)

K. Goda, K. K. Tsia, and B. Jalali, “Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena,” Nature 458(7242), 1145–1149 (2009).
[CrossRef] [PubMed]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (2)

Opt. Photonics News (1)

H. R. Petty, “High speed microscopy,” Opt. Photonics News , 34–40 (2004).

Phys. Rev. A (1)

K. Goda, D. R. Solli, K. K. Tsia, and B. Jalali, “Theory of amplified dispersive Fourier transformation,” Phys. Rev. A 80(4), 043821 (2009).
[CrossRef]

Science (2)

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313(5793), 1642–1645 (2006).
[CrossRef] [PubMed]

B. Huang, W. Wang, M. Bates, and X. Zhuang, “Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy,” Science 319(5864), 810–813 (2008).
[CrossRef] [PubMed]

Other (6)

J. V. Watson, Introduction to flow cytometry, (Cambridge Univ. Press, Oxford, U. K. 2004).

J. R. Janesick, Scientific Charge-Coupled Devices, (SPIE Publications, 2001).

G. C. Holst, and T. S. Lomheim, CMOS/CCD Sensors and Camera Systems, SPIE-International Society for Optical Engine (2007).

J. B. Pawley, ed., Handbook of biological confocal microscopy, 3rd ed., Springer (2006).

G. P. Agrawal, Fiber Optic Communication Systems, 3rd Ed., Wiley-Interscience (2002).

J. V. Watson, Introduction to flow cytometry, Cambridge Univ. Press, Oxford, U. K. (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Generic schematic of a STEAM system.

Fig. 2
Fig. 2

Schematic of a 1-D spatial disperser used in a 1-D STEAM system.

Fig. 3
Fig. 3

(a) Spatial resolution and (b) temporal resolution of 1-D STEAM in various limiting cases: digitizer-limited (green), SPA-limited (red) and spatial-dispersion-limited (blue), as a function of GVD. The system parameters are: λ = 800 nm, W = 3 mm, an objective lens with NA = 0.9 (f = 2 mm), 1/d = 1800 lines/mm, and fdet = 15GHz.

Fig. 4
Fig. 4

Schematic of a 2-D spatial disperser (a virtually-imaged phase array (VIPA) and a diffraction grating) which generates the 2-D spectral shower.

Fig. 5
Fig. 5

(a) A 2-D spectral shower, which is generated using a broadband source (a center wavelength at 1570 nm), overlaid with the CW spot (a wavelength at 1565 nm). (b) The same CW spot but with the spectral shower turned off. (c) (blue circles) The measured lineshape of CW spot (along the red dotted line in (b)). The lineshape predicted by the cases of finite N (blue solid line, N ~25 in this case) and infinite N (red dashed line) are also shown for comparison. In this example, we employ a glass VIPA (n = 1.48) with t = 1.5 mm and θVIPA = 3°; a diffraction grating with a groove density (1/d) is 1200 lines/mm and θg = 75°; an objective lens with f = 5 mm, D = 5 mm.

Fig. 6
Fig. 6

A contour plot of (a) minimum input beam size in order to satisfy Eq. (12), and (b) the corresponding spatial-dispersion-limited resolution in the x-direction. The contour label unit is in mm in (a) and μm in (b). The shaded region represents the regime of diffraction-limited spatial resolution by the objective lens (NA = 0.9, f = 2mm). The center wavelength is 800 nm. The grating is assumed to satisfy Littow’s condition and the tilt angle of the glass VIPA (n = 1.48) is θVIPA = 7°.

Fig. 7
Fig. 7

(a) Spatial resolution of 2-D STEAM in the y-direction and (b) the corresponding temporal resolution in various limiting cases: digitizer-limited (green), SPA-limited (red) and spatial-dispersion-limited (blue), as a function of total GVD. The relevant system parameters are: a center wavelength of 800 nm, an objective lens with NA = 0.9 (f = 2 mm), a glass VIPA (n = 1.48) with tilt angle of 7°, thickness of 0.25 mm, f det = 15 GHz.

Fig. 8
Fig. 8

Relationship between the number of pixels in STEAM and the frame rate based on Eq. (20). Note that it can be applied to both 1-D and 2-D STEAM. It is clear that the trade-off between the number of pixels and the frame rate can be overcome by employing virtual time gating with multiple channels (M = 8, solid lines).

Fig. 9
Fig. 9

(a) Noise components of STEAM: Dark current noise (black), thermal noise (blue), shot noise with gain, G = 30dB (red solid line) and shot noise without gain (red dashed line). (b) SNR of the system with gain, G = 30dB (red), and without gain (blue). The system parameters are: a photodetector with a bandwidth of 40 GHz, dark current of 100 nA, noise equivalent noise of 50pW/Hz1/2 and η = 0.8. The fdig = 50GS/s. the wavelength is 800 nm. Detailed calculation of Ndark and Nthermal can be referred to Ref [24]. We assume DRA is employed within the dispersive fiber and a noise figure of ~3.5dB [25]. The dispersive fiber loss is assumed to be 20 dB. The black dashed line in (b) represents the theoretical shot noise limited SNR.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

δλg=λdcosθgW,
δx1Dspatial(fdθgdλ)δλg=Cxδλg,
δλSPA=λ2Dc,
δx1DSPA=CxδλSPA.
δλdet=0.35Dfdet,
δx1Ddet=Cxδλdet.
It(k)[1(R1R2)N]2+4(R1R2)Nsin2[Nktcos(θin)](1R1R2)2+4R1R2sin2[ktcos(θin)],
δy2DspatialfdθVIPAdλδλVIPA=CyδλVIPA,
δx2Dspatial=δx2DFSR=CxΔλFSR,
ΔλFSRδλVIPA,
ΔλFSRδλg.
WWmin=2ntdcos(θin)cos(θigrat)λ.
δy2DSPA=CyδλSPA
δy2Ddet=Cyδλdet.
δx2D=δx2Dspatial.
N1D=ΔλSSDfdig,
N2Dx=ΔλSSΔλFSR,
N2Dy=ΔλFSRDfdig.
N2D=NxNy=ΔλSSDfdigfdigfrep,
N1D=N2DMfdig/frep.
Ntotal=(GFNshot)2+Ndark2+Nthermal2.
SNR=GSinNtotal=Sin(FSin)2+(NdarkG)2+(NthermalG)2,

Metrics