Abstract

The mechanism of fluorescence enhancements of fiber-optic biosensor with metallic nanoparticles is studied using scattering theory of evanescent waves by a metallic nanoparticle in dilute solution approximation. High local-field enhancement in the vicinity of metallic nanoparticles resulting from localized surface plasmon excitation and the fluorescence enhancement is estimated by calculating averaged local-field enhancement and radiative-rate enhancement of fluorophores in the presence of metallic nanoparticles. The metallic nanoparticles not only provide strong local field to enhance the fluorescence signal of fluorophores, but also help to scatter the fluorescence signal and to increase the far-field detectable signals of the fiber-optic biosensor. The effects of the radius of gold nanoparticles, fluorophore-particle separation, and fiber-particle separation on the fluorescence enhancement are discussed in detail.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. T. K. Thanh and Z. Rosenzweig, "Development of an aggregation-base immunoassay for anti-protein A using gold nanoparticles," Anal. Chem. 74,1624-1628 (2002).
    [CrossRef] [PubMed]
  2. L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, "A whole blood immunoassay using gold nanoshells," Anal. Chem. 75, 2377-2381 (2003).
    [CrossRef] [PubMed]
  3. K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, "Metal-enhanced fluorescence: an emerging tool in biotechnology," Curr. Opin. Biotechnol. 16, 55-62 (2005).
    [CrossRef] [PubMed]
  4. A. D. McFarland and R. P. V. Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003).
    [CrossRef]
  5. D. Marazuela and M. D. Moreno-Bondi, "Fiber-optic biosensors - an overview," Anal. Bioanal. Chem. 372, 664-682 (2002).
    [CrossRef] [PubMed]
  6. P. N. Prasad, Introduction to Biophotonics (Wiley, Hoboken, NJ, 2003).
  7. S.-F. Cheng and L.-K. Chau, "Colloidal gold-modified optical fiber for chemical and biochemical sensing," Anal. Chem. 75, 16-21 (2003).
    [CrossRef] [PubMed]
  8. B.-Y. Hsieh, Y.-F. Chang, M.-Y. Ng, W.-C. Liu, C.-H. Lin, H.-T Wu, and C. Chou, "Localized surface plasmon coupled fluorescence fiber-optic biosensor with gold nanoparticles," Anal. Chem. 79, 3487-3493 (2007).
    [CrossRef] [PubMed]
  9. Y.-F. Chang, R.-C. Chen, Y.-J. Lee, S.-C. Chao, L.-C. Su, Y.-C. Li, and C. Chou, "Localized surface plasmon coupled fluorescence fiber-optic biosensor for alpha-fetoprotein detection in human serum," Biosens. Bioelectron. doi:10.1016/j.bios.2008.08.019 (in press) (2008).
  10. J. Homola, Surface Plasmon Resonance based Sensors (Springer-Verlag, Berlin, Heidelberg, 2006).
    [CrossRef]
  11. D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan, "The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface," J. Chem. Phys. 78, 5324-5338 (1983).
    [CrossRef]
  12. T. Hayakawa, S. T. Selvan, and M. Nogami, "Field enhancement effect of small Ag particles on the fluorescence from Eu3+ -doped SiO2 glass," Appl. Phys. Lett. 74, 1513-1515 (1999).
    [CrossRef]
  13. J. R. Lakowicz, "Plasmonics in biology and plasmon-controlled fluorescence," Plasmonics 1, 5-33 (2006).
    [CrossRef] [PubMed]
  14. H. Chew, D. S. Wang, and M. Kerker, "Elastic scattering of evanescent electromagnetic waves," Appl. Opt. 18, 2679-2687 (1979).
    [CrossRef] [PubMed]
  15. M. Quinten, A. Pack, and R. Wannemacher, "Scattering and extinction of evanescent waves by small particles," Appl. Phys. B 68, 87-92 (1999).
    [CrossRef]
  16. A. Pinchuk, A. Hilger, G. V. Plessen, and U. Kreibig, "Substrate effect on the optical response of silver nanoparticles," Nanotechnology 15, 1890-1986 (2004).
    [CrossRef]
  17. M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles," J. Phys. Chem. B 105, 2343-2350 (2001).
    [CrossRef]
  18. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  19. J. D. Jackson, Classical Electrodynamics, third edition (John Wiley and Sons, Inc., New York, 1999).
  20. G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, fifth edition (Academic Press, 2000).
  21. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Inc., New York, 1985).
  22. E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. M¨oller, and D. I. Gittins, "Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative Effects," Phys. Rev. Lett. 89, 203002 (2002).
    [CrossRef] [PubMed]
  23. R. R. Chance, A. Prock, and R. Silbey, "Molecular fluorescence and energy transfer near interfaces," Adv. Chem. Phys. 37, 1-65 (1978).
    [CrossRef]
  24. G. Baffou, C. Girard, E. Dujardin, G. C. des Francs, O. J. F. Martin, "Molecular quenching and relaxation in a plasmonic tunable system," Phys. Rev. B 77, 121101(R) (2008).
    [CrossRef]
  25. J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, "Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles," Nano Lett. 7, 2101-2107 (2007).
    [CrossRef] [PubMed]
  26. R. Ruppin, "Decay of an excited molecule near a small metal sphere," J. Chem. Phys. 76, 1681-1684 (1982).
    [CrossRef]
  27. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Spring-Verlag, New York, 1988).

2008 (1)

Y.-F. Chang, R.-C. Chen, Y.-J. Lee, S.-C. Chao, L.-C. Su, Y.-C. Li, and C. Chou, "Localized surface plasmon coupled fluorescence fiber-optic biosensor for alpha-fetoprotein detection in human serum," Biosens. Bioelectron. doi:10.1016/j.bios.2008.08.019 (in press) (2008).

2007 (2)

B.-Y. Hsieh, Y.-F. Chang, M.-Y. Ng, W.-C. Liu, C.-H. Lin, H.-T Wu, and C. Chou, "Localized surface plasmon coupled fluorescence fiber-optic biosensor with gold nanoparticles," Anal. Chem. 79, 3487-3493 (2007).
[CrossRef] [PubMed]

J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, "Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles," Nano Lett. 7, 2101-2107 (2007).
[CrossRef] [PubMed]

2006 (1)

J. R. Lakowicz, "Plasmonics in biology and plasmon-controlled fluorescence," Plasmonics 1, 5-33 (2006).
[CrossRef] [PubMed]

2005 (1)

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, "Metal-enhanced fluorescence: an emerging tool in biotechnology," Curr. Opin. Biotechnol. 16, 55-62 (2005).
[CrossRef] [PubMed]

2004 (1)

A. Pinchuk, A. Hilger, G. V. Plessen, and U. Kreibig, "Substrate effect on the optical response of silver nanoparticles," Nanotechnology 15, 1890-1986 (2004).
[CrossRef]

2003 (3)

A. D. McFarland and R. P. V. Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003).
[CrossRef]

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, "A whole blood immunoassay using gold nanoshells," Anal. Chem. 75, 2377-2381 (2003).
[CrossRef] [PubMed]

S.-F. Cheng and L.-K. Chau, "Colloidal gold-modified optical fiber for chemical and biochemical sensing," Anal. Chem. 75, 16-21 (2003).
[CrossRef] [PubMed]

2002 (3)

N. T. K. Thanh and Z. Rosenzweig, "Development of an aggregation-base immunoassay for anti-protein A using gold nanoparticles," Anal. Chem. 74,1624-1628 (2002).
[CrossRef] [PubMed]

D. Marazuela and M. D. Moreno-Bondi, "Fiber-optic biosensors - an overview," Anal. Bioanal. Chem. 372, 664-682 (2002).
[CrossRef] [PubMed]

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. M¨oller, and D. I. Gittins, "Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative Effects," Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

2001 (1)

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles," J. Phys. Chem. B 105, 2343-2350 (2001).
[CrossRef]

1999 (2)

T. Hayakawa, S. T. Selvan, and M. Nogami, "Field enhancement effect of small Ag particles on the fluorescence from Eu3+ -doped SiO2 glass," Appl. Phys. Lett. 74, 1513-1515 (1999).
[CrossRef]

M. Quinten, A. Pack, and R. Wannemacher, "Scattering and extinction of evanescent waves by small particles," Appl. Phys. B 68, 87-92 (1999).
[CrossRef]

1983 (1)

D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan, "The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface," J. Chem. Phys. 78, 5324-5338 (1983).
[CrossRef]

1982 (1)

R. Ruppin, "Decay of an excited molecule near a small metal sphere," J. Chem. Phys. 76, 1681-1684 (1982).
[CrossRef]

1979 (1)

1978 (1)

R. R. Chance, A. Prock, and R. Silbey, "Molecular fluorescence and energy transfer near interfaces," Adv. Chem. Phys. 37, 1-65 (1978).
[CrossRef]

Aslan, K.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, "Metal-enhanced fluorescence: an emerging tool in biotechnology," Curr. Opin. Biotechnol. 16, 55-62 (2005).
[CrossRef] [PubMed]

Chance, R. R.

R. R. Chance, A. Prock, and R. Silbey, "Molecular fluorescence and energy transfer near interfaces," Adv. Chem. Phys. 37, 1-65 (1978).
[CrossRef]

Chang, Y.-F.

Y.-F. Chang, R.-C. Chen, Y.-J. Lee, S.-C. Chao, L.-C. Su, Y.-C. Li, and C. Chou, "Localized surface plasmon coupled fluorescence fiber-optic biosensor for alpha-fetoprotein detection in human serum," Biosens. Bioelectron. doi:10.1016/j.bios.2008.08.019 (in press) (2008).

B.-Y. Hsieh, Y.-F. Chang, M.-Y. Ng, W.-C. Liu, C.-H. Lin, H.-T Wu, and C. Chou, "Localized surface plasmon coupled fluorescence fiber-optic biosensor with gold nanoparticles," Anal. Chem. 79, 3487-3493 (2007).
[CrossRef] [PubMed]

Chao, S.-C.

Y.-F. Chang, R.-C. Chen, Y.-J. Lee, S.-C. Chao, L.-C. Su, Y.-C. Li, and C. Chou, "Localized surface plasmon coupled fluorescence fiber-optic biosensor for alpha-fetoprotein detection in human serum," Biosens. Bioelectron. doi:10.1016/j.bios.2008.08.019 (in press) (2008).

Chau, L.-K.

S.-F. Cheng and L.-K. Chau, "Colloidal gold-modified optical fiber for chemical and biochemical sensing," Anal. Chem. 75, 16-21 (2003).
[CrossRef] [PubMed]

Chen, R.-C.

Y.-F. Chang, R.-C. Chen, Y.-J. Lee, S.-C. Chao, L.-C. Su, Y.-C. Li, and C. Chou, "Localized surface plasmon coupled fluorescence fiber-optic biosensor for alpha-fetoprotein detection in human serum," Biosens. Bioelectron. doi:10.1016/j.bios.2008.08.019 (in press) (2008).

Cheng, S.-F.

S.-F. Cheng and L.-K. Chau, "Colloidal gold-modified optical fiber for chemical and biochemical sensing," Anal. Chem. 75, 16-21 (2003).
[CrossRef] [PubMed]

Chew, H.

Chou, C.

Y.-F. Chang, R.-C. Chen, Y.-J. Lee, S.-C. Chao, L.-C. Su, Y.-C. Li, and C. Chou, "Localized surface plasmon coupled fluorescence fiber-optic biosensor for alpha-fetoprotein detection in human serum," Biosens. Bioelectron. doi:10.1016/j.bios.2008.08.019 (in press) (2008).

B.-Y. Hsieh, Y.-F. Chang, M.-Y. Ng, W.-C. Liu, C.-H. Lin, H.-T Wu, and C. Chou, "Localized surface plasmon coupled fluorescence fiber-optic biosensor with gold nanoparticles," Anal. Chem. 79, 3487-3493 (2007).
[CrossRef] [PubMed]

Chowdhury, M. H.

J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, "Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles," Nano Lett. 7, 2101-2107 (2007).
[CrossRef] [PubMed]

Dulkeith, E.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. M¨oller, and D. I. Gittins, "Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative Effects," Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Duyne, R. P. V.

A. D. McFarland and R. P. V. Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003).
[CrossRef]

Feldmann, J.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. M¨oller, and D. I. Gittins, "Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative Effects," Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Fu, Y.

J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, "Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles," Nano Lett. 7, 2101-2107 (2007).
[CrossRef] [PubMed]

Garoff, S.

D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan, "The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface," J. Chem. Phys. 78, 5324-5338 (1983).
[CrossRef]

Geddes, C. D.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, "Metal-enhanced fluorescence: an emerging tool in biotechnology," Curr. Opin. Biotechnol. 16, 55-62 (2005).
[CrossRef] [PubMed]

Gersten, J. I.

D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan, "The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface," J. Chem. Phys. 78, 5324-5338 (1983).
[CrossRef]

Gittins, D. I.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. M¨oller, and D. I. Gittins, "Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative Effects," Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Gryczynski, I.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, "Metal-enhanced fluorescence: an emerging tool in biotechnology," Curr. Opin. Biotechnol. 16, 55-62 (2005).
[CrossRef] [PubMed]

Halas, N. J.

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, "A whole blood immunoassay using gold nanoshells," Anal. Chem. 75, 2377-2381 (2003).
[CrossRef] [PubMed]

Hayakawa, T.

T. Hayakawa, S. T. Selvan, and M. Nogami, "Field enhancement effect of small Ag particles on the fluorescence from Eu3+ -doped SiO2 glass," Appl. Phys. Lett. 74, 1513-1515 (1999).
[CrossRef]

Hilger, A.

A. Pinchuk, A. Hilger, G. V. Plessen, and U. Kreibig, "Substrate effect on the optical response of silver nanoparticles," Nanotechnology 15, 1890-1986 (2004).
[CrossRef]

Hirsch, L. R.

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, "A whole blood immunoassay using gold nanoshells," Anal. Chem. 75, 2377-2381 (2003).
[CrossRef] [PubMed]

Hsieh, B.-Y.

B.-Y. Hsieh, Y.-F. Chang, M.-Y. Ng, W.-C. Liu, C.-H. Lin, H.-T Wu, and C. Chou, "Localized surface plasmon coupled fluorescence fiber-optic biosensor with gold nanoparticles," Anal. Chem. 79, 3487-3493 (2007).
[CrossRef] [PubMed]

Jackson, J. B.

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, "A whole blood immunoassay using gold nanoshells," Anal. Chem. 75, 2377-2381 (2003).
[CrossRef] [PubMed]

Kelly, K. L.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles," J. Phys. Chem. B 105, 2343-2350 (2001).
[CrossRef]

Kerker, M.

Klar, T. A.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. M¨oller, and D. I. Gittins, "Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative Effects," Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Kreibig, U.

A. Pinchuk, A. Hilger, G. V. Plessen, and U. Kreibig, "Substrate effect on the optical response of silver nanoparticles," Nanotechnology 15, 1890-1986 (2004).
[CrossRef]

Lakowicz, J. R.

J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, "Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles," Nano Lett. 7, 2101-2107 (2007).
[CrossRef] [PubMed]

J. R. Lakowicz, "Plasmonics in biology and plasmon-controlled fluorescence," Plasmonics 1, 5-33 (2006).
[CrossRef] [PubMed]

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, "Metal-enhanced fluorescence: an emerging tool in biotechnology," Curr. Opin. Biotechnol. 16, 55-62 (2005).
[CrossRef] [PubMed]

Lee, A.

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, "A whole blood immunoassay using gold nanoshells," Anal. Chem. 75, 2377-2381 (2003).
[CrossRef] [PubMed]

Lee, Y.-J.

Y.-F. Chang, R.-C. Chen, Y.-J. Lee, S.-C. Chao, L.-C. Su, Y.-C. Li, and C. Chou, "Localized surface plasmon coupled fluorescence fiber-optic biosensor for alpha-fetoprotein detection in human serum," Biosens. Bioelectron. doi:10.1016/j.bios.2008.08.019 (in press) (2008).

Levi, S. A.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. M¨oller, and D. I. Gittins, "Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative Effects," Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Li, Y.-C.

Y.-F. Chang, R.-C. Chen, Y.-J. Lee, S.-C. Chao, L.-C. Su, Y.-C. Li, and C. Chou, "Localized surface plasmon coupled fluorescence fiber-optic biosensor for alpha-fetoprotein detection in human serum," Biosens. Bioelectron. doi:10.1016/j.bios.2008.08.019 (in press) (2008).

Lin, C.-H.

B.-Y. Hsieh, Y.-F. Chang, M.-Y. Ng, W.-C. Liu, C.-H. Lin, H.-T Wu, and C. Chou, "Localized surface plasmon coupled fluorescence fiber-optic biosensor with gold nanoparticles," Anal. Chem. 79, 3487-3493 (2007).
[CrossRef] [PubMed]

Liu, W.-C.

B.-Y. Hsieh, Y.-F. Chang, M.-Y. Ng, W.-C. Liu, C.-H. Lin, H.-T Wu, and C. Chou, "Localized surface plasmon coupled fluorescence fiber-optic biosensor with gold nanoparticles," Anal. Chem. 79, 3487-3493 (2007).
[CrossRef] [PubMed]

M¨oller, M.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. M¨oller, and D. I. Gittins, "Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative Effects," Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Malicka, J.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, "Metal-enhanced fluorescence: an emerging tool in biotechnology," Curr. Opin. Biotechnol. 16, 55-62 (2005).
[CrossRef] [PubMed]

Malinsky, M. D.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles," J. Phys. Chem. B 105, 2343-2350 (2001).
[CrossRef]

Marazuela, D.

D. Marazuela and M. D. Moreno-Bondi, "Fiber-optic biosensors - an overview," Anal. Bioanal. Chem. 372, 664-682 (2002).
[CrossRef] [PubMed]

Matveeva, E.

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, "Metal-enhanced fluorescence: an emerging tool in biotechnology," Curr. Opin. Biotechnol. 16, 55-62 (2005).
[CrossRef] [PubMed]

McFarland, A. D.

A. D. McFarland and R. P. V. Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003).
[CrossRef]

Moreno-Bondi, M. D.

D. Marazuela and M. D. Moreno-Bondi, "Fiber-optic biosensors - an overview," Anal. Bioanal. Chem. 372, 664-682 (2002).
[CrossRef] [PubMed]

Morteani, A. C.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. M¨oller, and D. I. Gittins, "Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative Effects," Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Ng, M.-Y.

B.-Y. Hsieh, Y.-F. Chang, M.-Y. Ng, W.-C. Liu, C.-H. Lin, H.-T Wu, and C. Chou, "Localized surface plasmon coupled fluorescence fiber-optic biosensor with gold nanoparticles," Anal. Chem. 79, 3487-3493 (2007).
[CrossRef] [PubMed]

Niedereichholz, T.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. M¨oller, and D. I. Gittins, "Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative Effects," Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Nitzan, A.

D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan, "The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface," J. Chem. Phys. 78, 5324-5338 (1983).
[CrossRef]

Nogami, M.

T. Hayakawa, S. T. Selvan, and M. Nogami, "Field enhancement effect of small Ag particles on the fluorescence from Eu3+ -doped SiO2 glass," Appl. Phys. Lett. 74, 1513-1515 (1999).
[CrossRef]

Pack, A.

M. Quinten, A. Pack, and R. Wannemacher, "Scattering and extinction of evanescent waves by small particles," Appl. Phys. B 68, 87-92 (1999).
[CrossRef]

Pinchuk, A.

A. Pinchuk, A. Hilger, G. V. Plessen, and U. Kreibig, "Substrate effect on the optical response of silver nanoparticles," Nanotechnology 15, 1890-1986 (2004).
[CrossRef]

Plessen, G. V.

A. Pinchuk, A. Hilger, G. V. Plessen, and U. Kreibig, "Substrate effect on the optical response of silver nanoparticles," Nanotechnology 15, 1890-1986 (2004).
[CrossRef]

Prock, A.

R. R. Chance, A. Prock, and R. Silbey, "Molecular fluorescence and energy transfer near interfaces," Adv. Chem. Phys. 37, 1-65 (1978).
[CrossRef]

Quinten, M.

M. Quinten, A. Pack, and R. Wannemacher, "Scattering and extinction of evanescent waves by small particles," Appl. Phys. B 68, 87-92 (1999).
[CrossRef]

Reinhoudt, D. N.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. M¨oller, and D. I. Gittins, "Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative Effects," Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Rosenzweig, Z.

N. T. K. Thanh and Z. Rosenzweig, "Development of an aggregation-base immunoassay for anti-protein A using gold nanoparticles," Anal. Chem. 74,1624-1628 (2002).
[CrossRef] [PubMed]

Ruppin, R.

R. Ruppin, "Decay of an excited molecule near a small metal sphere," J. Chem. Phys. 76, 1681-1684 (1982).
[CrossRef]

Schatz, G. C.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles," J. Phys. Chem. B 105, 2343-2350 (2001).
[CrossRef]

Selvan, S. T.

T. Hayakawa, S. T. Selvan, and M. Nogami, "Field enhancement effect of small Ag particles on the fluorescence from Eu3+ -doped SiO2 glass," Appl. Phys. Lett. 74, 1513-1515 (1999).
[CrossRef]

Silbey, R.

R. R. Chance, A. Prock, and R. Silbey, "Molecular fluorescence and energy transfer near interfaces," Adv. Chem. Phys. 37, 1-65 (1978).
[CrossRef]

Su, L.-C.

Y.-F. Chang, R.-C. Chen, Y.-J. Lee, S.-C. Chao, L.-C. Su, Y.-C. Li, and C. Chou, "Localized surface plasmon coupled fluorescence fiber-optic biosensor for alpha-fetoprotein detection in human serum," Biosens. Bioelectron. doi:10.1016/j.bios.2008.08.019 (in press) (2008).

Thanh, N. T. K.

N. T. K. Thanh and Z. Rosenzweig, "Development of an aggregation-base immunoassay for anti-protein A using gold nanoparticles," Anal. Chem. 74,1624-1628 (2002).
[CrossRef] [PubMed]

Van Duyne, R. P.

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles," J. Phys. Chem. B 105, 2343-2350 (2001).
[CrossRef]

van Veggel, F. C. J. M.

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. M¨oller, and D. I. Gittins, "Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative Effects," Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Wang, D. S.

Wannemacher, R.

M. Quinten, A. Pack, and R. Wannemacher, "Scattering and extinction of evanescent waves by small particles," Appl. Phys. B 68, 87-92 (1999).
[CrossRef]

Weitz, D. A.

D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan, "The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface," J. Chem. Phys. 78, 5324-5338 (1983).
[CrossRef]

West, J. L.

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, "A whole blood immunoassay using gold nanoshells," Anal. Chem. 75, 2377-2381 (2003).
[CrossRef] [PubMed]

Wu, H.-T

B.-Y. Hsieh, Y.-F. Chang, M.-Y. Ng, W.-C. Liu, C.-H. Lin, H.-T Wu, and C. Chou, "Localized surface plasmon coupled fluorescence fiber-optic biosensor with gold nanoparticles," Anal. Chem. 79, 3487-3493 (2007).
[CrossRef] [PubMed]

Zhang, J.

J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, "Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles," Nano Lett. 7, 2101-2107 (2007).
[CrossRef] [PubMed]

Adv. Chem. Phys. (1)

R. R. Chance, A. Prock, and R. Silbey, "Molecular fluorescence and energy transfer near interfaces," Adv. Chem. Phys. 37, 1-65 (1978).
[CrossRef]

Anal. Bioanal. Chem. (1)

D. Marazuela and M. D. Moreno-Bondi, "Fiber-optic biosensors - an overview," Anal. Bioanal. Chem. 372, 664-682 (2002).
[CrossRef] [PubMed]

Anal. Chem. (4)

N. T. K. Thanh and Z. Rosenzweig, "Development of an aggregation-base immunoassay for anti-protein A using gold nanoparticles," Anal. Chem. 74,1624-1628 (2002).
[CrossRef] [PubMed]

L. R. Hirsch, J. B. Jackson, A. Lee, N. J. Halas, and J. L. West, "A whole blood immunoassay using gold nanoshells," Anal. Chem. 75, 2377-2381 (2003).
[CrossRef] [PubMed]

S.-F. Cheng and L.-K. Chau, "Colloidal gold-modified optical fiber for chemical and biochemical sensing," Anal. Chem. 75, 16-21 (2003).
[CrossRef] [PubMed]

B.-Y. Hsieh, Y.-F. Chang, M.-Y. Ng, W.-C. Liu, C.-H. Lin, H.-T Wu, and C. Chou, "Localized surface plasmon coupled fluorescence fiber-optic biosensor with gold nanoparticles," Anal. Chem. 79, 3487-3493 (2007).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Phys. B (1)

M. Quinten, A. Pack, and R. Wannemacher, "Scattering and extinction of evanescent waves by small particles," Appl. Phys. B 68, 87-92 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

T. Hayakawa, S. T. Selvan, and M. Nogami, "Field enhancement effect of small Ag particles on the fluorescence from Eu3+ -doped SiO2 glass," Appl. Phys. Lett. 74, 1513-1515 (1999).
[CrossRef]

Biosens. Bioelectron. (1)

Y.-F. Chang, R.-C. Chen, Y.-J. Lee, S.-C. Chao, L.-C. Su, Y.-C. Li, and C. Chou, "Localized surface plasmon coupled fluorescence fiber-optic biosensor for alpha-fetoprotein detection in human serum," Biosens. Bioelectron. doi:10.1016/j.bios.2008.08.019 (in press) (2008).

Curr. Opin. Biotechnol. (1)

K. Aslan, I. Gryczynski, J. Malicka, E. Matveeva, J. R. Lakowicz, and C. D. Geddes, "Metal-enhanced fluorescence: an emerging tool in biotechnology," Curr. Opin. Biotechnol. 16, 55-62 (2005).
[CrossRef] [PubMed]

J. Chem. Phys. (2)

D. A. Weitz, S. Garoff, J. I. Gersten, and A. Nitzan, "The enhancement of Raman scattering, resonance Raman scattering, and fluorescence from molecules adsorbed on a rough silver surface," J. Chem. Phys. 78, 5324-5338 (1983).
[CrossRef]

R. Ruppin, "Decay of an excited molecule near a small metal sphere," J. Chem. Phys. 76, 1681-1684 (1982).
[CrossRef]

J. Phys. Chem. B (1)

M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, "Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles," J. Phys. Chem. B 105, 2343-2350 (2001).
[CrossRef]

Nano Lett (1)

J. Zhang, Y. Fu, M. H. Chowdhury, and J. R. Lakowicz, "Metal-enhanced single-molecule fluorescence on silver particle monomer and dimer: coupling effect between metal particles," Nano Lett. 7, 2101-2107 (2007).
[CrossRef] [PubMed]

Nano Lett. (1)

A. D. McFarland and R. P. V. Duyne, "Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity," Nano Lett. 3, 1057-1062 (2003).
[CrossRef]

Nanotechnology (1)

A. Pinchuk, A. Hilger, G. V. Plessen, and U. Kreibig, "Substrate effect on the optical response of silver nanoparticles," Nanotechnology 15, 1890-1986 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. M¨oller, and D. I. Gittins, "Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative Effects," Phys. Rev. Lett. 89, 203002 (2002).
[CrossRef] [PubMed]

Plasmonics (1)

J. R. Lakowicz, "Plasmonics in biology and plasmon-controlled fluorescence," Plasmonics 1, 5-33 (2006).
[CrossRef] [PubMed]

Other (8)

P. N. Prasad, Introduction to Biophotonics (Wiley, Hoboken, NJ, 2003).

C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

J. D. Jackson, Classical Electrodynamics, third edition (John Wiley and Sons, Inc., New York, 1999).

G. B. Arfken and H. J. Weber, Mathematical Methods for Physicists, fifth edition (Academic Press, 2000).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, Inc., New York, 1985).

J. Homola, Surface Plasmon Resonance based Sensors (Springer-Verlag, Berlin, Heidelberg, 2006).
[CrossRef]

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, (Spring-Verlag, New York, 1988).

G. Baffou, C. Girard, E. Dujardin, G. C. des Francs, O. J. F. Martin, "Molecular quenching and relaxation in a plasmonic tunable system," Phys. Rev. B 77, 121101(R) (2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Cross section of a decladded multimode fiber. metallic nanoparticles are distributed arbitrarily in the detected solution and only the metallic nanoparticles in the vicinity of the fiber core can be excited by evanescent waves from the core.

Fig. 2.
Fig. 2.

Scattering of evanescent waves by a metallic nanosphere with radius a. The refractive indices of the core of the fiber (ncore ) and of the medium around the nanosphere (nw ) are 1.492 and 1.33, respectively. The nanosphere is placed at a distance d above the surface of the fiber.

Fig. 3.
Fig. 3.

An excited fluorophore is placed in the vicinity of a metallic nanosphere is treated as an emitting dipole p . Where r and x are the positions of the dipole and the detector, respectively.

Fig. 4.
Fig. 4.

(a) Averaged local-field enhancements Λ, and (b) averaged radiative-rate enhancements Λ r in the vicinity of the top half surface of a gold nanosphere of radius a as a function of the distance r′ from the surface of the nanosphere. The fiber-particle separation d = 20 nm. The results using dielectric nanosphere with refractive index n = 2.0 are given as a reference.

Fig. 5.
Fig. 5.

(a) Averaged local-field enhancements Λ, and (b) averaged radiative-rate enhancements Λ r of a gold nanosphere of radius 10 nm as a function of the distance r′. The nanosphere is placed at various distances d above the interface of the fiber.

Fig. 6.
Fig. 6.

Fluorophore-particle separation averaged values of the averaged radiative rate enhancements as shown in Fig. 5(b) as a function of the distance d above the interface of the fiber. The radius of the nanoparticle is 10 nm.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E tot s , p = E inc s , p + E sca s , p
E tot s , p = n = 1 m = n n i α TM s , p ( n , m ) n w k w [ × j b ( ρ ) X nm ( θ , ϕ ) ]
+ α TM s , p ( n , m ) j n ( ρ ) X nm ( θ , ϕ )
E sca s , p = n = 1 m = n n i a n α TM s , p ( n , m ) n w k w [ × h n ( 1 ) ( ρ ) X nm ( θ , ϕ ) ]
+ b n α TM s , p ( n , m ) h n ( 1 ) ( ρ ) X nm ( θ , ϕ )
E sca p = 1 NA 0 NA E sca p ( β )
E tot p = 1 NA 0 NA [ E sca p ( β ) + E inc p ( β ) ]
= E sca p + E inc p
Λ = π / 2 π / 2 0 π E tot p , 2 sin θdθdϕ E inc p , 2
E tot = E dip + E sca
W r rad ( r ) = 3 2 W 0 rad n = 1 ( 2 n + 1 ) n ( n + 1 ) ( kr ) 2 j n ( kr ) + a n h n ( 1 ) ( kr ) 2
W r tan ( r ) = 3 4 W 0 tan n = 1 ( 2 n + 1 ) { j n ( kr ) b n h n ( 1 ) ( kr ) 2
+ ( kr ) 2 [ kr j n ( kr ) ] + a n [ kr h n ( 1 ) ( kr ) ] 2
Λ r = π / 2 π / 2 0 π [ W r rad + W r tan ] sin θ d θ d ϕ W 0

Metrics