Abstract

Using leakage-radiation microscopy, we characterize the efficiency of unidirectional surface-plasmon excitation with periodic (800 nm) arrays of 130-nm-high and 330-nm-wide gold ridges on a thin gold film illuminated with a focused (5-μm-wide) laser beam. We demonstrate that, at the resonant wavelength of 816 nm, the excitation efficiency of > 0.4 can be obtained with ≥ 5 ridges by adjusting the beam position. Conducting numerical simulations, we account for the experimental results and calculate the electric-field enhancement achieved near the gold surface.

© 2009 Optical Society of America

Full Article  |  PDF Article
Related Articles
Surface plasmon polariton beam focusing with parabolic nanoparticle chains

Ilya P. Radko, Sergey I. Bozhevolnyi, Andrey B. Evlyukhin, and Alexandra Boltasseva
Opt. Express 15(11) 6576-6582 (2007)

Focusing and directing of surface plasmon polaritons by curved chains of nanoparticles

A. B. Evlyukhin, S. I. Bozhevolnyi, A. L. Stepanov, R. Kiyan, C. Reinhardt, S. Passinger, and B. N. Chichkov
Opt. Express 15(25) 16667-16680 (2007)

Refracting surface plasmon polaritons with nanoparticle arrays

Ilya P. Radko, Andrey B. Evlyukhin, Alexandra Boltasseva, and Sergey I. Bozhevolnyi
Opt. Express 16(6) 3924-3930 (2008)

References

  • View by:
  • |
  • |
  • |

  1. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nature Photon. 1, 641–648 (2007).
    [Crossref]
  2. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).
    [Crossref]
  3. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Materials Today 9, 20–27 (2006).
    [Crossref]
  4. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Physics Today May, 44–50 (2008).
    [Crossref]
  5. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).
  6. I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
    [Crossref]
  7. H. Ditlbacher, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
    [Crossref]
  8. A.-L. Baudrion, F. de León-Pérez, O. Mahboub, A. Hohenau, H. Ditlbacher, F. J. García-Vidal, J. Dintinger, T. W. Ebbesen, L. Martín-Moreno, and J. R. Krenn, “Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film,” Opt. Express 16, 3420–3429 (2008).
    [Crossref] [PubMed]
  9. L. B. Scaffardi, N. Pellegri, O. de Sanctis, and J. O. Tocho, “Sizing gold nanoparticles by optical extinction spectroscopy,” Nanotechnology 16, 158–163 (2005).
    [Crossref]
  10. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [Crossref]
  11. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  12. I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15, 6576–6582 (2007).
    [Crossref] [PubMed]
  13. L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Sub-wavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
    [Crossref] [PubMed]
  14. J.-Y. Laluet, E. Devaux, C. Genet, T. W. Ebbesen, J.-C. Weeber, and A. Dereux, “Optimization of surface plas-mons launching from subwavelength hole arrays: modelling and experiments,” Opt. Express 15, 3488–3495 (2007).
    [Crossref] [PubMed]
  15. J. T. Bahns, A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, L. H. Chen, and U. Welp, “Enhanced Raman scattering from focused surface plasmons,” Appl. Phys. Lett. 91, 081104 (2007).
    [Crossref]

2008 (4)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).
[Crossref]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Physics Today May, 44–50 (2008).
[Crossref]

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[Crossref]

A.-L. Baudrion, F. de León-Pérez, O. Mahboub, A. Hohenau, H. Ditlbacher, F. J. García-Vidal, J. Dintinger, T. W. Ebbesen, L. Martín-Moreno, and J. R. Krenn, “Coupling efficiency of light to surface plasmon polariton for single subwavelength holes in a gold film,” Opt. Express 16, 3420–3429 (2008).
[Crossref] [PubMed]

2007 (4)

I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15, 6576–6582 (2007).
[Crossref] [PubMed]

J.-Y. Laluet, E. Devaux, C. Genet, T. W. Ebbesen, J.-C. Weeber, and A. Dereux, “Optimization of surface plas-mons launching from subwavelength hole arrays: modelling and experiments,” Opt. Express 15, 3488–3495 (2007).
[Crossref] [PubMed]

J. T. Bahns, A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, L. H. Chen, and U. Welp, “Enhanced Raman scattering from focused surface plasmons,” Appl. Phys. Lett. 91, 081104 (2007).
[Crossref]

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nature Photon. 1, 641–648 (2007).
[Crossref]

2006 (1)

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Materials Today 9, 20–27 (2006).
[Crossref]

2005 (2)

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Sub-wavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref] [PubMed]

L. B. Scaffardi, N. Pellegri, O. de Sanctis, and J. O. Tocho, “Sizing gold nanoparticles by optical extinction spectroscopy,” Nanotechnology 16, 158–163 (2005).
[Crossref]

2003 (1)

H. Ditlbacher, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).
[Crossref]

Aussenegg, F. R.

H. Ditlbacher, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
[Crossref]

Bahns, J. T.

J. T. Bahns, A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, L. H. Chen, and U. Welp, “Enhanced Raman scattering from focused surface plasmons,” Appl. Phys. Lett. 91, 081104 (2007).
[Crossref]

Baudrion, A.-L.

Boltasseva, A.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[Crossref]

I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15, 6576–6582 (2007).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[Crossref]

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Physics Today May, 44–50 (2008).
[Crossref]

I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15, 6576–6582 (2007).
[Crossref] [PubMed]

Brongersma, M. L.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Materials Today 9, 20–27 (2006).
[Crossref]

Brown, D. E.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Sub-wavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref] [PubMed]

Brucoli, G.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[Crossref]

Chandran, A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Materials Today 9, 20–27 (2006).
[Crossref]

Chen, L. H.

J. T. Bahns, A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, L. H. Chen, and U. Welp, “Enhanced Raman scattering from focused surface plasmons,” Appl. Phys. Lett. 91, 081104 (2007).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

de León-Pérez, F.

de Sanctis, O.

L. B. Scaffardi, N. Pellegri, O. de Sanctis, and J. O. Tocho, “Sizing gold nanoparticles by optical extinction spectroscopy,” Nanotechnology 16, 158–163 (2005).
[Crossref]

Dereux, A.

Devaux, E.

Dintinger, J.

Ditlbacher, H.

Duyne, R. P. Van

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).
[Crossref]

Ebbesen, T. W.

Evlyukhin, A. B.

García-Vidal, F. J.

Genet, C.

Halas, N. J.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nature Photon. 1, 641–648 (2007).
[Crossref]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).
[Crossref]

Hiller, J. M.

J. T. Bahns, A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, L. H. Chen, and U. Welp, “Enhanced Raman scattering from focused surface plasmons,” Appl. Phys. Lett. 91, 081104 (2007).
[Crossref]

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Sub-wavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref] [PubMed]

Hohenau, A.

Hua, J.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Sub-wavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref] [PubMed]

Imre, A.

J. T. Bahns, A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, L. H. Chen, and U. Welp, “Enhanced Raman scattering from focused surface plasmons,” Appl. Phys. Lett. 91, 081104 (2007).
[Crossref]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Kimball, C. W.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Sub-wavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref] [PubMed]

Krenn, J. R.

Lal, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nature Photon. 1, 641–648 (2007).
[Crossref]

Laluet, J.-Y.

Leitner, A.

H. Ditlbacher, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
[Crossref]

Link, S.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nature Photon. 1, 641–648 (2007).
[Crossref]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).
[Crossref]

Mahboub, O.

Martín-Moreno, L.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

Pearson, J.

J. T. Bahns, A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, L. H. Chen, and U. Welp, “Enhanced Raman scattering from focused surface plasmons,” Appl. Phys. Lett. 91, 081104 (2007).
[Crossref]

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Sub-wavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref] [PubMed]

Pellegri, N.

L. B. Scaffardi, N. Pellegri, O. de Sanctis, and J. O. Tocho, “Sizing gold nanoparticles by optical extinction spectroscopy,” Nanotechnology 16, 158–163 (2005).
[Crossref]

Radko, I. P.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[Crossref]

I. P. Radko, S. I. Bozhevolnyi, A. B. Evlyukhin, and A. Boltasseva, “Surface plasmon polariton beam focusing with parabolic nanoparticle chains,” Opt. Express 15, 6576–6582 (2007).
[Crossref] [PubMed]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

Scaffardi, L. B.

L. B. Scaffardi, N. Pellegri, O. de Sanctis, and J. O. Tocho, “Sizing gold nanoparticles by optical extinction spectroscopy,” Nanotechnology 16, 158–163 (2005).
[Crossref]

Schuller, J. A.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Materials Today 9, 20–27 (2006).
[Crossref]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).
[Crossref]

Tocho, J. O.

L. B. Scaffardi, N. Pellegri, O. de Sanctis, and J. O. Tocho, “Sizing gold nanoparticles by optical extinction spectroscopy,” Nanotechnology 16, 158–163 (2005).
[Crossref]

Vlasko-Vlasov, V. K.

J. T. Bahns, A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, L. H. Chen, and U. Welp, “Enhanced Raman scattering from focused surface plasmons,” Appl. Phys. Lett. 91, 081104 (2007).
[Crossref]

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Sub-wavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref] [PubMed]

Weeber, J.-C.

Welp, U.

J. T. Bahns, A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, L. H. Chen, and U. Welp, “Enhanced Raman scattering from focused surface plasmons,” Appl. Phys. Lett. 91, 081104 (2007).
[Crossref]

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Sub-wavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref] [PubMed]

Yin, L.

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Sub-wavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).
[Crossref]

Zia, R.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Materials Today 9, 20–27 (2006).
[Crossref]

Appl. Phys. Lett. (2)

H. Ditlbacher, J. R. Krenn, A. Hohenau, A. Leitner, and F. R. Aussenegg, “Efficiency of local light-plasmon coupling,” Appl. Phys. Lett. 83, 3665–3667 (2003).
[Crossref]

J. T. Bahns, A. Imre, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, L. H. Chen, and U. Welp, “Enhanced Raman scattering from focused surface plasmons,” Appl. Phys. Lett. 91, 081104 (2007).
[Crossref]

Materials Today (1)

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Materials Today 9, 20–27 (2006).
[Crossref]

Nano Lett. (1)

L. Yin, V. K. Vlasko-Vlasov, J. Pearson, J. M. Hiller, J. Hua, U. Welp, D. E. Brown, and C. W. Kimball, “Sub-wavelength focusing and guiding of surface plasmons,” Nano Lett. 5, 1399–1402 (2005).
[Crossref] [PubMed]

Nanotechnology (1)

L. B. Scaffardi, N. Pellegri, O. de Sanctis, and J. O. Tocho, “Sizing gold nanoparticles by optical extinction spectroscopy,” Nanotechnology 16, 158–163 (2005).
[Crossref]

Nature Mater. (1)

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nature Mater. 7, 442–453 (2008).
[Crossref]

Nature Photon. (1)

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nature Photon. 1, 641–648 (2007).
[Crossref]

Opt. Express (3)

Phys. Rev. B (2)

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficiency of local surface plasmon polariton excitation on ridges,” Phys. Rev. B 78, 115115 (2008).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[Crossref]

Physics Today May (1)

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Physics Today May, 44–50 (2008).
[Crossref]

Other (2)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

(a) SEM image of a fragment of the fabricated structure consisting of 130-nm-high and 330-nm-wide ridges. (b) Geometry of the illumination configuration. (c) Typical LRM image of a strong SPP beam excited on the 11-ridge array on its left side. A much weaker SPP beam propagating to the right is also visible.

Fig. 2.
Fig. 2.

(a) The maximum efficiency of SPP excitation obtained experimentally for different laser wavelengths as a function of number of ridges. The lines connecting the points are only to guide an eye. (b) Experimental and numerical results for the SPP excitation efficiency versus the position of a laser beam scanned across the 11-ridge array extending from x = 4 μm to x = 12 μm. Error bars both in (a) and (b) are omitted for clarity of presentation. The error of measurements is estimated to be ~ 13%.

Fig. 3.
Fig. 3.

Numerical results for electric-field amplitude distribution near the 11-ridge array illuminated under the optimal conditions for SPP excitation. The field values are normalized to the amplitude of the incident field.

Fig. 4.
Fig. 4.

(a) SEM image of a circularly curved 11-ridge array. (b-d) LRM images of SPP excitation and focusing at the laser wavelength of 816 nm. An approximate position of the arrays is shown with the dashed curves. Internal radii of curvature of the arrays are (b) 28.8 μm, (c) 9.6 μm, and (d) 4.8 μm.

Metrics