Abstract

A novel microlens design with tunable double-focus is presented. It is fabricated by adding only one SU-8 photolithography step to the well-developed liquid-filled microlens fabrication process. The thickness of this layer determines the thickness difference between the central and peripheral region of the membrane, the deformation of which is used to define the surface profile of the microlens. The stepped thickness variation is finally manifested as the difference in deformation contour at two different regions of the membrane when subjected to uniform applied pressure, thereby causing two focal lengths to appear. Experimental and simulation results are presented, from which the tunability of the focal lengths of the double-focus microlens is demonstrated to be effective over a wide range through combining the structural design with pressure control. The successful demonstration of this unconventional microlens design concept will potentially extend the application of liquid-filled microlens technology.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. F. Borrelli, Microoptics Technology (2nd Edition, Marcel Dekker, 2005), Chap. 1.
  2. S. Kuiper and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004).
    [CrossRef]
  3. A. Jain and H. Xie, "Endoscopic microprobe with a LVD microlens scanner for confocal imaging," Optical MEMS and Their Applications Conference, 2006. IEEE/LEOS International Conference on. 168-169, 2006.
  4. Y. Li, X. J. Yi, and J. H. Hao, " Design and fabrication of 128×128 diffractive microlens arrays on Si for PtSi FPA," Proc. SPIE 3553, 132-137 (1998).
    [CrossRef]
  5. G. Yoon, S. Pantanelli, and L. J. Nagy, "Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes," J. Biomed. Opt. 11, 0305021-0305023 (2006).
    [CrossRef]
  6. H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, "A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array," J. Micromech. Microeng. 18, 105017 (2008).
    [CrossRef]
  7. M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov, "Simple reflow technique for fabrication of a microlens array in solgel glass," Opt. Lett. 28, 731-733 (2003).
    [CrossRef] [PubMed]
  8. W. L. Chang and P. K. Wei, "Fabrication of a close-packed hemispherical submicron lens array and its application in photolithography," Opt. Express. 15, 6774-6783 (2007).
    [CrossRef] [PubMed]
  9. H. Choo and R. S. Muller, "Addressable microlens array to improve dynamic range of Shack-Hartmann sensors," J. Microelectromech. Syst. 15, 1555-1567 (2006).
    [CrossRef]
  10. C. P. Lin, H. Yang, and C. K. Chao, "A new microlens array fabrication method using UV proximity printing," J. Micromech. Microeng. 13, 748-757 (2003).
    [CrossRef]
  11. N. S. Ong, Y. H. Koh, and Y. Q. Fu, "Microlens array produced using hot embossing process," Microelectron. Eng. 60, 365-379 (2002).
    [CrossRef]
  12. G. Beadie and N. M. Lawandy, "Single-step laser fabrication of refractive microlenses in semiconductor-doped glasses," Opt. Lett. 20, 2153-2155 (1995).
    [CrossRef] [PubMed]
  13. H. Ren and S. T. Wu, "Adaptive liquid crystal lens with large focal length tenability," Opt Express. 14, 11292-11298 (2006).
    [CrossRef] [PubMed]
  14. H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, "Optofluidic variable aperture," Opt. Lett. 33, 548-550 (2008).
    [CrossRef]
  15. H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, "A variable optical attenuator based on optofluidic technology," J. Micromech. Microeng. 18, 115016 (2008).
    [CrossRef]
  16. N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, "Tunable liquid-filled microlens array integrated with microfluidic network," Opt. Express. 11, 2370-2378 (2003).
    [CrossRef] [PubMed]
  17. D. Y. Zhang, N. Justis, and Y. H. Lo, "Fluidic adaptive lens of transformable lens type," Appl. Phys. Lett. 84 4194-4196 (2004).
    [CrossRef]
  18. M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, "Polymer-based variable focal length microlens system," J. Micromech. Microeng. 14, 1665-1673 (2004).
    [CrossRef]
  19. J. Chen, W. Wang, J. Fang, and K. Varahramyan, "Variable-focusing microlens with microfluidic chip," J. Micromech. Microeng. 14, 675-680 (2004).
    [CrossRef]
  20. H. Yang, C. Y. Yang, and M. S. Yeh, "Miniaturized variable-focus lens fabrication using liquid filling technique," Microsyst. Technol. 14, 1067-1072 (2007).
    [CrossRef]
  21. D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, "High-performance fluidic adaptive lenses," Appl. Opt. 43, 783-787 (2004).
    [CrossRef] [PubMed]
  22. D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, "Fluidic adaptive lens with high focal length tenability," Appl. Phys. Lett. 82, 3171-3173 (2003).
    [CrossRef]
  23. H. W. Ren and S. T. Wu, "Variable-focus liquid lens," Opt. Express. 15, 5931-5936 (2007).
    [CrossRef] [PubMed]
  24. D. Y. Zhang, N. Justis, and Y. H. Lo, "Integrated fluidic adaptive zoom lens," Opt. Lett. 15, 2855-2857 (2004).
    [CrossRef]
  25. X. F. Zeng and H. R. Jiang, "Polydimethylsiloxane microlens arraya fabricated through liquid-phase photopolymerization and molding," J. Microelectromech Syst. 17, 1210-1217 (2008).
    [CrossRef]

2008

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, "A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array," J. Micromech. Microeng. 18, 105017 (2008).
[CrossRef]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, "Optofluidic variable aperture," Opt. Lett. 33, 548-550 (2008).
[CrossRef]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, "A variable optical attenuator based on optofluidic technology," J. Micromech. Microeng. 18, 115016 (2008).
[CrossRef]

X. F. Zeng and H. R. Jiang, "Polydimethylsiloxane microlens arraya fabricated through liquid-phase photopolymerization and molding," J. Microelectromech Syst. 17, 1210-1217 (2008).
[CrossRef]

2007

H. W. Ren and S. T. Wu, "Variable-focus liquid lens," Opt. Express. 15, 5931-5936 (2007).
[CrossRef] [PubMed]

H. Yang, C. Y. Yang, and M. S. Yeh, "Miniaturized variable-focus lens fabrication using liquid filling technique," Microsyst. Technol. 14, 1067-1072 (2007).
[CrossRef]

W. L. Chang and P. K. Wei, "Fabrication of a close-packed hemispherical submicron lens array and its application in photolithography," Opt. Express. 15, 6774-6783 (2007).
[CrossRef] [PubMed]

2006

H. Choo and R. S. Muller, "Addressable microlens array to improve dynamic range of Shack-Hartmann sensors," J. Microelectromech. Syst. 15, 1555-1567 (2006).
[CrossRef]

G. Yoon, S. Pantanelli, and L. J. Nagy, "Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes," J. Biomed. Opt. 11, 0305021-0305023 (2006).
[CrossRef]

H. Ren and S. T. Wu, "Adaptive liquid crystal lens with large focal length tenability," Opt Express. 14, 11292-11298 (2006).
[CrossRef] [PubMed]

2004

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, "High-performance fluidic adaptive lenses," Appl. Opt. 43, 783-787 (2004).
[CrossRef] [PubMed]

D. Y. Zhang, N. Justis, and Y. H. Lo, "Fluidic adaptive lens of transformable lens type," Appl. Phys. Lett. 84 4194-4196 (2004).
[CrossRef]

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, "Polymer-based variable focal length microlens system," J. Micromech. Microeng. 14, 1665-1673 (2004).
[CrossRef]

J. Chen, W. Wang, J. Fang, and K. Varahramyan, "Variable-focusing microlens with microfluidic chip," J. Micromech. Microeng. 14, 675-680 (2004).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004).
[CrossRef]

D. Y. Zhang, N. Justis, and Y. H. Lo, "Integrated fluidic adaptive zoom lens," Opt. Lett. 15, 2855-2857 (2004).
[CrossRef]

2003

M. He, X. C. Yuan, N. Q. Ngo, J. Bu, and V. Kudryashov, "Simple reflow technique for fabrication of a microlens array in solgel glass," Opt. Lett. 28, 731-733 (2003).
[CrossRef] [PubMed]

C. P. Lin, H. Yang, and C. K. Chao, "A new microlens array fabrication method using UV proximity printing," J. Micromech. Microeng. 13, 748-757 (2003).
[CrossRef]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, "Fluidic adaptive lens with high focal length tenability," Appl. Phys. Lett. 82, 3171-3173 (2003).
[CrossRef]

N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, "Tunable liquid-filled microlens array integrated with microfluidic network," Opt. Express. 11, 2370-2378 (2003).
[CrossRef] [PubMed]

2002

N. S. Ong, Y. H. Koh, and Y. Q. Fu, "Microlens array produced using hot embossing process," Microelectron. Eng. 60, 365-379 (2002).
[CrossRef]

1998

Y. Li, X. J. Yi, and J. H. Hao, " Design and fabrication of 128×128 diffractive microlens arrays on Si for PtSi FPA," Proc. SPIE 3553, 132-137 (1998).
[CrossRef]

1995

Agarwal, M.

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, "Polymer-based variable focal length microlens system," J. Micromech. Microeng. 14, 1665-1673 (2004).
[CrossRef]

Beadie, G.

Berdichevsky, Y.

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, "High-performance fluidic adaptive lenses," Appl. Opt. 43, 783-787 (2004).
[CrossRef] [PubMed]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, "Fluidic adaptive lens with high focal length tenability," Appl. Phys. Lett. 82, 3171-3173 (2003).
[CrossRef]

Bu, J.

Chang, W. L.

W. L. Chang and P. K. Wei, "Fabrication of a close-packed hemispherical submicron lens array and its application in photolithography," Opt. Express. 15, 6774-6783 (2007).
[CrossRef] [PubMed]

Chao, C. K.

C. P. Lin, H. Yang, and C. K. Chao, "A new microlens array fabrication method using UV proximity printing," J. Micromech. Microeng. 13, 748-757 (2003).
[CrossRef]

Chau, F. S.

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, "Optofluidic variable aperture," Opt. Lett. 33, 548-550 (2008).
[CrossRef]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, "A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array," J. Micromech. Microeng. 18, 105017 (2008).
[CrossRef]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, "A variable optical attenuator based on optofluidic technology," J. Micromech. Microeng. 18, 115016 (2008).
[CrossRef]

Chen, J.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, "Variable-focusing microlens with microfluidic chip," J. Micromech. Microeng. 14, 675-680 (2004).
[CrossRef]

Choi, J.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, "Fluidic adaptive lens with high focal length tenability," Appl. Phys. Lett. 82, 3171-3173 (2003).
[CrossRef]

Choo, H.

H. Choo and R. S. Muller, "Addressable microlens array to improve dynamic range of Shack-Hartmann sensors," J. Microelectromech. Syst. 15, 1555-1567 (2006).
[CrossRef]

Chronis, N.

N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, "Tunable liquid-filled microlens array integrated with microfluidic network," Opt. Express. 11, 2370-2378 (2003).
[CrossRef] [PubMed]

Coane, P.

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, "Polymer-based variable focal length microlens system," J. Micromech. Microeng. 14, 1665-1673 (2004).
[CrossRef]

Fang, J.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, "Variable-focusing microlens with microfluidic chip," J. Micromech. Microeng. 14, 675-680 (2004).
[CrossRef]

Fu, Y. Q.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, "Microlens array produced using hot embossing process," Microelectron. Eng. 60, 365-379 (2002).
[CrossRef]

Gunasekaran, R. A.

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, "Polymer-based variable focal length microlens system," J. Micromech. Microeng. 14, 1665-1673 (2004).
[CrossRef]

Hao, J. H.

Y. Li, X. J. Yi, and J. H. Hao, " Design and fabrication of 128×128 diffractive microlens arrays on Si for PtSi FPA," Proc. SPIE 3553, 132-137 (1998).
[CrossRef]

He, M.

Hendriks, B. H. W.

S. Kuiper and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004).
[CrossRef]

Jeong, K. H.

N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, "Tunable liquid-filled microlens array integrated with microfluidic network," Opt. Express. 11, 2370-2378 (2003).
[CrossRef] [PubMed]

Jiang, H. R.

X. F. Zeng and H. R. Jiang, "Polydimethylsiloxane microlens arraya fabricated through liquid-phase photopolymerization and molding," J. Microelectromech Syst. 17, 1210-1217 (2008).
[CrossRef]

Justis, N.

D. Y. Zhang, N. Justis, and Y. H. Lo, "Integrated fluidic adaptive zoom lens," Opt. Lett. 15, 2855-2857 (2004).
[CrossRef]

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, "High-performance fluidic adaptive lenses," Appl. Opt. 43, 783-787 (2004).
[CrossRef] [PubMed]

D. Y. Zhang, N. Justis, and Y. H. Lo, "Fluidic adaptive lens of transformable lens type," Appl. Phys. Lett. 84 4194-4196 (2004).
[CrossRef]

Koh, Y. H.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, "Microlens array produced using hot embossing process," Microelectron. Eng. 60, 365-379 (2002).
[CrossRef]

Kudryashov, V.

Kuiper, S.

S. Kuiper and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004).
[CrossRef]

Lawandy, N. M.

Lee, F. W.

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, "Optofluidic variable aperture," Opt. Lett. 33, 548-550 (2008).
[CrossRef]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, "A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array," J. Micromech. Microeng. 18, 105017 (2008).
[CrossRef]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, "A variable optical attenuator based on optofluidic technology," J. Micromech. Microeng. 18, 115016 (2008).
[CrossRef]

Lee, L. P.

N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, "Tunable liquid-filled microlens array integrated with microfluidic network," Opt. Express. 11, 2370-2378 (2003).
[CrossRef] [PubMed]

Li, Y.

Y. Li, X. J. Yi, and J. H. Hao, " Design and fabrication of 128×128 diffractive microlens arrays on Si for PtSi FPA," Proc. SPIE 3553, 132-137 (1998).
[CrossRef]

Lien, V.

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, "High-performance fluidic adaptive lenses," Appl. Opt. 43, 783-787 (2004).
[CrossRef] [PubMed]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, "Fluidic adaptive lens with high focal length tenability," Appl. Phys. Lett. 82, 3171-3173 (2003).
[CrossRef]

Lin, C. P.

C. P. Lin, H. Yang, and C. K. Chao, "A new microlens array fabrication method using UV proximity printing," J. Micromech. Microeng. 13, 748-757 (2003).
[CrossRef]

Liu, G. L.

N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, "Tunable liquid-filled microlens array integrated with microfluidic network," Opt. Express. 11, 2370-2378 (2003).
[CrossRef] [PubMed]

Lo, Y. H.

D. Y. Zhang, N. Justis, and Y. H. Lo, "Fluidic adaptive lens of transformable lens type," Appl. Phys. Lett. 84 4194-4196 (2004).
[CrossRef]

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, "High-performance fluidic adaptive lenses," Appl. Opt. 43, 783-787 (2004).
[CrossRef] [PubMed]

D. Y. Zhang, N. Justis, and Y. H. Lo, "Integrated fluidic adaptive zoom lens," Opt. Lett. 15, 2855-2857 (2004).
[CrossRef]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, "Fluidic adaptive lens with high focal length tenability," Appl. Phys. Lett. 82, 3171-3173 (2003).
[CrossRef]

Muller, R. S.

H. Choo and R. S. Muller, "Addressable microlens array to improve dynamic range of Shack-Hartmann sensors," J. Microelectromech. Syst. 15, 1555-1567 (2006).
[CrossRef]

Nagy, L. J.

G. Yoon, S. Pantanelli, and L. J. Nagy, "Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes," J. Biomed. Opt. 11, 0305021-0305023 (2006).
[CrossRef]

Ngo, N. Q.

Ong, N. S.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, "Microlens array produced using hot embossing process," Microelectron. Eng. 60, 365-379 (2002).
[CrossRef]

Pantanelli, S.

G. Yoon, S. Pantanelli, and L. J. Nagy, "Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes," J. Biomed. Opt. 11, 0305021-0305023 (2006).
[CrossRef]

Ren, H.

H. Ren and S. T. Wu, "Adaptive liquid crystal lens with large focal length tenability," Opt Express. 14, 11292-11298 (2006).
[CrossRef] [PubMed]

Ren, H. W.

H. W. Ren and S. T. Wu, "Variable-focus liquid lens," Opt. Express. 15, 5931-5936 (2007).
[CrossRef] [PubMed]

Varahramyan, K.

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, "Polymer-based variable focal length microlens system," J. Micromech. Microeng. 14, 1665-1673 (2004).
[CrossRef]

J. Chen, W. Wang, J. Fang, and K. Varahramyan, "Variable-focusing microlens with microfluidic chip," J. Micromech. Microeng. 14, 675-680 (2004).
[CrossRef]

Wang, W.

J. Chen, W. Wang, J. Fang, and K. Varahramyan, "Variable-focusing microlens with microfluidic chip," J. Micromech. Microeng. 14, 675-680 (2004).
[CrossRef]

Wei, P. K.

W. L. Chang and P. K. Wei, "Fabrication of a close-packed hemispherical submicron lens array and its application in photolithography," Opt. Express. 15, 6774-6783 (2007).
[CrossRef] [PubMed]

Wu, S. T.

H. W. Ren and S. T. Wu, "Variable-focus liquid lens," Opt. Express. 15, 5931-5936 (2007).
[CrossRef] [PubMed]

H. Ren and S. T. Wu, "Adaptive liquid crystal lens with large focal length tenability," Opt Express. 14, 11292-11298 (2006).
[CrossRef] [PubMed]

Yang, C. Y.

H. Yang, C. Y. Yang, and M. S. Yeh, "Miniaturized variable-focus lens fabrication using liquid filling technique," Microsyst. Technol. 14, 1067-1072 (2007).
[CrossRef]

Yang, H.

H. Yang, C. Y. Yang, and M. S. Yeh, "Miniaturized variable-focus lens fabrication using liquid filling technique," Microsyst. Technol. 14, 1067-1072 (2007).
[CrossRef]

C. P. Lin, H. Yang, and C. K. Chao, "A new microlens array fabrication method using UV proximity printing," J. Micromech. Microeng. 13, 748-757 (2003).
[CrossRef]

Yeh, M. S.

H. Yang, C. Y. Yang, and M. S. Yeh, "Miniaturized variable-focus lens fabrication using liquid filling technique," Microsyst. Technol. 14, 1067-1072 (2007).
[CrossRef]

Yi, X. J.

Y. Li, X. J. Yi, and J. H. Hao, " Design and fabrication of 128×128 diffractive microlens arrays on Si for PtSi FPA," Proc. SPIE 3553, 132-137 (1998).
[CrossRef]

Yoon, G.

G. Yoon, S. Pantanelli, and L. J. Nagy, "Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes," J. Biomed. Opt. 11, 0305021-0305023 (2006).
[CrossRef]

Yu, H. B.

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, "A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array," J. Micromech. Microeng. 18, 105017 (2008).
[CrossRef]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, "Optofluidic variable aperture," Opt. Lett. 33, 548-550 (2008).
[CrossRef]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, "A variable optical attenuator based on optofluidic technology," J. Micromech. Microeng. 18, 115016 (2008).
[CrossRef]

Yuan, X. C.

Zeng, X. F.

X. F. Zeng and H. R. Jiang, "Polydimethylsiloxane microlens arraya fabricated through liquid-phase photopolymerization and molding," J. Microelectromech Syst. 17, 1210-1217 (2008).
[CrossRef]

Zhang, D. Y.

D. Y. Zhang, N. Justis, and Y. H. Lo, "Integrated fluidic adaptive zoom lens," Opt. Lett. 15, 2855-2857 (2004).
[CrossRef]

D. Y. Zhang, N. Justis, V. Lien, Y. Berdichevsky, and Y. H. Lo, "High-performance fluidic adaptive lenses," Appl. Opt. 43, 783-787 (2004).
[CrossRef] [PubMed]

D. Y. Zhang, N. Justis, and Y. H. Lo, "Fluidic adaptive lens of transformable lens type," Appl. Phys. Lett. 84 4194-4196 (2004).
[CrossRef]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, "Fluidic adaptive lens with high focal length tenability," Appl. Phys. Lett. 82, 3171-3173 (2003).
[CrossRef]

Zhou, G. Y.

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, "A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array," J. Micromech. Microeng. 18, 105017 (2008).
[CrossRef]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, "A variable optical attenuator based on optofluidic technology," J. Micromech. Microeng. 18, 115016 (2008).
[CrossRef]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, "Optofluidic variable aperture," Opt. Lett. 33, 548-550 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, "Fluidic adaptive lens with high focal length tenability," Appl. Phys. Lett. 82, 3171-3173 (2003).
[CrossRef]

S. Kuiper and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85, 1128-1130 (2004).
[CrossRef]

D. Y. Zhang, N. Justis, and Y. H. Lo, "Fluidic adaptive lens of transformable lens type," Appl. Phys. Lett. 84 4194-4196 (2004).
[CrossRef]

J. Biomed. Opt.

G. Yoon, S. Pantanelli, and L. J. Nagy, "Large-dynamic-range Shack-Hartmann wavefront sensor for highly aberrated eyes," J. Biomed. Opt. 11, 0305021-0305023 (2006).
[CrossRef]

J. Microelectromech Syst.

X. F. Zeng and H. R. Jiang, "Polydimethylsiloxane microlens arraya fabricated through liquid-phase photopolymerization and molding," J. Microelectromech Syst. 17, 1210-1217 (2008).
[CrossRef]

J. Microelectromech. Syst.

H. Choo and R. S. Muller, "Addressable microlens array to improve dynamic range of Shack-Hartmann sensors," J. Microelectromech. Syst. 15, 1555-1567 (2006).
[CrossRef]

J. Micromech. Microeng.

C. P. Lin, H. Yang, and C. K. Chao, "A new microlens array fabrication method using UV proximity printing," J. Micromech. Microeng. 13, 748-757 (2003).
[CrossRef]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, "A tunable Shack-Hartmann wavefront sensor based on a liquid-filled microlens array," J. Micromech. Microeng. 18, 105017 (2008).
[CrossRef]

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, "Polymer-based variable focal length microlens system," J. Micromech. Microeng. 14, 1665-1673 (2004).
[CrossRef]

J. Chen, W. Wang, J. Fang, and K. Varahramyan, "Variable-focusing microlens with microfluidic chip," J. Micromech. Microeng. 14, 675-680 (2004).
[CrossRef]

H. B. Yu, G. Y. Zhou, F. S. Chau, and F. W. Lee, "A variable optical attenuator based on optofluidic technology," J. Micromech. Microeng. 18, 115016 (2008).
[CrossRef]

Microelectron. Eng.

N. S. Ong, Y. H. Koh, and Y. Q. Fu, "Microlens array produced using hot embossing process," Microelectron. Eng. 60, 365-379 (2002).
[CrossRef]

Microsyst. Technol.

H. Yang, C. Y. Yang, and M. S. Yeh, "Miniaturized variable-focus lens fabrication using liquid filling technique," Microsyst. Technol. 14, 1067-1072 (2007).
[CrossRef]

Opt Express.

H. Ren and S. T. Wu, "Adaptive liquid crystal lens with large focal length tenability," Opt Express. 14, 11292-11298 (2006).
[CrossRef] [PubMed]

Opt. Express.

N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, "Tunable liquid-filled microlens array integrated with microfluidic network," Opt. Express. 11, 2370-2378 (2003).
[CrossRef] [PubMed]

W. L. Chang and P. K. Wei, "Fabrication of a close-packed hemispherical submicron lens array and its application in photolithography," Opt. Express. 15, 6774-6783 (2007).
[CrossRef] [PubMed]

H. W. Ren and S. T. Wu, "Variable-focus liquid lens," Opt. Express. 15, 5931-5936 (2007).
[CrossRef] [PubMed]

Opt. Lett.

Proc. SPIE

Y. Li, X. J. Yi, and J. H. Hao, " Design and fabrication of 128×128 diffractive microlens arrays on Si for PtSi FPA," Proc. SPIE 3553, 132-137 (1998).
[CrossRef]

Other

N. F. Borrelli, Microoptics Technology (2nd Edition, Marcel Dekker, 2005), Chap. 1.

A. Jain and H. Xie, "Endoscopic microprobe with a LVD microlens scanner for confocal imaging," Optical MEMS and Their Applications Conference, 2006. IEEE/LEOS International Conference on. 168-169, 2006.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of the membrane structure for double focus microlens design

Fig. 2.
Fig. 2.

Fabrication process of the double focus microlens

Fig. 3
Fig. 3

Simulation results for the membrane deformation. (a) Membrane deformation under different pressures (From bottom to top, the pressure value are 200Pa, 400Pa, 600Pa, 800Pa, 1kPa, 2kPa, 3kPa, 4kPa, 5kPa, 6kPa, 7kPa, 8kPa, 9kPa and 9.5kPa, respectively); (b) The comparison of membrane deformation under 5kPa pressure in single-focus and double-focus design.

Fig. 4.
Fig. 4.

Simulation results for the focal length variation as a function of the pressure

Fig. 5.
Fig. 5.

Simulation results for different structure designs

Fig. 6.
Fig. 6.

The fabricated double focus microlens operation under different pressure

Fig. 7.
Fig. 7.

The cross sectional picture of the fabricated membrane in different region

Fig. 8.
Fig. 8.

Beam transmission through the double focus microlens

Fig. 9.
Fig. 9.

Pictures taken from the fabricated double focus microlens

Tables (3)

Tables Icon

Table 1. Structure parameters of the membrane

Tables Icon

Table 2. The simulation and experiment result about the two focuses

Tables Icon

Table 3. The spherical aberration in the central and peripheral regions

Metrics