Abstract

Fluorescence diffuse optical tomography is an emerging technology for molecular imaging with recent technological advances in biomarkers and photonics. The introduction of noncontact imaging methods enables very large-scale data acquisition that is orders of magnitude larger than that from earlier systems. In this study, the effects of sampling strategy on image quality were investigated using an imaging phantom mimicking small animals and further analyzed using singular value analysis (SVA). The sampling strategy was represented in terms of a number of key acquisition parameters, namely the numbers of sources, detectors, and imaging angles. A number of metrics were defined to quantitatively evaluate image quality. The effects of acquisition parameters on image quality were subsequently studied by varying each of the parameters within a reasonable range while maintaining the other parameters constant, a method analogue to partial derivative in mathematical analysis. It was found that image quality improves at a much slower rate if the acquisition parameters are above certain critical values (~5 sources, ~15 detectors, and ~20 angles for our system). These critical values remain virtually the same even if other acquisition parameters are doubled. It was also found that increasing different acquisition parameters improves image quality with different efficiencies in terms of the number of measurements: for a system characterized by a smaller threshold in SVA (less than 10-5 in our study), the number of sources is the most efficient, followed by the number of detectors and subsequently the number of imaging angles. However, for systems characterized by a larger threshold, the numbers of sources and angles are equally more efficient than the number of detectors.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. T. Wessels, A. C. Busse, J. Mahrt, C. Dullin, E. Grabbe, and G. A. Mueller, "In vivo imaging in experimental preclinical tumor research—a review," Cytometry A 71, 542-549 (2007).
    [PubMed]
  2. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
    [CrossRef]
  3. J. Grimm, D. G. Kirsch, S. D. Windsor, C. F. Kim, P. M. Santiago, V. Ntziachristos, T. Jacks, and R. Weissleder, "Use of gene expression profiling to direct in vivo molecular imaging of lung cancer," Proc. Natl. Acad. Sci. USA 102, 14404-14409 (2005).
    [CrossRef] [PubMed]
  4. S. Patwardhan, S. Bloch, S. Achilefu, and J. Culver, "Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice," Opt. Express 13, 2564-2577 (2005).
    [CrossRef] [PubMed]
  5. S. R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-R48 (2004).
    [CrossRef] [PubMed]
  6. L. Herve, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltie, and P. Rizo, "Noncontact fluorescence diffuse optical tomography of heterogeneous media," Appl. Opt. 46, 4896-4906 (2007).
    [CrossRef] [PubMed]
  7. S. V. Patwardhan, and J. P. Culver, "Quantitative diffuse optical tomography for small animals using an ultrafast gated image intensifier," J. Biomed. Opt. 13, 011009 (2008).
    [CrossRef] [PubMed]
  8. Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, "Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study," Phys. Med. Biol. 52, 5569-5585 (2007).
    [CrossRef] [PubMed]
  9. H. Meyer, A. Garofalakis, G. Zacharakis, S. Psycharakis, C. Mamalaki, D. Kioussis, E. N. Economou, V. Ntziachristos, and J. Ripoll, "Noncontact optical imaging in mice with full angular coverage and automatic surface extraction," Appl. Opt. 46, 3617-3627 (2007).
    [CrossRef] [PubMed]
  10. V. Ntziachristos, and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation," Opt. Lett. 26, 893-895 (2001).
    [CrossRef]
  11. G. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, "Complete-angle projection diffuse optical tomography by use of early photons," Opt. Lett. 30, 409-411 (2005).
    [CrossRef] [PubMed]
  12. A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, "Fluorescence optical diffusion tomography using multiple-frequency data," J. Opt. Soc. Am. A 21, 1035-1049 (2004).
    [CrossRef]
  13. A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-43 (2005).
    [CrossRef] [PubMed]
  14. R. Jorge, and N. Vasilis, "Imaging scattering media from a distance: theory and applications of noncontact optical tomography," Mod. Phys. Lett. B 18, 1403-1431 (2004).
    [CrossRef]
  15. V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nature Med. 8, 757-760 (2002).
    [CrossRef] [PubMed]
  16. R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Noncontact optical tomography of turbid media," Opt. Lett. 28, 1701-1703 (2003).
    [CrossRef] [PubMed]
  17. D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, "Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth," Appl. Opt. 46, 1669-1678 (2007).
    [CrossRef] [PubMed]
  18. R. B. Schulz, J. Peter, W. Semmler, C. D'Andrea, G. Valentini, and R. Cubeddu, "Comparison of noncontact and fiber-based fluorescence-mediated tomography," Opt. Lett. 31, 769-771 (2006).
    [CrossRef] [PubMed]
  19. N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, "Free-space fluorescence molecular tomography utilizing 360 degrees geometry projections," Opt. Lett. 32, 382-384 (2007).
    [CrossRef] [PubMed]
  20. S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005).
    [CrossRef] [PubMed]
  21. B. W. Pogue, T. O. McBride, U. L. Osterberg, and K. D. Paulsen, "Comparison of imaging geometries for diffuse optical tomography of tissue," Opt. Express 4, 270-286 (1999).
    [CrossRef] [PubMed]
  22. J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, "Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis," Opt. Lett. 26, 701-703 (2001).
    [CrossRef]
  23. J. Sun, K. Fu, A. Wang, A. W. Lin, U. Utzinger, and R. Drezek, "Influence of fiber optic probe geometry on the applicability of inverse models of tissue reflectance spectroscopy: computational models and experimental measurements," Appl. Opt. 45, 8152-8162 (2006).
    [CrossRef] [PubMed]
  24. D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," Neuroimage 23, Suppl 1, S275-S288 (2004).
    [CrossRef] [PubMed]
  25. H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, "Near-infrared imaging in the small animal brain: optimization of fiber positions," J. Biomed. Opt. 8, 102-110 (2003).
    [CrossRef] [PubMed]
  26. V. Toronov, E. D'Amico, D. Hueber, E. Gratton, B. Barbieri, and A. Webb, "Optimization of the signal-to-noise ratio of frequency-domain instrumentation for near-infrared spectro-imaging of the human brain," Opt. Express 11, 2717-2729 (2003).
    [CrossRef] [PubMed]
  27. T. Lasser and V. Ntziachristos, "Optimization of 360 projection fluorescence molecular tomography," Med. Image Anal. 11, 389-399 (2007).
    [CrossRef] [PubMed]
  28. X. Zhang, V. Toronov, and A. G. Webb, "Simultaneous integrated diffuse optical tomography and functional magnetic resonance imaging of the human brain," Opt. Express 13, 5513-5521 (2005).
    [CrossRef] [PubMed]
  29. R. Schulz, P. Joerg, S. Wolfhard, D. Cosimo, V. Gianluca, and C. Rinaldo, "Quantifiability and image quality in noncontact fluorescence tomography," Proc. SPIE 5859, 141-148 (2005).
  30. R. Fletcher, and C. M. Reeves, "Function minimization by conjugate gradients," Comput. J. 7, 149-154 (1964).
    [CrossRef]
  31. A. Nakayama, A. C. Bianco, C. Y. Zhang, B. B. Lowell, and J. V. Frangioni, "Quantitation of brown adipose tissue perfusion in transgenic mice using near-infrared fluorescence imaging," Mol. Imaging 2, 37-49 (2003).
    [CrossRef] [PubMed]
  32. M. Jacob, Y. Bresler, V. Toronov, X. Zhang, and A. Webb, "Level-set algorithm for the reconstruction of functional activation in near-infrared spectroscopic imaging," J. Biomed. Opt. 11, 064029 (2006).
    [CrossRef]
  33. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, "Spatially variant regularization improves diffuse optical tomography," Appl. Opt. 38, 2950-2961 (1999).
    [CrossRef]
  34. E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, "Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography," J. Opt. Soc. Am. A 21, 231-241 (2004).
    [CrossRef]

2008 (1)

S. V. Patwardhan, and J. P. Culver, "Quantitative diffuse optical tomography for small animals using an ultrafast gated image intensifier," J. Biomed. Opt. 13, 011009 (2008).
[CrossRef] [PubMed]

2007 (7)

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, "Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study," Phys. Med. Biol. 52, 5569-5585 (2007).
[CrossRef] [PubMed]

H. Meyer, A. Garofalakis, G. Zacharakis, S. Psycharakis, C. Mamalaki, D. Kioussis, E. N. Economou, V. Ntziachristos, and J. Ripoll, "Noncontact optical imaging in mice with full angular coverage and automatic surface extraction," Appl. Opt. 46, 3617-3627 (2007).
[CrossRef] [PubMed]

J. T. Wessels, A. C. Busse, J. Mahrt, C. Dullin, E. Grabbe, and G. A. Mueller, "In vivo imaging in experimental preclinical tumor research—a review," Cytometry A 71, 542-549 (2007).
[PubMed]

L. Herve, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltie, and P. Rizo, "Noncontact fluorescence diffuse optical tomography of heterogeneous media," Appl. Opt. 46, 4896-4906 (2007).
[CrossRef] [PubMed]

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, "Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth," Appl. Opt. 46, 1669-1678 (2007).
[CrossRef] [PubMed]

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, "Free-space fluorescence molecular tomography utilizing 360 degrees geometry projections," Opt. Lett. 32, 382-384 (2007).
[CrossRef] [PubMed]

T. Lasser and V. Ntziachristos, "Optimization of 360 projection fluorescence molecular tomography," Med. Image Anal. 11, 389-399 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (7)

G. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, "Complete-angle projection diffuse optical tomography by use of early photons," Opt. Lett. 30, 409-411 (2005).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-43 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef]

J. Grimm, D. G. Kirsch, S. D. Windsor, C. F. Kim, P. M. Santiago, V. Ntziachristos, T. Jacks, and R. Weissleder, "Use of gene expression profiling to direct in vivo molecular imaging of lung cancer," Proc. Natl. Acad. Sci. USA 102, 14404-14409 (2005).
[CrossRef] [PubMed]

S. Patwardhan, S. Bloch, S. Achilefu, and J. Culver, "Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice," Opt. Express 13, 2564-2577 (2005).
[CrossRef] [PubMed]

X. Zhang, V. Toronov, and A. G. Webb, "Simultaneous integrated diffuse optical tomography and functional magnetic resonance imaging of the human brain," Opt. Express 13, 5513-5521 (2005).
[CrossRef] [PubMed]

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005).
[CrossRef] [PubMed]

2004 (5)

D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," Neuroimage 23, Suppl 1, S275-S288 (2004).
[CrossRef] [PubMed]

E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, "Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography," J. Opt. Soc. Am. A 21, 231-241 (2004).
[CrossRef]

S. R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-R48 (2004).
[CrossRef] [PubMed]

R. Jorge, and N. Vasilis, "Imaging scattering media from a distance: theory and applications of noncontact optical tomography," Mod. Phys. Lett. B 18, 1403-1431 (2004).
[CrossRef]

A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, "Fluorescence optical diffusion tomography using multiple-frequency data," J. Opt. Soc. Am. A 21, 1035-1049 (2004).
[CrossRef]

2003 (4)

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Noncontact optical tomography of turbid media," Opt. Lett. 28, 1701-1703 (2003).
[CrossRef] [PubMed]

A. Nakayama, A. C. Bianco, C. Y. Zhang, B. B. Lowell, and J. V. Frangioni, "Quantitation of brown adipose tissue perfusion in transgenic mice using near-infrared fluorescence imaging," Mol. Imaging 2, 37-49 (2003).
[CrossRef] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, "Near-infrared imaging in the small animal brain: optimization of fiber positions," J. Biomed. Opt. 8, 102-110 (2003).
[CrossRef] [PubMed]

V. Toronov, E. D'Amico, D. Hueber, E. Gratton, B. Barbieri, and A. Webb, "Optimization of the signal-to-noise ratio of frequency-domain instrumentation for near-infrared spectro-imaging of the human brain," Opt. Express 11, 2717-2729 (2003).
[CrossRef] [PubMed]

2002 (1)

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nature Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

2001 (2)

1999 (2)

1964 (1)

R. Fletcher, and C. M. Reeves, "Function minimization by conjugate gradients," Comput. J. 7, 149-154 (1964).
[CrossRef]

Achilefu, S.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005).
[CrossRef] [PubMed]

S. Patwardhan, S. Bloch, S. Achilefu, and J. Culver, "Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice," Opt. Express 13, 2564-2577 (2005).
[CrossRef] [PubMed]

Arridge, S. R.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-43 (2005).
[CrossRef] [PubMed]

Barbieri, B.

Berger, M.

Bianco, A. C.

A. Nakayama, A. C. Bianco, C. Y. Zhang, B. B. Lowell, and J. V. Frangioni, "Quantitation of brown adipose tissue perfusion in transgenic mice using near-infrared fluorescence imaging," Mol. Imaging 2, 37-49 (2003).
[CrossRef] [PubMed]

Bloch, S.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005).
[CrossRef] [PubMed]

S. Patwardhan, S. Bloch, S. Achilefu, and J. Culver, "Time-dependent whole-body fluorescence tomography of probe bio-distributions in mice," Opt. Express 13, 2564-2577 (2005).
[CrossRef] [PubMed]

Boas, D. A.

A. B. Milstein, J. J. Stott, S. Oh, D. A. Boas, R. P. Millane, C. A. Bouman, and K. J. Webb, "Fluorescence optical diffusion tomography using multiple-frequency data," J. Opt. Soc. Am. A 21, 1035-1049 (2004).
[CrossRef]

D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," Neuroimage 23, Suppl 1, S275-S288 (2004).
[CrossRef] [PubMed]

Bouman, C. A.

Boutet, J.

Bremer, C.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nature Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

Bresler, Y.

M. Jacob, Y. Bresler, V. Toronov, X. Zhang, and A. Webb, "Level-set algorithm for the reconstruction of functional activation in near-infrared spectroscopic imaging," J. Biomed. Opt. 11, 064029 (2006).
[CrossRef]

Busse, A. C.

J. T. Wessels, A. C. Busse, J. Mahrt, C. Dullin, E. Grabbe, and G. A. Mueller, "In vivo imaging in experimental preclinical tumor research—a review," Cytometry A 71, 542-549 (2007).
[PubMed]

Cherry, S. R.

S. R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-R48 (2004).
[CrossRef] [PubMed]

Cubeddu, R.

Culver, J.

Culver, J. P.

Da Silva, A.

Dale, A. M.

D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," Neuroimage 23, Suppl 1, S275-S288 (2004).
[CrossRef] [PubMed]

D'Amico, E.

D'Andrea, C.

Davis, S. C.

Dehghani, H.

D. S. Kepshire, S. C. Davis, H. Dehghani, K. D. Paulsen, and B. W. Pogue, "Subsurface diffuse optical tomography can localize absorber and fluorescent objects but recovered image sensitivity is nonlinear with depth," Appl. Opt. 46, 1669-1678 (2007).
[CrossRef] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, "Near-infrared imaging in the small animal brain: optimization of fiber positions," J. Biomed. Opt. 8, 102-110 (2003).
[CrossRef] [PubMed]

Deliolanis, N.

Dinten, J. M.

Drezek, R.

Dullin, C.

J. T. Wessels, A. C. Busse, J. Mahrt, C. Dullin, E. Grabbe, and G. A. Mueller, "In vivo imaging in experimental preclinical tumor research—a review," Cytometry A 71, 542-549 (2007).
[PubMed]

Dunn, J. F.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, "Near-infrared imaging in the small animal brain: optimization of fiber positions," J. Biomed. Opt. 8, 102-110 (2003).
[CrossRef] [PubMed]

Economou, E. N.

Fletcher, R.

R. Fletcher, and C. M. Reeves, "Function minimization by conjugate gradients," Comput. J. 7, 149-154 (1964).
[CrossRef]

Franceschini, M. A.

D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," Neuroimage 23, Suppl 1, S275-S288 (2004).
[CrossRef] [PubMed]

Frangioni, J. V.

A. Nakayama, A. C. Bianco, C. Y. Zhang, B. B. Lowell, and J. V. Frangioni, "Quantitation of brown adipose tissue perfusion in transgenic mice using near-infrared fluorescence imaging," Mol. Imaging 2, 37-49 (2003).
[CrossRef] [PubMed]

Fu, K.

Gandjbakhche, A.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005).
[CrossRef] [PubMed]

Gao, H.

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, "Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study," Phys. Med. Biol. 52, 5569-5585 (2007).
[CrossRef] [PubMed]

Garofalakis, A.

Gibson, A. P.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-43 (2005).
[CrossRef] [PubMed]

Grabbe, E.

J. T. Wessels, A. C. Busse, J. Mahrt, C. Dullin, E. Grabbe, and G. A. Mueller, "In vivo imaging in experimental preclinical tumor research—a review," Cytometry A 71, 542-549 (2007).
[PubMed]

Gratton, E.

Graves, E. E.

Grimm, J.

J. Grimm, D. G. Kirsch, S. D. Windsor, C. F. Kim, P. M. Santiago, V. Ntziachristos, T. Jacks, and R. Weissleder, "Use of gene expression profiling to direct in vivo molecular imaging of lung cancer," Proc. Natl. Acad. Sci. USA 102, 14404-14409 (2005).
[CrossRef] [PubMed]

Gulsen, G.

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, "Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study," Phys. Med. Biol. 52, 5569-5585 (2007).
[CrossRef] [PubMed]

Hebden, J. C.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-43 (2005).
[CrossRef] [PubMed]

Herve, L.

Holboke, M. J.

Hueber, D.

Hyde, D.

Jacks, T.

J. Grimm, D. G. Kirsch, S. D. Windsor, C. F. Kim, P. M. Santiago, V. Ntziachristos, T. Jacks, and R. Weissleder, "Use of gene expression profiling to direct in vivo molecular imaging of lung cancer," Proc. Natl. Acad. Sci. USA 102, 14404-14409 (2005).
[CrossRef] [PubMed]

Jacob, M.

M. Jacob, Y. Bresler, V. Toronov, X. Zhang, and A. Webb, "Level-set algorithm for the reconstruction of functional activation in near-infrared spectroscopic imaging," J. Biomed. Opt. 11, 064029 (2006).
[CrossRef]

Jorge, R.

R. Jorge, and N. Vasilis, "Imaging scattering media from a distance: theory and applications of noncontact optical tomography," Mod. Phys. Lett. B 18, 1403-1431 (2004).
[CrossRef]

Kepshire, D. S.

Kim, C. F.

J. Grimm, D. G. Kirsch, S. D. Windsor, C. F. Kim, P. M. Santiago, V. Ntziachristos, T. Jacks, and R. Weissleder, "Use of gene expression profiling to direct in vivo molecular imaging of lung cancer," Proc. Natl. Acad. Sci. USA 102, 14404-14409 (2005).
[CrossRef] [PubMed]

Kioussis, D.

Kirsch, D. G.

J. Grimm, D. G. Kirsch, S. D. Windsor, C. F. Kim, P. M. Santiago, V. Ntziachristos, T. Jacks, and R. Weissleder, "Use of gene expression profiling to direct in vivo molecular imaging of lung cancer," Proc. Natl. Acad. Sci. USA 102, 14404-14409 (2005).
[CrossRef] [PubMed]

Koenig, A.

Lasser, T.

Lesage, F.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005).
[CrossRef] [PubMed]

Liang, K.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005).
[CrossRef] [PubMed]

Lin, A. W.

Lin, Y.

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, "Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study," Phys. Med. Biol. 52, 5569-5585 (2007).
[CrossRef] [PubMed]

Lowell, B. B.

A. Nakayama, A. C. Bianco, C. Y. Zhang, B. B. Lowell, and J. V. Frangioni, "Quantitation of brown adipose tissue perfusion in transgenic mice using near-infrared fluorescence imaging," Mol. Imaging 2, 37-49 (2003).
[CrossRef] [PubMed]

Mahrt, J.

J. T. Wessels, A. C. Busse, J. Mahrt, C. Dullin, E. Grabbe, and G. A. Mueller, "In vivo imaging in experimental preclinical tumor research—a review," Cytometry A 71, 542-549 (2007).
[PubMed]

Mamalaki, C.

McBride, T. O.

McIntosh, L.

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005).
[CrossRef] [PubMed]

Meyer, H.

Millane, R. P.

Milstein, A. B.

Mueller, G. A.

J. T. Wessels, A. C. Busse, J. Mahrt, C. Dullin, E. Grabbe, and G. A. Mueller, "In vivo imaging in experimental preclinical tumor research—a review," Cytometry A 71, 542-549 (2007).
[PubMed]

Nakayama, A.

A. Nakayama, A. C. Bianco, C. Y. Zhang, B. B. Lowell, and J. V. Frangioni, "Quantitation of brown adipose tissue perfusion in transgenic mice using near-infrared fluorescence imaging," Mol. Imaging 2, 37-49 (2003).
[CrossRef] [PubMed]

Nalcioglu, O.

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, "Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study," Phys. Med. Biol. 52, 5569-5585 (2007).
[CrossRef] [PubMed]

Ntziachristos, V.

T. Lasser and V. Ntziachristos, "Optimization of 360 projection fluorescence molecular tomography," Med. Image Anal. 11, 389-399 (2007).
[CrossRef] [PubMed]

H. Meyer, A. Garofalakis, G. Zacharakis, S. Psycharakis, C. Mamalaki, D. Kioussis, E. N. Economou, V. Ntziachristos, and J. Ripoll, "Noncontact optical imaging in mice with full angular coverage and automatic surface extraction," Appl. Opt. 46, 3617-3627 (2007).
[CrossRef] [PubMed]

N. Deliolanis, T. Lasser, D. Hyde, A. Soubret, J. Ripoll, and V. Ntziachristos, "Free-space fluorescence molecular tomography utilizing 360 degrees geometry projections," Opt. Lett. 32, 382-384 (2007).
[CrossRef] [PubMed]

G. Turner, G. Zacharakis, A. Soubret, J. Ripoll, and V. Ntziachristos, "Complete-angle projection diffuse optical tomography by use of early photons," Opt. Lett. 30, 409-411 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef]

J. Grimm, D. G. Kirsch, S. D. Windsor, C. F. Kim, P. M. Santiago, V. Ntziachristos, T. Jacks, and R. Weissleder, "Use of gene expression profiling to direct in vivo molecular imaging of lung cancer," Proc. Natl. Acad. Sci. USA 102, 14404-14409 (2005).
[CrossRef] [PubMed]

E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, "Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography," J. Opt. Soc. Am. A 21, 231-241 (2004).
[CrossRef]

R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Noncontact optical tomography of turbid media," Opt. Lett. 28, 1701-1703 (2003).
[CrossRef] [PubMed]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nature Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

J. P. Culver, V. Ntziachristos, M. J. Holboke, and A. G. Yodh, "Optimization of optode arrangements for diffuse optical tomography: a singular-value analysis," Opt. Lett. 26, 701-703 (2001).
[CrossRef]

V. Ntziachristos, and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation," Opt. Lett. 26, 893-895 (2001).
[CrossRef]

Oh, S.

Osterberg, U. L.

Patwardhan, S.

Patwardhan, S. V.

S. V. Patwardhan, and J. P. Culver, "Quantitative diffuse optical tomography for small animals using an ultrafast gated image intensifier," J. Biomed. Opt. 13, 011009 (2008).
[CrossRef] [PubMed]

Paulsen, K. D.

Peltie, P.

Peter, J.

Pogue, B. W.

Prewitt, J.

Psycharakis, S.

Reeves, C. M.

R. Fletcher, and C. M. Reeves, "Function minimization by conjugate gradients," Comput. J. 7, 149-154 (1964).
[CrossRef]

Ripoll, J.

Rizo, P.

Santiago, P. M.

J. Grimm, D. G. Kirsch, S. D. Windsor, C. F. Kim, P. M. Santiago, V. Ntziachristos, T. Jacks, and R. Weissleder, "Use of gene expression profiling to direct in vivo molecular imaging of lung cancer," Proc. Natl. Acad. Sci. USA 102, 14404-14409 (2005).
[CrossRef] [PubMed]

Schulz, R. B.

Semmler, W.

Soubret, A.

Springett, R.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, "Near-infrared imaging in the small animal brain: optimization of fiber positions," J. Biomed. Opt. 8, 102-110 (2003).
[CrossRef] [PubMed]

Stott, J. J.

Sun, J.

Toronov, V.

Tung, C. H.

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nature Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

Turner, G.

Utzinger, U.

Valentini, G.

Vasilis, N.

R. Jorge, and N. Vasilis, "Imaging scattering media from a distance: theory and applications of noncontact optical tomography," Mod. Phys. Lett. B 18, 1403-1431 (2004).
[CrossRef]

Wang, A.

Wang, L. V.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef]

Webb, A.

M. Jacob, Y. Bresler, V. Toronov, X. Zhang, and A. Webb, "Level-set algorithm for the reconstruction of functional activation in near-infrared spectroscopic imaging," J. Biomed. Opt. 11, 064029 (2006).
[CrossRef]

V. Toronov, E. D'Amico, D. Hueber, E. Gratton, B. Barbieri, and A. Webb, "Optimization of the signal-to-noise ratio of frequency-domain instrumentation for near-infrared spectro-imaging of the human brain," Opt. Express 11, 2717-2729 (2003).
[CrossRef] [PubMed]

Webb, A. G.

Webb, K. J.

Weissleder, R.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef]

J. Grimm, D. G. Kirsch, S. D. Windsor, C. F. Kim, P. M. Santiago, V. Ntziachristos, T. Jacks, and R. Weissleder, "Use of gene expression profiling to direct in vivo molecular imaging of lung cancer," Proc. Natl. Acad. Sci. USA 102, 14404-14409 (2005).
[CrossRef] [PubMed]

E. E. Graves, J. P. Culver, J. Ripoll, R. Weissleder, and V. Ntziachristos, "Singular-value analysis and optimization of experimental parameters in fluorescence molecular tomography," J. Opt. Soc. Am. A 21, 231-241 (2004).
[CrossRef]

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nature Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

V. Ntziachristos, and R. Weissleder, "Experimental three-dimensional fluorescence reconstruction of diffuse media by use of a normalized Born approximation," Opt. Lett. 26, 893-895 (2001).
[CrossRef]

Wessels, J. T.

J. T. Wessels, A. C. Busse, J. Mahrt, C. Dullin, E. Grabbe, and G. A. Mueller, "In vivo imaging in experimental preclinical tumor research—a review," Cytometry A 71, 542-549 (2007).
[PubMed]

Windsor, S. D.

J. Grimm, D. G. Kirsch, S. D. Windsor, C. F. Kim, P. M. Santiago, V. Ntziachristos, T. Jacks, and R. Weissleder, "Use of gene expression profiling to direct in vivo molecular imaging of lung cancer," Proc. Natl. Acad. Sci. USA 102, 14404-14409 (2005).
[CrossRef] [PubMed]

Xu, H.

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, "Near-infrared imaging in the small animal brain: optimization of fiber positions," J. Biomed. Opt. 8, 102-110 (2003).
[CrossRef] [PubMed]

Yodh, A. G.

Zacharakis, G.

Zhang, C. Y.

A. Nakayama, A. C. Bianco, C. Y. Zhang, B. B. Lowell, and J. V. Frangioni, "Quantitation of brown adipose tissue perfusion in transgenic mice using near-infrared fluorescence imaging," Mol. Imaging 2, 37-49 (2003).
[CrossRef] [PubMed]

Zhang, X.

M. Jacob, Y. Bresler, V. Toronov, X. Zhang, and A. Webb, "Level-set algorithm for the reconstruction of functional activation in near-infrared spectroscopic imaging," J. Biomed. Opt. 11, 064029 (2006).
[CrossRef]

X. Zhang, V. Toronov, and A. G. Webb, "Simultaneous integrated diffuse optical tomography and functional magnetic resonance imaging of the human brain," Opt. Express 13, 5513-5521 (2005).
[CrossRef] [PubMed]

Appl. Opt. (5)

Comput. J. (1)

R. Fletcher, and C. M. Reeves, "Function minimization by conjugate gradients," Comput. J. 7, 149-154 (1964).
[CrossRef]

Cytometry A (1)

J. T. Wessels, A. C. Busse, J. Mahrt, C. Dullin, E. Grabbe, and G. A. Mueller, "In vivo imaging in experimental preclinical tumor research—a review," Cytometry A 71, 542-549 (2007).
[PubMed]

J. Biomed. Opt. (4)

S. V. Patwardhan, and J. P. Culver, "Quantitative diffuse optical tomography for small animals using an ultrafast gated image intensifier," J. Biomed. Opt. 13, 011009 (2008).
[CrossRef] [PubMed]

S. Bloch, F. Lesage, L. McIntosh, A. Gandjbakhche, K. Liang, and S. Achilefu, "Whole-body fluorescence lifetime imaging of a tumor-targeted near-infrared molecular probe in mice," J. Biomed. Opt. 10, 054003 (2005).
[CrossRef] [PubMed]

H. Xu, H. Dehghani, B. W. Pogue, R. Springett, K. D. Paulsen, and J. F. Dunn, "Near-infrared imaging in the small animal brain: optimization of fiber positions," J. Biomed. Opt. 8, 102-110 (2003).
[CrossRef] [PubMed]

M. Jacob, Y. Bresler, V. Toronov, X. Zhang, and A. Webb, "Level-set algorithm for the reconstruction of functional activation in near-infrared spectroscopic imaging," J. Biomed. Opt. 11, 064029 (2006).
[CrossRef]

J. Opt. Soc. Am. A (2)

Medical Image Analysis (1)

T. Lasser and V. Ntziachristos, "Optimization of 360 projection fluorescence molecular tomography," Med. Image Anal. 11, 389-399 (2007).
[CrossRef] [PubMed]

Mod. Phys. Lett. B (1)

R. Jorge, and N. Vasilis, "Imaging scattering media from a distance: theory and applications of noncontact optical tomography," Mod. Phys. Lett. B 18, 1403-1431 (2004).
[CrossRef]

Mol. Imaging (1)

A. Nakayama, A. C. Bianco, C. Y. Zhang, B. B. Lowell, and J. V. Frangioni, "Quantitation of brown adipose tissue perfusion in transgenic mice using near-infrared fluorescence imaging," Mol. Imaging 2, 37-49 (2003).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotechnol. 23, 313-320 (2005).
[CrossRef]

Nature Med. (1)

V. Ntziachristos, C. H. Tung, C. Bremer, and R. Weissleder, "Fluorescence molecular tomography resolves protease activity in vivo," Nature Med. 8, 757-760 (2002).
[CrossRef] [PubMed]

Neuroimage (1)

D. A. Boas, A. M. Dale, and M. A. Franceschini, "Diffuse optical imaging of brain activation: approaches to optimizing image sensitivity, resolution, and accuracy," Neuroimage 23, Suppl 1, S275-S288 (2004).
[CrossRef] [PubMed]

Opt. Express (4)

Opt. Lett. (6)

Phys. Med. Biol. (3)

A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-43 (2005).
[CrossRef] [PubMed]

Y. Lin, H. Gao, O. Nalcioglu, and G. Gulsen, "Fluorescence diffuse optical tomography with functional and anatomical a priori information: feasibility study," Phys. Med. Biol. 52, 5569-5585 (2007).
[CrossRef] [PubMed]

S. R. Cherry, "In vivo molecular and genomic imaging: new challenges for imaging physics," Phys. Med. Biol. 49, R13-R48 (2004).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. USA (1)

J. Grimm, D. G. Kirsch, S. D. Windsor, C. F. Kim, P. M. Santiago, V. Ntziachristos, T. Jacks, and R. Weissleder, "Use of gene expression profiling to direct in vivo molecular imaging of lung cancer," Proc. Natl. Acad. Sci. USA 102, 14404-14409 (2005).
[CrossRef] [PubMed]

Other (1)

R. Schulz, P. Joerg, S. Wolfhard, D. Cosimo, V. Gianluca, and C. Rinaldo, "Quantifiability and image quality in noncontact fluorescence tomography," Proc. SPIE 5859, 141-148 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Schematics of (a) the FDOT system setup, (b) experimental configuration and sampling strategy, and (c) geometry of the imaging phantom.

Fig. 2.
Fig. 2.

Comparison of reconstructed images (23×23 pixels FOV with 1 mm/pixel) using different numbers of sources and detectors (fixed 16 imaging angles). In the true image, the upper area is the smaller fluorescent structure (3 mm diameter); and the lower one is the larger structure (4 mm).

Fig. 3.
Fig. 3.

Image quality metrics derived from experimental data in terms of (a) RMS error, (b) localization error, and (c) relative intensity in different study cases, from left to right: variable number of sources (Cases 1 to 3), detectors (Cases 4 to 6), and imaging angles (Cases 7 to 9). The bottom rows (d-f) are derived from the same data as in (a-c) but are plotted against the number of measurements.

Fig. 4.
Fig. 4.

(a) and (b) Comparison of the NSV against variable acquisition parameters and (c)-(e) the number of measurements using different thresholds in SVA in each of the study cases, from left to right: variable number of sources (Cases 1 to 3), number of detectors (Cases 4 to 6), and number of angles (Cases 7 to 9). All of the vertical axes represent the NSV, although their scales are different among different rows. The horizontal axes in (a) and (b) are the number of source, the number of detectors, and the number of angles (left to right, respectively); and those in (c)-(e) are the number of measurements.

Tables (2)

Tables Icon

Table 1. Optical properties of the imaging phantom at 785 nm.

Tables Icon

Table 2. Sampling strategies used in experiment (var are variable acquisition parameters.)

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

H ( X ) = A X b 2 2 + α Ω X 2 2 d r + β Ω X 2 2 d r
p m , n ( i ) = p m , n ( 0 ) [ p m , n ( N ) / p m , n ( 0 ) ] i / N = p m , n ( 0 ) 1 i / N p m , n ( N ) i / N
RMS error = { i = 1 N ( x i x 0 , i ) 2 / N } 1 / 2

Metrics