Abstract

Near field generated by plasmonic structures has recently been proposed to trap small objects. We report the first integration of plasmonic trapping with microfluidics for lab–on–a–chip applications. A three–layer plasmo–microfluidic chip is used to demonstrate the trapping of polystyrene spheres and yeast cells. This technique enables cell immobilization without the complex optics required for conventional optical tweezers. The benefits of such devices are optical simplicity, low power consumption and compactness; they have great potential for implementing novel functionalities for advanced manipulations and analytics in lab–on–a–chip applications.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
    [CrossRef]
  2. A. Ashkin and J. M. Dziedzic, "Optical trapping and manipulation of viruses and bacteria," Science 235, 1517-1520 (1987).
    [CrossRef] [PubMed]
  3. S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, "Bead movement by single kinesin molecules studied with optical tweezers," Nature 348, 348-352 (1990).
    [CrossRef] [PubMed]
  4. M. Zahn and S. Seeger, "Optical tweezers in pharmacology," Cell. Mol. Biol. 44, 747-761 (1998).
    [PubMed]
  5. T. N. Buican, M. J. Smyth, H. A. Crissman, G. C. Salzman, C. C. Stewart, and J. C. Martin, "Automated singlecell manipulation and sorting by light trapping," Appl. Opt. 26, 5311-5316 (1987).
    [CrossRef] [PubMed]
  6. C. Bustamante, Z. Bryant, and S. B. Smith, "Ten years of tension: single-molecule DNA mechanics," Nature 421, 423-427 (1987).
    [CrossRef]
  7. A. H. Barnett, S. P. Smith, M. Olshanii, K. S. Johnson, A. W. Adams, and M. Pretiss, "Substrate-based atom waveguide using guided two-color evanescent light fields," Phys. Rev. A 61, 023608 (2000).
    [CrossRef]
  8. F. L. Kien, V. I. Balykin, and K. Hakuta, "Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber," Phys. Rev. A 70, 063403 (2004).
    [CrossRef]
  9. S. Kuriakose, D. Morrish, X. Gan, J. W. M. Chon, K. Dholakia, and M. Gu, "Near-field optical trapping with an ultrashort pulsed laser beam," Appl. Phys. Lett. 92, 081108 (2008).
    [CrossRef]
  10. S. Kawata and T. Sugiura, "Movement of micrometer-sized particles in the evanescent field of a laser beam," Opt. Lett. 17, 772-774 (1992).
    [CrossRef] [PubMed]
  11. S. Kawata and T. Tani, "Optically driven Mie particles in an evanescent field along a channeled wave guide," Opt. Lett. 21, 1768-1770 (1996).
    [CrossRef] [PubMed]
  12. L. N. Ng, M. N. Zervas, J. S. Wilkinson, and B. J , Luff, "Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide," Appl. Phys. Lett. 19, 1439-1444 (2000).
  13. K. Grujic and O. G. Helleso, "Sorting of polystyrene microspheres using a Y-branched optical waveguide," Opt. Express 13, 1-7 (2004).
    [CrossRef]
  14. M. Kerker and C. G. Blatchford, "Elastic scattering, absorption, and surface-enhanced Raman scattering by concentric spheres comprised of a metallic and a dielectric region," Phys. Rev. B 26, 4052-4063 (1982).
    [CrossRef]
  15. K. Svoboda and S. M. Block, "Optical trapping of metallic Rayleigh particles," Opt. Lett. 19, 930-932 (1994).
    [CrossRef] [PubMed]
  16. T. Sugiura and T. Okada, "Gold-bead scanning near-field optical microscope with laser-force position control," Opt. Lett. 22, 1663-1665 (1997).
    [CrossRef]
  17. H. Furukawa and I. Yamaguchi, "Optical trapping of metallic particles by a fixed Gaussian beam," Opt. Lett. 23, 216-218 (1998).
    [CrossRef]
  18. P. C. Ke and M. Gu, "Characterization of trapping force on metallic Mie particles," Appl. Opt. 36, 1439-1444 (1999).
  19. R. Quidant, D. Petrov, and G. Badenes, "Radiation forces on a Rayleigh dielectric sphere in a patterned optical near field," Opt. Lett. 30, 1009-1011 (2005).
    [CrossRef] [PubMed]
  20. G. Volpe, R. Quidant, G. Badenes, and D. Petrov, "Surface plasmon radiation forces," Phys. Rev. Lett. 96, 238101 (2006).
    [CrossRef] [PubMed]
  21. M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2007).
    [CrossRef]
  22. X. Miao and L. Y. Lin, "Trapping and manipulation of biological particles through a plasmonic platform," IEEE J. Sel. Top. Quantum Electron. 13, 1655-1662 (2007).
    [CrossRef]
  23. A. N. Grigorenko, N.W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nature Photon. 2, 365-370 (2008).
    [CrossRef]
  24. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. Garcia de Abajo, and R. Quidant, "Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas," Nano Lett., Articles ASAP, (2009).
    [CrossRef] [PubMed]
  25. L. Huang and O. J. F. Martin, "Reversal of the optical force in a plasmonic trap," Opt. Lett. 33, 3001-3003 (2008).
    [CrossRef] [PubMed]
  26. P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Local-field enhancement in an optical force metallic nanotrap: application to single-molecule spectroscopy," Appl. Opt. 45, 5185-5790 (2006).
    [CrossRef] [PubMed]
  27. K. Halterman, J. M. Elson, and S. Singh, "Plasmonic resonances and electromagnetic forces between coupled silver nanowires," Phys. Rev. B 72, 075429 (2005).
    [CrossRef]
  28. B. Sepulveda, J. Alegret, and M. Käll, "Nanometric control of the distance between plasmonic nanoparticles using optical forces," Opt. Express 15, 14914-14920 (2007).
    [CrossRef] [PubMed]
  29. E. Lamothe, G. Lévêque, and O. J. F. Martin, "Optical forces in coupled plasmonic nanosystems: Near field and far field interaction regimes," Opt. Express 15, 9631-9644 (2007).
    [CrossRef] [PubMed]
  30. A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, "Enhanced optical forces between coupled resonant metal nanoparticles," Opt. Lett. 32, 1156-1158 (2007).
    [CrossRef] [PubMed]
  31. O. J. F. Martin and N. B. Piller, "Electromagnetic scattering in polarizable backgrounds," Phys. Rev. E 58, 3909-3915 (1998).
    [CrossRef]
  32. M. Paulus and O. J. F. Martin, "Light propagation and scattering in stratified media: a Green’s tensor approach," J. Opt. Soc. Am. A 18, 3909-3915 (2001).
    [CrossRef]
  33. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  34. M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science 288, 113-116 (2000).
    [CrossRef]
  35. T. Thorsen, S. J. Maerkl, and S. R. Quake, "Microfluidic large-scale integration," Science 298, 580-584 (2002).
    [CrossRef] [PubMed]
  36. B. Lukic, S. Jeney, C. Tischer, A. J. Kulik, L. Forro, and E.-L. Florin, "Direct observation of nondiffusive motion of a Brownian particle," Phys. Rev. Lett. 95, 160601 (2005).
    [CrossRef] [PubMed]
  37. B. Lukic, S. Jeney, Z. Sviben, A. J. Kulik, E.-L. Florin, and L. Forro, "Motion of a colloidal particle in an optical trap," Phys. Rev. E 76, 011112 (2007).
    [CrossRef]
  38. V. R. Daria, P. J. Rodrigo, and J. Glckstad, "Dynamic formation of optically trapped microstructure arrays for biosensor applications," Biosens. Bioelectron. 19, 1439-1444 (2004).
    [CrossRef] [PubMed]
  39. D. D. Carlo, N. Aghdam, and L. P. Lee, "Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays," Anal. Chem. 78, 4925-4930 (2006).
    [CrossRef] [PubMed]

2008

S. Kuriakose, D. Morrish, X. Gan, J. W. M. Chon, K. Dholakia, and M. Gu, "Near-field optical trapping with an ultrashort pulsed laser beam," Appl. Phys. Lett. 92, 081108 (2008).
[CrossRef]

A. N. Grigorenko, N.W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nature Photon. 2, 365-370 (2008).
[CrossRef]

L. Huang and O. J. F. Martin, "Reversal of the optical force in a plasmonic trap," Opt. Lett. 33, 3001-3003 (2008).
[CrossRef] [PubMed]

2007

A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, "Enhanced optical forces between coupled resonant metal nanoparticles," Opt. Lett. 32, 1156-1158 (2007).
[CrossRef] [PubMed]

E. Lamothe, G. Lévêque, and O. J. F. Martin, "Optical forces in coupled plasmonic nanosystems: Near field and far field interaction regimes," Opt. Express 15, 9631-9644 (2007).
[CrossRef] [PubMed]

B. Sepulveda, J. Alegret, and M. Käll, "Nanometric control of the distance between plasmonic nanoparticles using optical forces," Opt. Express 15, 14914-14920 (2007).
[CrossRef] [PubMed]

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2007).
[CrossRef]

X. Miao and L. Y. Lin, "Trapping and manipulation of biological particles through a plasmonic platform," IEEE J. Sel. Top. Quantum Electron. 13, 1655-1662 (2007).
[CrossRef]

B. Lukic, S. Jeney, Z. Sviben, A. J. Kulik, E.-L. Florin, and L. Forro, "Motion of a colloidal particle in an optical trap," Phys. Rev. E 76, 011112 (2007).
[CrossRef]

2006

D. D. Carlo, N. Aghdam, and L. P. Lee, "Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays," Anal. Chem. 78, 4925-4930 (2006).
[CrossRef] [PubMed]

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, "Surface plasmon radiation forces," Phys. Rev. Lett. 96, 238101 (2006).
[CrossRef] [PubMed]

P. C. Chaumet, A. Rahmani, and M. Nieto-Vesperinas, "Local-field enhancement in an optical force metallic nanotrap: application to single-molecule spectroscopy," Appl. Opt. 45, 5185-5790 (2006).
[CrossRef] [PubMed]

2005

K. Halterman, J. M. Elson, and S. Singh, "Plasmonic resonances and electromagnetic forces between coupled silver nanowires," Phys. Rev. B 72, 075429 (2005).
[CrossRef]

B. Lukic, S. Jeney, C. Tischer, A. J. Kulik, L. Forro, and E.-L. Florin, "Direct observation of nondiffusive motion of a Brownian particle," Phys. Rev. Lett. 95, 160601 (2005).
[CrossRef] [PubMed]

R. Quidant, D. Petrov, and G. Badenes, "Radiation forces on a Rayleigh dielectric sphere in a patterned optical near field," Opt. Lett. 30, 1009-1011 (2005).
[CrossRef] [PubMed]

2004

K. Grujic and O. G. Helleso, "Sorting of polystyrene microspheres using a Y-branched optical waveguide," Opt. Express 13, 1-7 (2004).
[CrossRef]

V. R. Daria, P. J. Rodrigo, and J. Glckstad, "Dynamic formation of optically trapped microstructure arrays for biosensor applications," Biosens. Bioelectron. 19, 1439-1444 (2004).
[CrossRef] [PubMed]

F. L. Kien, V. I. Balykin, and K. Hakuta, "Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber," Phys. Rev. A 70, 063403 (2004).
[CrossRef]

2002

T. Thorsen, S. J. Maerkl, and S. R. Quake, "Microfluidic large-scale integration," Science 298, 580-584 (2002).
[CrossRef] [PubMed]

2001

M. Paulus and O. J. F. Martin, "Light propagation and scattering in stratified media: a Green’s tensor approach," J. Opt. Soc. Am. A 18, 3909-3915 (2001).
[CrossRef]

2000

M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science 288, 113-116 (2000).
[CrossRef]

L. N. Ng, M. N. Zervas, J. S. Wilkinson, and B. J , Luff, "Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide," Appl. Phys. Lett. 19, 1439-1444 (2000).

A. H. Barnett, S. P. Smith, M. Olshanii, K. S. Johnson, A. W. Adams, and M. Pretiss, "Substrate-based atom waveguide using guided two-color evanescent light fields," Phys. Rev. A 61, 023608 (2000).
[CrossRef]

1999

P. C. Ke and M. Gu, "Characterization of trapping force on metallic Mie particles," Appl. Opt. 36, 1439-1444 (1999).

1998

O. J. F. Martin and N. B. Piller, "Electromagnetic scattering in polarizable backgrounds," Phys. Rev. E 58, 3909-3915 (1998).
[CrossRef]

M. Zahn and S. Seeger, "Optical tweezers in pharmacology," Cell. Mol. Biol. 44, 747-761 (1998).
[PubMed]

H. Furukawa and I. Yamaguchi, "Optical trapping of metallic particles by a fixed Gaussian beam," Opt. Lett. 23, 216-218 (1998).
[CrossRef]

1997

1996

1994

1992

1990

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, "Bead movement by single kinesin molecules studied with optical tweezers," Nature 348, 348-352 (1990).
[CrossRef] [PubMed]

1987

C. Bustamante, Z. Bryant, and S. B. Smith, "Ten years of tension: single-molecule DNA mechanics," Nature 421, 423-427 (1987).
[CrossRef]

A. Ashkin and J. M. Dziedzic, "Optical trapping and manipulation of viruses and bacteria," Science 235, 1517-1520 (1987).
[CrossRef] [PubMed]

T. N. Buican, M. J. Smyth, H. A. Crissman, G. C. Salzman, C. C. Stewart, and J. C. Martin, "Automated singlecell manipulation and sorting by light trapping," Appl. Opt. 26, 5311-5316 (1987).
[CrossRef] [PubMed]

1982

M. Kerker and C. G. Blatchford, "Elastic scattering, absorption, and surface-enhanced Raman scattering by concentric spheres comprised of a metallic and a dielectric region," Phys. Rev. B 26, 4052-4063 (1982).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

1970

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Adams, A. W.

A. H. Barnett, S. P. Smith, M. Olshanii, K. S. Johnson, A. W. Adams, and M. Pretiss, "Substrate-based atom waveguide using guided two-color evanescent light fields," Phys. Rev. A 61, 023608 (2000).
[CrossRef]

Aghdam, N.

D. D. Carlo, N. Aghdam, and L. P. Lee, "Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays," Anal. Chem. 78, 4925-4930 (2006).
[CrossRef] [PubMed]

Alegret, J.

Ashkin, A.

A. Ashkin and J. M. Dziedzic, "Optical trapping and manipulation of viruses and bacteria," Science 235, 1517-1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Badenes, G.

Balykin, V. I.

F. L. Kien, V. I. Balykin, and K. Hakuta, "Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber," Phys. Rev. A 70, 063403 (2004).
[CrossRef]

Barnett, A. H.

A. H. Barnett, S. P. Smith, M. Olshanii, K. S. Johnson, A. W. Adams, and M. Pretiss, "Substrate-based atom waveguide using guided two-color evanescent light fields," Phys. Rev. A 61, 023608 (2000).
[CrossRef]

Blatchford, C. G.

M. Kerker and C. G. Blatchford, "Elastic scattering, absorption, and surface-enhanced Raman scattering by concentric spheres comprised of a metallic and a dielectric region," Phys. Rev. B 26, 4052-4063 (1982).
[CrossRef]

Block, S. M.

K. Svoboda and S. M. Block, "Optical trapping of metallic Rayleigh particles," Opt. Lett. 19, 930-932 (1994).
[CrossRef] [PubMed]

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, "Bead movement by single kinesin molecules studied with optical tweezers," Nature 348, 348-352 (1990).
[CrossRef] [PubMed]

Bryant, Z.

C. Bustamante, Z. Bryant, and S. B. Smith, "Ten years of tension: single-molecule DNA mechanics," Nature 421, 423-427 (1987).
[CrossRef]

Buican, T. N.

Bustamante, C.

C. Bustamante, Z. Bryant, and S. B. Smith, "Ten years of tension: single-molecule DNA mechanics," Nature 421, 423-427 (1987).
[CrossRef]

Carlo, D. D.

D. D. Carlo, N. Aghdam, and L. P. Lee, "Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays," Anal. Chem. 78, 4925-4930 (2006).
[CrossRef] [PubMed]

Chaumet, P. C.

Chon, J. W. M.

S. Kuriakose, D. Morrish, X. Gan, J. W. M. Chon, K. Dholakia, and M. Gu, "Near-field optical trapping with an ultrashort pulsed laser beam," Appl. Phys. Lett. 92, 081108 (2008).
[CrossRef]

Chou, H. P.

M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science 288, 113-116 (2000).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Crissman, H. A.

Daria, V. R.

V. R. Daria, P. J. Rodrigo, and J. Glckstad, "Dynamic formation of optically trapped microstructure arrays for biosensor applications," Biosens. Bioelectron. 19, 1439-1444 (2004).
[CrossRef] [PubMed]

Dholakia, K.

S. Kuriakose, D. Morrish, X. Gan, J. W. M. Chon, K. Dholakia, and M. Gu, "Near-field optical trapping with an ultrashort pulsed laser beam," Appl. Phys. Lett. 92, 081108 (2008).
[CrossRef]

Dickinson, M. R.

A. N. Grigorenko, N.W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nature Photon. 2, 365-370 (2008).
[CrossRef]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, "Optical trapping and manipulation of viruses and bacteria," Science 235, 1517-1520 (1987).
[CrossRef] [PubMed]

Elson, J. M.

K. Halterman, J. M. Elson, and S. Singh, "Plasmonic resonances and electromagnetic forces between coupled silver nanowires," Phys. Rev. B 72, 075429 (2005).
[CrossRef]

Florin, E.-L.

B. Lukic, S. Jeney, Z. Sviben, A. J. Kulik, E.-L. Florin, and L. Forro, "Motion of a colloidal particle in an optical trap," Phys. Rev. E 76, 011112 (2007).
[CrossRef]

B. Lukic, S. Jeney, C. Tischer, A. J. Kulik, L. Forro, and E.-L. Florin, "Direct observation of nondiffusive motion of a Brownian particle," Phys. Rev. Lett. 95, 160601 (2005).
[CrossRef] [PubMed]

Forro, L.

B. Lukic, S. Jeney, Z. Sviben, A. J. Kulik, E.-L. Florin, and L. Forro, "Motion of a colloidal particle in an optical trap," Phys. Rev. E 76, 011112 (2007).
[CrossRef]

B. Lukic, S. Jeney, C. Tischer, A. J. Kulik, L. Forro, and E.-L. Florin, "Direct observation of nondiffusive motion of a Brownian particle," Phys. Rev. Lett. 95, 160601 (2005).
[CrossRef] [PubMed]

Furukawa, H.

Gan, X.

S. Kuriakose, D. Morrish, X. Gan, J. W. M. Chon, K. Dholakia, and M. Gu, "Near-field optical trapping with an ultrashort pulsed laser beam," Appl. Phys. Lett. 92, 081108 (2008).
[CrossRef]

Girard, C.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2007).
[CrossRef]

Glckstad, J.

V. R. Daria, P. J. Rodrigo, and J. Glckstad, "Dynamic formation of optically trapped microstructure arrays for biosensor applications," Biosens. Bioelectron. 19, 1439-1444 (2004).
[CrossRef] [PubMed]

Goldstein, L. S. B.

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, "Bead movement by single kinesin molecules studied with optical tweezers," Nature 348, 348-352 (1990).
[CrossRef] [PubMed]

Grigorenko, A. N.

A. N. Grigorenko, N.W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nature Photon. 2, 365-370 (2008).
[CrossRef]

Grujic, K.

Gu, M.

S. Kuriakose, D. Morrish, X. Gan, J. W. M. Chon, K. Dholakia, and M. Gu, "Near-field optical trapping with an ultrashort pulsed laser beam," Appl. Phys. Lett. 92, 081108 (2008).
[CrossRef]

P. C. Ke and M. Gu, "Characterization of trapping force on metallic Mie particles," Appl. Opt. 36, 1439-1444 (1999).

Hakuta, K.

F. L. Kien, V. I. Balykin, and K. Hakuta, "Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber," Phys. Rev. A 70, 063403 (2004).
[CrossRef]

Halterman, K.

K. Halterman, J. M. Elson, and S. Singh, "Plasmonic resonances and electromagnetic forces between coupled silver nanowires," Phys. Rev. B 72, 075429 (2005).
[CrossRef]

Helleso, O. G.

Huang, L.

Jeney, S.

B. Lukic, S. Jeney, Z. Sviben, A. J. Kulik, E.-L. Florin, and L. Forro, "Motion of a colloidal particle in an optical trap," Phys. Rev. E 76, 011112 (2007).
[CrossRef]

B. Lukic, S. Jeney, C. Tischer, A. J. Kulik, L. Forro, and E.-L. Florin, "Direct observation of nondiffusive motion of a Brownian particle," Phys. Rev. Lett. 95, 160601 (2005).
[CrossRef] [PubMed]

Johnson, K. S.

A. H. Barnett, S. P. Smith, M. Olshanii, K. S. Johnson, A. W. Adams, and M. Pretiss, "Substrate-based atom waveguide using guided two-color evanescent light fields," Phys. Rev. A 61, 023608 (2000).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Käll, M.

Kawata, S.

Ke, P. C.

P. C. Ke and M. Gu, "Characterization of trapping force on metallic Mie particles," Appl. Opt. 36, 1439-1444 (1999).

Kerker, M.

M. Kerker and C. G. Blatchford, "Elastic scattering, absorption, and surface-enhanced Raman scattering by concentric spheres comprised of a metallic and a dielectric region," Phys. Rev. B 26, 4052-4063 (1982).
[CrossRef]

Kien, F. L.

F. L. Kien, V. I. Balykin, and K. Hakuta, "Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber," Phys. Rev. A 70, 063403 (2004).
[CrossRef]

Kulik, A. J.

B. Lukic, S. Jeney, Z. Sviben, A. J. Kulik, E.-L. Florin, and L. Forro, "Motion of a colloidal particle in an optical trap," Phys. Rev. E 76, 011112 (2007).
[CrossRef]

B. Lukic, S. Jeney, C. Tischer, A. J. Kulik, L. Forro, and E.-L. Florin, "Direct observation of nondiffusive motion of a Brownian particle," Phys. Rev. Lett. 95, 160601 (2005).
[CrossRef] [PubMed]

Kuriakose, S.

S. Kuriakose, D. Morrish, X. Gan, J. W. M. Chon, K. Dholakia, and M. Gu, "Near-field optical trapping with an ultrashort pulsed laser beam," Appl. Phys. Lett. 92, 081108 (2008).
[CrossRef]

Lamothe, E.

Lee, L. P.

D. D. Carlo, N. Aghdam, and L. P. Lee, "Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays," Anal. Chem. 78, 4925-4930 (2006).
[CrossRef] [PubMed]

Lévêque, G.

Lin, L. Y.

X. Miao and L. Y. Lin, "Trapping and manipulation of biological particles through a plasmonic platform," IEEE J. Sel. Top. Quantum Electron. 13, 1655-1662 (2007).
[CrossRef]

Luff, B. J

L. N. Ng, M. N. Zervas, J. S. Wilkinson, and B. J , Luff, "Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide," Appl. Phys. Lett. 19, 1439-1444 (2000).

Lukic, B.

B. Lukic, S. Jeney, Z. Sviben, A. J. Kulik, E.-L. Florin, and L. Forro, "Motion of a colloidal particle in an optical trap," Phys. Rev. E 76, 011112 (2007).
[CrossRef]

B. Lukic, S. Jeney, C. Tischer, A. J. Kulik, L. Forro, and E.-L. Florin, "Direct observation of nondiffusive motion of a Brownian particle," Phys. Rev. Lett. 95, 160601 (2005).
[CrossRef] [PubMed]

Maerkl, S. J.

T. Thorsen, S. J. Maerkl, and S. R. Quake, "Microfluidic large-scale integration," Science 298, 580-584 (2002).
[CrossRef] [PubMed]

Martin, J. C.

Martin, O. J. F.

L. Huang and O. J. F. Martin, "Reversal of the optical force in a plasmonic trap," Opt. Lett. 33, 3001-3003 (2008).
[CrossRef] [PubMed]

E. Lamothe, G. Lévêque, and O. J. F. Martin, "Optical forces in coupled plasmonic nanosystems: Near field and far field interaction regimes," Opt. Express 15, 9631-9644 (2007).
[CrossRef] [PubMed]

M. Paulus and O. J. F. Martin, "Light propagation and scattering in stratified media: a Green’s tensor approach," J. Opt. Soc. Am. A 18, 3909-3915 (2001).
[CrossRef]

O. J. F. Martin and N. B. Piller, "Electromagnetic scattering in polarizable backgrounds," Phys. Rev. E 58, 3909-3915 (1998).
[CrossRef]

Miao, X.

X. Miao and L. Y. Lin, "Trapping and manipulation of biological particles through a plasmonic platform," IEEE J. Sel. Top. Quantum Electron. 13, 1655-1662 (2007).
[CrossRef]

Morrish, D.

S. Kuriakose, D. Morrish, X. Gan, J. W. M. Chon, K. Dholakia, and M. Gu, "Near-field optical trapping with an ultrashort pulsed laser beam," Appl. Phys. Lett. 92, 081108 (2008).
[CrossRef]

Ng, L. N.

L. N. Ng, M. N. Zervas, J. S. Wilkinson, and B. J , Luff, "Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide," Appl. Phys. Lett. 19, 1439-1444 (2000).

Nieto-Vesperinas, M.

Okada, T.

Olshanii, M.

A. H. Barnett, S. P. Smith, M. Olshanii, K. S. Johnson, A. W. Adams, and M. Pretiss, "Substrate-based atom waveguide using guided two-color evanescent light fields," Phys. Rev. A 61, 023608 (2000).
[CrossRef]

Paulus, M.

M. Paulus and O. J. F. Martin, "Light propagation and scattering in stratified media: a Green’s tensor approach," J. Opt. Soc. Am. A 18, 3909-3915 (2001).
[CrossRef]

Petrov, D.

Piller, N. B.

O. J. F. Martin and N. B. Piller, "Electromagnetic scattering in polarizable backgrounds," Phys. Rev. E 58, 3909-3915 (1998).
[CrossRef]

Pretiss, M.

A. H. Barnett, S. P. Smith, M. Olshanii, K. S. Johnson, A. W. Adams, and M. Pretiss, "Substrate-based atom waveguide using guided two-color evanescent light fields," Phys. Rev. A 61, 023608 (2000).
[CrossRef]

Quake, S. R.

T. Thorsen, S. J. Maerkl, and S. R. Quake, "Microfluidic large-scale integration," Science 298, 580-584 (2002).
[CrossRef] [PubMed]

M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science 288, 113-116 (2000).
[CrossRef]

Quidant, R.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2007).
[CrossRef]

A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, "Enhanced optical forces between coupled resonant metal nanoparticles," Opt. Lett. 32, 1156-1158 (2007).
[CrossRef] [PubMed]

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, "Surface plasmon radiation forces," Phys. Rev. Lett. 96, 238101 (2006).
[CrossRef] [PubMed]

R. Quidant, D. Petrov, and G. Badenes, "Radiation forces on a Rayleigh dielectric sphere in a patterned optical near field," Opt. Lett. 30, 1009-1011 (2005).
[CrossRef] [PubMed]

Rahmani, A.

Righini, M.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2007).
[CrossRef]

Roberts, N.W.

A. N. Grigorenko, N.W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nature Photon. 2, 365-370 (2008).
[CrossRef]

Rodrigo, P. J.

V. R. Daria, P. J. Rodrigo, and J. Glckstad, "Dynamic formation of optically trapped microstructure arrays for biosensor applications," Biosens. Bioelectron. 19, 1439-1444 (2004).
[CrossRef] [PubMed]

Salzman, G. C.

Scherer, A.

M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science 288, 113-116 (2000).
[CrossRef]

Schnapp, B. J.

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, "Bead movement by single kinesin molecules studied with optical tweezers," Nature 348, 348-352 (1990).
[CrossRef] [PubMed]

Seeger, S.

M. Zahn and S. Seeger, "Optical tweezers in pharmacology," Cell. Mol. Biol. 44, 747-761 (1998).
[PubMed]

Sepulveda, B.

Singh, S.

K. Halterman, J. M. Elson, and S. Singh, "Plasmonic resonances and electromagnetic forces between coupled silver nanowires," Phys. Rev. B 72, 075429 (2005).
[CrossRef]

Smith, S. B.

C. Bustamante, Z. Bryant, and S. B. Smith, "Ten years of tension: single-molecule DNA mechanics," Nature 421, 423-427 (1987).
[CrossRef]

Smith, S. P.

A. H. Barnett, S. P. Smith, M. Olshanii, K. S. Johnson, A. W. Adams, and M. Pretiss, "Substrate-based atom waveguide using guided two-color evanescent light fields," Phys. Rev. A 61, 023608 (2000).
[CrossRef]

Smyth, M. J.

Stewart, C. C.

Sugiura, T.

Sviben, Z.

B. Lukic, S. Jeney, Z. Sviben, A. J. Kulik, E.-L. Florin, and L. Forro, "Motion of a colloidal particle in an optical trap," Phys. Rev. E 76, 011112 (2007).
[CrossRef]

Svoboda, K.

Tani, T.

Thorsen, T.

T. Thorsen, S. J. Maerkl, and S. R. Quake, "Microfluidic large-scale integration," Science 298, 580-584 (2002).
[CrossRef] [PubMed]

M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science 288, 113-116 (2000).
[CrossRef]

Tischer, C.

B. Lukic, S. Jeney, C. Tischer, A. J. Kulik, L. Forro, and E.-L. Florin, "Direct observation of nondiffusive motion of a Brownian particle," Phys. Rev. Lett. 95, 160601 (2005).
[CrossRef] [PubMed]

Unger, M. A.

M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science 288, 113-116 (2000).
[CrossRef]

Volpe, G.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, "Surface plasmon radiation forces," Phys. Rev. Lett. 96, 238101 (2006).
[CrossRef] [PubMed]

Wilkinson, J. S.

L. N. Ng, M. N. Zervas, J. S. Wilkinson, and B. J , Luff, "Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide," Appl. Phys. Lett. 19, 1439-1444 (2000).

Yamaguchi, I.

Zahn, M.

M. Zahn and S. Seeger, "Optical tweezers in pharmacology," Cell. Mol. Biol. 44, 747-761 (1998).
[PubMed]

Zelenina, A. S.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2007).
[CrossRef]

A. S. Zelenina, R. Quidant, and M. Nieto-Vesperinas, "Enhanced optical forces between coupled resonant metal nanoparticles," Opt. Lett. 32, 1156-1158 (2007).
[CrossRef] [PubMed]

Zervas, M. N.

L. N. Ng, M. N. Zervas, J. S. Wilkinson, and B. J , Luff, "Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide," Appl. Phys. Lett. 19, 1439-1444 (2000).

Zhang, Y.

A. N. Grigorenko, N.W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nature Photon. 2, 365-370 (2008).
[CrossRef]

Anal. Chem.

D. D. Carlo, N. Aghdam, and L. P. Lee, "Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays," Anal. Chem. 78, 4925-4930 (2006).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

L. N. Ng, M. N. Zervas, J. S. Wilkinson, and B. J , Luff, "Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide," Appl. Phys. Lett. 19, 1439-1444 (2000).

S. Kuriakose, D. Morrish, X. Gan, J. W. M. Chon, K. Dholakia, and M. Gu, "Near-field optical trapping with an ultrashort pulsed laser beam," Appl. Phys. Lett. 92, 081108 (2008).
[CrossRef]

Biosens. Bioelectron.

V. R. Daria, P. J. Rodrigo, and J. Glckstad, "Dynamic formation of optically trapped microstructure arrays for biosensor applications," Biosens. Bioelectron. 19, 1439-1444 (2004).
[CrossRef] [PubMed]

Cell. Mol. Biol.

M. Zahn and S. Seeger, "Optical tweezers in pharmacology," Cell. Mol. Biol. 44, 747-761 (1998).
[PubMed]

IEEE J. Sel. Top. Quantum Electron.

X. Miao and L. Y. Lin, "Trapping and manipulation of biological particles through a plasmonic platform," IEEE J. Sel. Top. Quantum Electron. 13, 1655-1662 (2007).
[CrossRef]

J. Opt. Soc. Am. A

M. Paulus and O. J. F. Martin, "Light propagation and scattering in stratified media: a Green’s tensor approach," J. Opt. Soc. Am. A 18, 3909-3915 (2001).
[CrossRef]

Nature

S. M. Block, L. S. B. Goldstein, and B. J. Schnapp, "Bead movement by single kinesin molecules studied with optical tweezers," Nature 348, 348-352 (1990).
[CrossRef] [PubMed]

C. Bustamante, Z. Bryant, and S. B. Smith, "Ten years of tension: single-molecule DNA mechanics," Nature 421, 423-427 (1987).
[CrossRef]

Nature Photon.

A. N. Grigorenko, N.W. Roberts, M. R. Dickinson, and Y. Zhang, "Nanometric optical tweezers based on nanostructured substrates," Nature Photon. 2, 365-370 (2008).
[CrossRef]

Nature Phys.

M. Righini, A. S. Zelenina, C. Girard, and R. Quidant, "Parallel and selective trapping in a patterned plasmonic landscape," Nature Phys. 3, 477-480 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

A. H. Barnett, S. P. Smith, M. Olshanii, K. S. Johnson, A. W. Adams, and M. Pretiss, "Substrate-based atom waveguide using guided two-color evanescent light fields," Phys. Rev. A 61, 023608 (2000).
[CrossRef]

F. L. Kien, V. I. Balykin, and K. Hakuta, "Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber," Phys. Rev. A 70, 063403 (2004).
[CrossRef]

Phys. Rev. B

M. Kerker and C. G. Blatchford, "Elastic scattering, absorption, and surface-enhanced Raman scattering by concentric spheres comprised of a metallic and a dielectric region," Phys. Rev. B 26, 4052-4063 (1982).
[CrossRef]

K. Halterman, J. M. Elson, and S. Singh, "Plasmonic resonances and electromagnetic forces between coupled silver nanowires," Phys. Rev. B 72, 075429 (2005).
[CrossRef]

P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Phys. Rev. E

B. Lukic, S. Jeney, Z. Sviben, A. J. Kulik, E.-L. Florin, and L. Forro, "Motion of a colloidal particle in an optical trap," Phys. Rev. E 76, 011112 (2007).
[CrossRef]

O. J. F. Martin and N. B. Piller, "Electromagnetic scattering in polarizable backgrounds," Phys. Rev. E 58, 3909-3915 (1998).
[CrossRef]

Phys. Rev. Lett.

G. Volpe, R. Quidant, G. Badenes, and D. Petrov, "Surface plasmon radiation forces," Phys. Rev. Lett. 96, 238101 (2006).
[CrossRef] [PubMed]

A. Ashkin, "Acceleration and trapping of particles by radiation pressure," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

B. Lukic, S. Jeney, C. Tischer, A. J. Kulik, L. Forro, and E.-L. Florin, "Direct observation of nondiffusive motion of a Brownian particle," Phys. Rev. Lett. 95, 160601 (2005).
[CrossRef] [PubMed]

Science

M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, and S. R. Quake, "Monolithic microfabricated valves and pumps by multilayer soft lithography," Science 288, 113-116 (2000).
[CrossRef]

T. Thorsen, S. J. Maerkl, and S. R. Quake, "Microfluidic large-scale integration," Science 298, 580-584 (2002).
[CrossRef] [PubMed]

A. Ashkin and J. M. Dziedzic, "Optical trapping and manipulation of viruses and bacteria," Science 235, 1517-1520 (1987).
[CrossRef] [PubMed]

Other

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. Garcia de Abajo, and R. Quidant, "Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas," Nano Lett., Articles ASAP, (2009).
[CrossRef] [PubMed]

Supplementary Material (3)

» Media 1: MOV (7961 KB)     
» Media 2: MOV (4449 KB)     
» Media 3: MOV (2928 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Simulation model: a gold disk is deposited on a glass substrate (ε = 2.25) and is illuminated at the plasmon resonance wavelength. The propagation vector is in the xz-plane and incident under total internal reflection. The incident field is polarized in the xz-plane. A dielectric sphere is used to examine the trapping force. (b) Near field intensity distribution map 10nm above the gold disk. Computed optical force in a plane 10nm above the gold nanostructure: (c) z-component and (d) xy-component.

Fig. 2.
Fig. 2.

Sketch of the experiment: 1: laser, 2: prism, 3: microflidic chip, 4: dark field objective. The Plasmonic lab-on-a-chip is attached on a prism with an index matching gel. The external field is coupled into the chip through total internal reflection; incident illumination wavelength: λ = 810nm.

Fig. 3.
Fig. 3.

Optofluidic lab-on-a-chip: (a) general view; (b) exploded view. The chip is made of three layers: the plasmonic substrate, the flow layer, and the control layer. (c) SEM image of the fabricated gold plasmonic structures on the dielectric substrate; scale bar 5μm.

Fig. 4.
Fig. 4.

(a) (Media 1) Optical plasmonic trapping of dielectric spheres in a microfluidic chip (objective 20×). The bright structures represent the gold disks with trapped dielectric spheres on top of them. During the movie, dielectric spheres get trapped when passing close enough to the trapping potential created by the plasmonic structures. In the highlighted red circle, small spheres appear to be much easily trapped than large ones. (b) (Media 2) Demonstration of specimen flushing using the micro valves.

Fig. 5.
Fig. 5.

(Media 3) Optical plasmonic trapping of yeast cells in a microfluidic channel (objective 50×). The bright structures represent the gold disks with trapped yeast cells on top of them. During the movie, a free yeast cell becomes trapped in the bottom right highlighted structure and another cell is trapped by the top highlighted disk about half a minute later.

Metrics