Abstract

Fringe visibility detection of the interaction of two bus spatial eigenmodes with a resonant cavity is investigated for the purpose of achieving a sensor platform with high sensitivity. The power distribution between the bus waveguide eigenmodes is modulated by the interaction with the cavity and is detected via fringe visibility lineshapes produced by twin-fiber interferometry. A test device is fabricated in a polymer-silica material system by a photolithographic process and is characterized by measuring the fringe visibility change as a function of analyte refractive index. Fringe visibility modulation from a straight two-mode waveguide coupled to a single mode ring resonator exposed to an aqueous glucose solution demonstrates a visibility change of 1.57 per weight percent, compared to a transmission change of 0.19 per weight percent for a single mode waveguide critically coupled to a ring with similar intrinsic quality factor. The demonstrated change in fringe visibility is 8.2 times larger.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ksendzov and Y. Lin, "Integrated optics ring-resonator sensors for protein detection," Opt. Lett. 30, 3344-3346 (2005).
    [CrossRef]
  2. C-Y.  Chao, W.  Fung, and L. J.  Guo, "Polymer microring resonators for biochemical sensing applications," IEEE J. Sel. Top. Quantum Electron.  12, 134-142 (2006).
    [CrossRef]
  3. A.  Yalcin, K. C.  Popat, O. C.  Aldridge, T. A.  Desai, J.  Hryniewicz, N.  Chbouki, B. E.  Little, O.  King, V.  Van, S.  Chu, D.  Gill, M.  Anthes-Washburn, M. S.  Unlu, and B. B.  Goldberg, "Optical Sensing of Biomolecules Using Microring Resonators," IEEE J. Sel. Top. Quantum Electron.  12, 148-155 (2006).
    [CrossRef]
  4. C.-Y. Chao and L. J. Guo, "Design and optimization of microring resonators in biochemical sensing applications," J. Lightwave Technol. 24, 1395-1402 (2006).
    [CrossRef]
  5. K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, "Silicon-on-Insulator microring resonator for sensitive and label-free biosensing," Opt. Express 15, 7610-7615 (2007).
    [CrossRef] [PubMed]
  6. D. X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, "Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding," Opt. Express 16, 15137-15148 (2008).
    [CrossRef] [PubMed]
  7. R. W. Boyd and J. E. Heebner, "Sensitive disk resonator photonic biosensor," Appl. Opt. 40, 5742-5747 (2001).
    [CrossRef]
  8. E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, "Sensor based on an integrated optical microcavity," Opt. Lett. 27, 512-514 (2002).
    [CrossRef]
  9. E.  Krioukov, J.  Greve, and C.  Otto, "Performance of integrated optical microcavities for refractive index and fluorescence sensing," Sens. Actuators B  90, 58-67 (2003).
    [CrossRef]
  10. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, "Shift of whispering-gallery modes in microspheres by protein adsorption," Opt. Lett. 28, 272-274 (2003).
    [CrossRef] [PubMed]
  11. N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
    [CrossRef]
  12. E.  Chow, A.  Grot, L. W.  Mirkarimi, M.  Sigalas, and G.  Girolami, "Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity," Opt. Lett.  29, 1093-1095 (2004).
    [CrossRef] [PubMed]
  13. N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, "Photonic-crystal waveguide biosensor," Opt. Express 15, 3169-3176 (2007).
    [CrossRef] [PubMed]
  14. M. R. Lee and P. M. Fauchet, "Two-dimensional silicon photonic crystal based biosensing platform for protein detection," Opt. Express 15, 4530-4535 (2007).
    [CrossRef] [PubMed]
  15. S. Mandal and D. Erickson, "Nanoscale optofluidic sensor arrays," Opt. Express 16, 1623-1631 (2008).
    [CrossRef] [PubMed]
  16. I. M. White, H. Oveys, and X. Fan, "Liquid-core optical ring-resonator sensors," Opt. Lett. 31, 1319-1321 (2006).
    [CrossRef] [PubMed]
  17. T. Ling and L. J. Guo, "A unique resonance mode observed in a prism-coupled micro-tube resonator sensor with superior index sensitivity," Opt. Express 15, 17424-17432 (2007).
    [CrossRef] [PubMed]
  18. V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, "Refractometric sensor based on whispering-gallery modes of thin capillarie," Opt. Express 15, 12011-12016 (2007).
    [CrossRef] [PubMed]
  19. F. Xu, and G. Brambilla, "Demonstration of a refractometric sensor based on optical microfiber coil resonator," Appl. Phys. Lett. 92,101126 (2008).
    [CrossRef]
  20. A. M.  Armani, R. P.  Kulkarni, S. E.  Fraser, R. C.  Flagan, and K. J.  Vahala, "Label-free, single-molecule detection with optical microcavities," Science  317, 783-787 (2007).
    [CrossRef] [PubMed]
  21. S. Fan, "Sharp asymmetric line shapes in side-coupled waveguide-cavity systems," Appl. Phys. Lett. 80, 908-910 (2002).
    [CrossRef]
  22. C.-Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003).
    [CrossRef]
  23. Y. Xiao, V. Gaddam, and L. Yang, "Coupled optical microcavities: an enhanced refractometric sensing configuration," Opt. Express 16, 12538-12543 (2008).
    [CrossRef] [PubMed]
  24. M. Sumetsky, "Optimization of optical ring resonator devices for sensing applications," Opt. Lett. 32, 2577-2579 (2007).
    [CrossRef] [PubMed]
  25. B. T. Lee and S. Y. Shin, "Mode-order converter in a multimode waveguide," Opt. Lett. 28, 1660-1662 (2003).
    [CrossRef] [PubMed]
  26. L. J. Pelz and B. L. Anderson, "Practical use of the spatial coherence function for determining laser transverse mode structure," Opt. Eng. 34, 3323-3328 (1995).
    [CrossRef]
  27. K. R. Hiremath, R. Stoffer, and M. Hammer, "Modeling of circular integrated optical microresonators by 2-D frequency domain coupled mode theory," Opt. Commun. 257, 277-297 (2006).
    [CrossRef]
  28. A. Hardy and W. Streifer, "Coupled mode theory of parallel waveguides," J. Lightwave Technol. 3, 1135-1146 (1985).
    [CrossRef]
  29. A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000).
    [CrossRef]
  30. U. Fano, "Effects of Configuration Interaction on Intensities and Phase Shifts," Phys. Rev. 124, 1866-1878 (1961).
    [CrossRef]
  31. K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2006).
  32. I. M. White and X. Fan, "On the performance quantification of resonant refractive index sensors," Opt. Express 16, 1020-1028 (2008).
    [CrossRef] [PubMed]
  33. Y. Liu, P. Hering, J., and M. O. Scully, "An Integrated Optical Sensor for Measuring Glucose Concentration," Appl. Phys. B 54, 18-23 (1992).
    [CrossRef]

2008 (5)

2007 (7)

2006 (5)

C-Y.  Chao, W.  Fung, and L. J.  Guo, "Polymer microring resonators for biochemical sensing applications," IEEE J. Sel. Top. Quantum Electron.  12, 134-142 (2006).
[CrossRef]

A.  Yalcin, K. C.  Popat, O. C.  Aldridge, T. A.  Desai, J.  Hryniewicz, N.  Chbouki, B. E.  Little, O.  King, V.  Van, S.  Chu, D.  Gill, M.  Anthes-Washburn, M. S.  Unlu, and B. B.  Goldberg, "Optical Sensing of Biomolecules Using Microring Resonators," IEEE J. Sel. Top. Quantum Electron.  12, 148-155 (2006).
[CrossRef]

C.-Y. Chao and L. J. Guo, "Design and optimization of microring resonators in biochemical sensing applications," J. Lightwave Technol. 24, 1395-1402 (2006).
[CrossRef]

I. M. White, H. Oveys, and X. Fan, "Liquid-core optical ring-resonator sensors," Opt. Lett. 31, 1319-1321 (2006).
[CrossRef] [PubMed]

K. R. Hiremath, R. Stoffer, and M. Hammer, "Modeling of circular integrated optical microresonators by 2-D frequency domain coupled mode theory," Opt. Commun. 257, 277-297 (2006).
[CrossRef]

2005 (2)

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

A. Ksendzov and Y. Lin, "Integrated optics ring-resonator sensors for protein detection," Opt. Lett. 30, 3344-3346 (2005).
[CrossRef]

2004 (1)

2003 (4)

E.  Krioukov, J.  Greve, and C.  Otto, "Performance of integrated optical microcavities for refractive index and fluorescence sensing," Sens. Actuators B  90, 58-67 (2003).
[CrossRef]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, "Shift of whispering-gallery modes in microspheres by protein adsorption," Opt. Lett. 28, 272-274 (2003).
[CrossRef] [PubMed]

C.-Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

B. T. Lee and S. Y. Shin, "Mode-order converter in a multimode waveguide," Opt. Lett. 28, 1660-1662 (2003).
[CrossRef] [PubMed]

2002 (2)

E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, "Sensor based on an integrated optical microcavity," Opt. Lett. 27, 512-514 (2002).
[CrossRef]

S. Fan, "Sharp asymmetric line shapes in side-coupled waveguide-cavity systems," Appl. Phys. Lett. 80, 908-910 (2002).
[CrossRef]

2001 (1)

2000 (1)

A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000).
[CrossRef]

1995 (1)

L. J. Pelz and B. L. Anderson, "Practical use of the spatial coherence function for determining laser transverse mode structure," Opt. Eng. 34, 3323-3328 (1995).
[CrossRef]

1992 (1)

Y. Liu, P. Hering, J., and M. O. Scully, "An Integrated Optical Sensor for Measuring Glucose Concentration," Appl. Phys. B 54, 18-23 (1992).
[CrossRef]

1985 (1)

A. Hardy and W. Streifer, "Coupled mode theory of parallel waveguides," J. Lightwave Technol. 3, 1135-1146 (1985).
[CrossRef]

1961 (1)

U. Fano, "Effects of Configuration Interaction on Intensities and Phase Shifts," Phys. Rev. 124, 1866-1878 (1961).
[CrossRef]

Aldridge, O. C.

A.  Yalcin, K. C.  Popat, O. C.  Aldridge, T. A.  Desai, J.  Hryniewicz, N.  Chbouki, B. E.  Little, O.  King, V.  Van, S.  Chu, D.  Gill, M.  Anthes-Washburn, M. S.  Unlu, and B. B.  Goldberg, "Optical Sensing of Biomolecules Using Microring Resonators," IEEE J. Sel. Top. Quantum Electron.  12, 148-155 (2006).
[CrossRef]

Anderson, B. L.

L. J. Pelz and B. L. Anderson, "Practical use of the spatial coherence function for determining laser transverse mode structure," Opt. Eng. 34, 3323-3328 (1995).
[CrossRef]

Andrés, M. V.

Anthes-Washburn, M.

A.  Yalcin, K. C.  Popat, O. C.  Aldridge, T. A.  Desai, J.  Hryniewicz, N.  Chbouki, B. E.  Little, O.  King, V.  Van, S.  Chu, D.  Gill, M.  Anthes-Washburn, M. S.  Unlu, and B. B.  Goldberg, "Optical Sensing of Biomolecules Using Microring Resonators," IEEE J. Sel. Top. Quantum Electron.  12, 148-155 (2006).
[CrossRef]

Armani, A. M.

A. M.  Armani, R. P.  Kulkarni, S. E.  Fraser, R. C.  Flagan, and K. J.  Vahala, "Label-free, single-molecule detection with optical microcavities," Science  317, 783-787 (2007).
[CrossRef] [PubMed]

Arnold, S.

Baets, R.

Bartolozzi, I.

Bienstman, P.

Borel, P. I.

Boyd, R. W.

Brambilla, G.

F. Xu, and G. Brambilla, "Demonstration of a refractometric sensor based on optical microfiber coil resonator," Appl. Phys. Lett. 92,101126 (2008).
[CrossRef]

Chao, C.-Y.

C.-Y. Chao and L. J. Guo, "Design and optimization of microring resonators in biochemical sensing applications," J. Lightwave Technol. 24, 1395-1402 (2006).
[CrossRef]

C.-Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

Chao, C-Y.

C-Y.  Chao, W.  Fung, and L. J.  Guo, "Polymer microring resonators for biochemical sensing applications," IEEE J. Sel. Top. Quantum Electron.  12, 134-142 (2006).
[CrossRef]

Chbouki, N.

A.  Yalcin, K. C.  Popat, O. C.  Aldridge, T. A.  Desai, J.  Hryniewicz, N.  Chbouki, B. E.  Little, O.  King, V.  Van, S.  Chu, D.  Gill, M.  Anthes-Washburn, M. S.  Unlu, and B. B.  Goldberg, "Optical Sensing of Biomolecules Using Microring Resonators," IEEE J. Sel. Top. Quantum Electron.  12, 148-155 (2006).
[CrossRef]

Cheben, P.

Chow, E.

Chu, S.

A.  Yalcin, K. C.  Popat, O. C.  Aldridge, T. A.  Desai, J.  Hryniewicz, N.  Chbouki, B. E.  Little, O.  King, V.  Van, S.  Chu, D.  Gill, M.  Anthes-Washburn, M. S.  Unlu, and B. B.  Goldberg, "Optical Sensing of Biomolecules Using Microring Resonators," IEEE J. Sel. Top. Quantum Electron.  12, 148-155 (2006).
[CrossRef]

De Vos, K.

Delâge, A.

Densmore, A.

Desai, T. A.

A.  Yalcin, K. C.  Popat, O. C.  Aldridge, T. A.  Desai, J.  Hryniewicz, N.  Chbouki, B. E.  Little, O.  King, V.  Van, S.  Chu, D.  Gill, M.  Anthes-Washburn, M. S.  Unlu, and B. B.  Goldberg, "Optical Sensing of Biomolecules Using Microring Resonators," IEEE J. Sel. Top. Quantum Electron.  12, 148-155 (2006).
[CrossRef]

Díez, A.

Driessen, A.

Erickson, D.

Fan, S.

S. Fan, "Sharp asymmetric line shapes in side-coupled waveguide-cavity systems," Appl. Phys. Lett. 80, 908-910 (2002).
[CrossRef]

Fan, X.

Fano, U.

U. Fano, "Effects of Configuration Interaction on Intensities and Phase Shifts," Phys. Rev. 124, 1866-1878 (1961).
[CrossRef]

Fauchet, P. M.

Flagan, R. C.

A. M.  Armani, R. P.  Kulkarni, S. E.  Fraser, R. C.  Flagan, and K. J.  Vahala, "Label-free, single-molecule detection with optical microcavities," Science  317, 783-787 (2007).
[CrossRef] [PubMed]

Frandsen, L. H.

Fraser, S. E.

A. M.  Armani, R. P.  Kulkarni, S. E.  Fraser, R. C.  Flagan, and K. J.  Vahala, "Label-free, single-molecule detection with optical microcavities," Science  317, 783-787 (2007).
[CrossRef] [PubMed]

Fung, W.

C-Y.  Chao, W.  Fung, and L. J.  Guo, "Polymer microring resonators for biochemical sensing applications," IEEE J. Sel. Top. Quantum Electron.  12, 134-142 (2006).
[CrossRef]

Gaddam, V.

Gill, D.

A.  Yalcin, K. C.  Popat, O. C.  Aldridge, T. A.  Desai, J.  Hryniewicz, N.  Chbouki, B. E.  Little, O.  King, V.  Van, S.  Chu, D.  Gill, M.  Anthes-Washburn, M. S.  Unlu, and B. B.  Goldberg, "Optical Sensing of Biomolecules Using Microring Resonators," IEEE J. Sel. Top. Quantum Electron.  12, 148-155 (2006).
[CrossRef]

Gimeno, B.

Girolami, G.

Goldberg, B. B.

A.  Yalcin, K. C.  Popat, O. C.  Aldridge, T. A.  Desai, J.  Hryniewicz, N.  Chbouki, B. E.  Little, O.  King, V.  Van, S.  Chu, D.  Gill, M.  Anthes-Washburn, M. S.  Unlu, and B. B.  Goldberg, "Optical Sensing of Biomolecules Using Microring Resonators," IEEE J. Sel. Top. Quantum Electron.  12, 148-155 (2006).
[CrossRef]

Greve, J.

E.  Krioukov, J.  Greve, and C.  Otto, "Performance of integrated optical microcavities for refractive index and fluorescence sensing," Sens. Actuators B  90, 58-67 (2003).
[CrossRef]

E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, "Sensor based on an integrated optical microcavity," Opt. Lett. 27, 512-514 (2002).
[CrossRef]

Grot, A.

Guo, L. J.

T. Ling and L. J. Guo, "A unique resonance mode observed in a prism-coupled micro-tube resonator sensor with superior index sensitivity," Opt. Express 15, 17424-17432 (2007).
[CrossRef] [PubMed]

C.-Y. Chao and L. J. Guo, "Design and optimization of microring resonators in biochemical sensing applications," J. Lightwave Technol. 24, 1395-1402 (2006).
[CrossRef]

C-Y.  Chao, W.  Fung, and L. J.  Guo, "Polymer microring resonators for biochemical sensing applications," IEEE J. Sel. Top. Quantum Electron.  12, 134-142 (2006).
[CrossRef]

C.-Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

Hammer, M.

K. R. Hiremath, R. Stoffer, and M. Hammer, "Modeling of circular integrated optical microresonators by 2-D frequency domain coupled mode theory," Opt. Commun. 257, 277-297 (2006).
[CrossRef]

Hanumegowda, N. M.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Hardy, A.

A. Hardy and W. Streifer, "Coupled mode theory of parallel waveguides," J. Lightwave Technol. 3, 1135-1146 (1985).
[CrossRef]

Heebner, J. E.

Hering, P.

Y. Liu, P. Hering, J., and M. O. Scully, "An Integrated Optical Sensor for Measuring Glucose Concentration," Appl. Phys. B 54, 18-23 (1992).
[CrossRef]

Hiremath, K. R.

K. R. Hiremath, R. Stoffer, and M. Hammer, "Modeling of circular integrated optical microresonators by 2-D frequency domain coupled mode theory," Opt. Commun. 257, 277-297 (2006).
[CrossRef]

Holler, S.

Hryniewicz, J.

A.  Yalcin, K. C.  Popat, O. C.  Aldridge, T. A.  Desai, J.  Hryniewicz, N.  Chbouki, B. E.  Little, O.  King, V.  Van, S.  Chu, D.  Gill, M.  Anthes-Washburn, M. S.  Unlu, and B. B.  Goldberg, "Optical Sensing of Biomolecules Using Microring Resonators," IEEE J. Sel. Top. Quantum Electron.  12, 148-155 (2006).
[CrossRef]

Janz, S.

Khoshsima, M.

King, O.

A.  Yalcin, K. C.  Popat, O. C.  Aldridge, T. A.  Desai, J.  Hryniewicz, N.  Chbouki, B. E.  Little, O.  King, V.  Van, S.  Chu, D.  Gill, M.  Anthes-Washburn, M. S.  Unlu, and B. B.  Goldberg, "Optical Sensing of Biomolecules Using Microring Resonators," IEEE J. Sel. Top. Quantum Electron.  12, 148-155 (2006).
[CrossRef]

Kjems, J.

Klunder, D. J. W.

Krioukov, E.

E.  Krioukov, J.  Greve, and C.  Otto, "Performance of integrated optical microcavities for refractive index and fluorescence sensing," Sens. Actuators B  90, 58-67 (2003).
[CrossRef]

E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, "Sensor based on an integrated optical microcavity," Opt. Lett. 27, 512-514 (2002).
[CrossRef]

Kristensen, M.

Ksendzov, A.

Kulkarni, R. P.

A. M.  Armani, R. P.  Kulkarni, S. E.  Fraser, R. C.  Flagan, and K. J.  Vahala, "Label-free, single-molecule detection with optical microcavities," Science  317, 783-787 (2007).
[CrossRef] [PubMed]

Lapointe, J.

Lee, B. T.

Lee, M. R.

Lin, Y.

Ling, T.

Little, B. E.

A.  Yalcin, K. C.  Popat, O. C.  Aldridge, T. A.  Desai, J.  Hryniewicz, N.  Chbouki, B. E.  Little, O.  King, V.  Van, S.  Chu, D.  Gill, M.  Anthes-Washburn, M. S.  Unlu, and B. B.  Goldberg, "Optical Sensing of Biomolecules Using Microring Resonators," IEEE J. Sel. Top. Quantum Electron.  12, 148-155 (2006).
[CrossRef]

Liu, Y.

Y. Liu, P. Hering, J., and M. O. Scully, "An Integrated Optical Sensor for Measuring Glucose Concentration," Appl. Phys. B 54, 18-23 (1992).
[CrossRef]

Lopinski, G.

Mandal, S.

McKinnon, R.

Mirkarimi, L. W.

Mischki, T.

Otto, C.

E.  Krioukov, J.  Greve, and C.  Otto, "Performance of integrated optical microcavities for refractive index and fluorescence sensing," Sens. Actuators B  90, 58-67 (2003).
[CrossRef]

E. Krioukov, D. J. W. Klunder, A. Driessen, J. Greve, and C. Otto, "Sensor based on an integrated optical microcavity," Opt. Lett. 27, 512-514 (2002).
[CrossRef]

Oveys, H.

Patel, B. C.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Pelz, L. J.

L. J. Pelz and B. L. Anderson, "Practical use of the spatial coherence function for determining laser transverse mode structure," Opt. Eng. 34, 3323-3328 (1995).
[CrossRef]

Popat, K. C.

A.  Yalcin, K. C.  Popat, O. C.  Aldridge, T. A.  Desai, J.  Hryniewicz, N.  Chbouki, B. E.  Little, O.  King, V.  Van, S.  Chu, D.  Gill, M.  Anthes-Washburn, M. S.  Unlu, and B. B.  Goldberg, "Optical Sensing of Biomolecules Using Microring Resonators," IEEE J. Sel. Top. Quantum Electron.  12, 148-155 (2006).
[CrossRef]

Post, E.

Schacht, E.

Schmid, J. H.

Shin, S. Y.

Sigalas, M.

Skivesen, N.

Stica, C. J.

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Stoffer, R.

K. R. Hiremath, R. Stoffer, and M. Hammer, "Modeling of circular integrated optical microresonators by 2-D frequency domain coupled mode theory," Opt. Commun. 257, 277-297 (2006).
[CrossRef]

Streifer, W.

A. Hardy and W. Streifer, "Coupled mode theory of parallel waveguides," J. Lightwave Technol. 3, 1135-1146 (1985).
[CrossRef]

Sumetsky, M.

Teraoka, I.

Têtu, A.

Unlu, M. S.

A.  Yalcin, K. C.  Popat, O. C.  Aldridge, T. A.  Desai, J.  Hryniewicz, N.  Chbouki, B. E.  Little, O.  King, V.  Van, S.  Chu, D.  Gill, M.  Anthes-Washburn, M. S.  Unlu, and B. B.  Goldberg, "Optical Sensing of Biomolecules Using Microring Resonators," IEEE J. Sel. Top. Quantum Electron.  12, 148-155 (2006).
[CrossRef]

Vahala, K. J.

A. M.  Armani, R. P.  Kulkarni, S. E.  Fraser, R. C.  Flagan, and K. J.  Vahala, "Label-free, single-molecule detection with optical microcavities," Science  317, 783-787 (2007).
[CrossRef] [PubMed]

Van, V.

A.  Yalcin, K. C.  Popat, O. C.  Aldridge, T. A.  Desai, J.  Hryniewicz, N.  Chbouki, B. E.  Little, O.  King, V.  Van, S.  Chu, D.  Gill, M.  Anthes-Washburn, M. S.  Unlu, and B. B.  Goldberg, "Optical Sensing of Biomolecules Using Microring Resonators," IEEE J. Sel. Top. Quantum Electron.  12, 148-155 (2006).
[CrossRef]

Vollmer, F.

Waldron, P.

White, I. M.

Xiao, Y.

Xu, D. X.

Xu, F.

F. Xu, and G. Brambilla, "Demonstration of a refractometric sensor based on optical microfiber coil resonator," Appl. Phys. Lett. 92,101126 (2008).
[CrossRef]

Yalcin, A.

A.  Yalcin, K. C.  Popat, O. C.  Aldridge, T. A.  Desai, J.  Hryniewicz, N.  Chbouki, B. E.  Little, O.  King, V.  Van, S.  Chu, D.  Gill, M.  Anthes-Washburn, M. S.  Unlu, and B. B.  Goldberg, "Optical Sensing of Biomolecules Using Microring Resonators," IEEE J. Sel. Top. Quantum Electron.  12, 148-155 (2006).
[CrossRef]

Yang, L.

Yariv, A.

A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000).
[CrossRef]

Zamora, V.

Appl. Opt. (1)

Appl. Phys. B (1)

Y. Liu, P. Hering, J., and M. O. Scully, "An Integrated Optical Sensor for Measuring Glucose Concentration," Appl. Phys. B 54, 18-23 (1992).
[CrossRef]

Appl. Phys. Lett. (4)

S. Fan, "Sharp asymmetric line shapes in side-coupled waveguide-cavity systems," Appl. Phys. Lett. 80, 908-910 (2002).
[CrossRef]

C.-Y. Chao and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett. 83, 1527-1529 (2003).
[CrossRef]

F. Xu, and G. Brambilla, "Demonstration of a refractometric sensor based on optical microfiber coil resonator," Appl. Phys. Lett. 92,101126 (2008).
[CrossRef]

N. M. Hanumegowda, C. J. Stica, B. C. Patel, I. M. White, and X. Fan, "Refractometric sensors based on microsphere resonators," Appl. Phys. Lett. 87, 201107 (2005).
[CrossRef]

Electron. Lett. (1)

A. Yariv, "Universal relations for coupling of optical power between microresonators and dielectric waveguides," Electron. Lett. 36, 321-322 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

C-Y.  Chao, W.  Fung, and L. J.  Guo, "Polymer microring resonators for biochemical sensing applications," IEEE J. Sel. Top. Quantum Electron.  12, 134-142 (2006).
[CrossRef]

A.  Yalcin, K. C.  Popat, O. C.  Aldridge, T. A.  Desai, J.  Hryniewicz, N.  Chbouki, B. E.  Little, O.  King, V.  Van, S.  Chu, D.  Gill, M.  Anthes-Washburn, M. S.  Unlu, and B. B.  Goldberg, "Optical Sensing of Biomolecules Using Microring Resonators," IEEE J. Sel. Top. Quantum Electron.  12, 148-155 (2006).
[CrossRef]

J. Lightwave Technol. (2)

Opt. Commun. (1)

K. R. Hiremath, R. Stoffer, and M. Hammer, "Modeling of circular integrated optical microresonators by 2-D frequency domain coupled mode theory," Opt. Commun. 257, 277-297 (2006).
[CrossRef]

Opt. Eng. (1)

L. J. Pelz and B. L. Anderson, "Practical use of the spatial coherence function for determining laser transverse mode structure," Opt. Eng. 34, 3323-3328 (1995).
[CrossRef]

Opt. Express (9)

Y. Xiao, V. Gaddam, and L. Yang, "Coupled optical microcavities: an enhanced refractometric sensing configuration," Opt. Express 16, 12538-12543 (2008).
[CrossRef] [PubMed]

I. M. White and X. Fan, "On the performance quantification of resonant refractive index sensors," Opt. Express 16, 1020-1028 (2008).
[CrossRef] [PubMed]

K. De Vos, I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets, "Silicon-on-Insulator microring resonator for sensitive and label-free biosensing," Opt. Express 15, 7610-7615 (2007).
[CrossRef] [PubMed]

D. X. Xu, A. Densmore, A. Delâge, P. Waldron, R. McKinnon, S. Janz, J. Lapointe, G. Lopinski, T. Mischki, E. Post, P. Cheben, and J. H. Schmid, "Folded cavity SOI microring sensors for high sensitivity and real time measurement of biomolecular binding," Opt. Express 16, 15137-15148 (2008).
[CrossRef] [PubMed]

T. Ling and L. J. Guo, "A unique resonance mode observed in a prism-coupled micro-tube resonator sensor with superior index sensitivity," Opt. Express 15, 17424-17432 (2007).
[CrossRef] [PubMed]

V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, "Refractometric sensor based on whispering-gallery modes of thin capillarie," Opt. Express 15, 12011-12016 (2007).
[CrossRef] [PubMed]

N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, "Photonic-crystal waveguide biosensor," Opt. Express 15, 3169-3176 (2007).
[CrossRef] [PubMed]

M. R. Lee and P. M. Fauchet, "Two-dimensional silicon photonic crystal based biosensing platform for protein detection," Opt. Express 15, 4530-4535 (2007).
[CrossRef] [PubMed]

S. Mandal and D. Erickson, "Nanoscale optofluidic sensor arrays," Opt. Express 16, 1623-1631 (2008).
[CrossRef] [PubMed]

Opt. Lett. (7)

Phys. Rev. (1)

U. Fano, "Effects of Configuration Interaction on Intensities and Phase Shifts," Phys. Rev. 124, 1866-1878 (1961).
[CrossRef]

Science (1)

A. M.  Armani, R. P.  Kulkarni, S. E.  Fraser, R. C.  Flagan, and K. J.  Vahala, "Label-free, single-molecule detection with optical microcavities," Science  317, 783-787 (2007).
[CrossRef] [PubMed]

Sens. Actuators B (1)

E.  Krioukov, J.  Greve, and C.  Otto, "Performance of integrated optical microcavities for refractive index and fluorescence sensing," Sens. Actuators B  90, 58-67 (2003).
[CrossRef]

Other (1)

K. Okamoto, Fundamentals of Optical Waveguides (Academic Press, 2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic of the multimode waveguide-cavity visibility based biosensor.

Fig. 2.
Fig. 2.

(a) Electric field profiles of TE0,0 and TE1,0 of multimode waveguide calculated by beam propagation method. (b) Coupling region of the straight two-mode waveguide and single mode ring waveguide with the following dimensions: waveguide height, h, multimode width, wmm , single mode width, wsm , and gap, g. The refractive indices are n 1 for the core, n 2 for the bottom cladding, and n 0 for the top cladding.

Fig. 3.
Fig. 3.

(a) Output power mode response for δi = δi max normalized to the total input power (ρ = 13 dB/cm). (b) Output power mode response for δi = δi max + π/2 normalized to the total input power. The magnitudes and phases of the coefficients obtained at 1.55 μm are |t 00| = 0.988, |t 11| = 0.914, |trr | = 0.895, |κ 01| ≈ |κ 10| ≈ 0.032, |κ 0r | ≈ |κ r0| ≈ 0.145, and |κ 1r | ≈ |κ r1| ≈ 0.400, ∠t 00 = =1.02, ∠t 11 = -0.10, ∠trr = -3.09, ∠κ 01 = -0.02, ∠κ 10 = -1.85, ∠κ 0r = -1.58, ∠κ r0 = 0.65, ∠κ 1r = 1.09, and ∠κ r1 = -1.12 for dimensions h = 1.5 μm, wmm = 2.5 μm, wsm , = 1.4 μm, g = 1.0 μm, and ring radius of 150 μm with a straight coupling section of 10 μm. The refractive indices are n 1 = 1.57, n 2 = 1.44, and n 0 = 1.33. The lengths of the ring waveguide and the two-mode waveguide in the simulation window were both 140 μm.

Fig. 4.
Fig. 4.

(a) Output mode power ratio, P 0/P 1, and output relative phase difference δo , for the lineshape of Fig. 3(a) where δi = δi max and equal input power distribution. (b) Visibility lineshapes calculated from Fig. 3(a) at three far-field angles: 7.92°, 13.39° and 18.85°.

Fig. 5.
Fig. 5.

Optical micrograph of fabricated test device showing mode converter, single mode ring, two-mode waveguide, beam spreader and the sampling waveguide inputs at the end of the beam spreader.

Fig. 6.
Fig. 6.

The transmission spectrum for a single-mode waveguide coupled to a single mode ring. The fitting parameters for air top-cladding are x = 0.910 (ρ = -8.5 dB/cm), y = 0.925. The fitting parameters for water top-cladding are x = 0.8656 (ρ = -13.0 dB/cm), y = 0.8953. The single mode waveguide coupled to the single mode ring was fabricated on the same chip as the two-mode waveguide coupled to a similar single mode ring for the purpose of comparison.

Fig. 7.
Fig. 7.

Location of glucose droplet on the device chip showing complete coverage of the two-mode waveguide.

Fig. 8.
Fig. 8.

(a) Fringes in measured power for a saw-wave drive. The visibility is 0.51. (b) The maximum and minimum powers measured for water top-cladding.

Fig. 9.
Fig. 9.

(a) Visibility experimentally measured at θ = ±22.6° for DI water, 0.167 wt% and 0.285 wt% glucose in DI water with theoretical fittings. (b) Change in visibility as the glucose solution was added to change the concentration of the drop on the chip surface.

Fig. 10.
Fig. 10.

Change in detected visibility measured experimentally as a function of glucose concentration in water, with theoretical change in normalized transmission intensity of a single mode coupled resonator at critical coupling.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

[ b 0 b 1 b r ] = [ t 00 κ 01 κ 0 r κ 10 t 11 κ 1 r κ r 0 κ r 1 t rr ] [ a 0 a 1 a r ] ,
b r 2 = κ r 0 2 a 0 2 + κ r 1 2 a 1 2 + 2 κ r 0 κ r 1 a 0 a 1 cos ( κ r 0 κ r 1 + δ i ) ,
a r = b r t r
t r exp ( L r ρ 2 j β L r ) ,
b 0 = t 00 a 0 + κ 01 a 1 + κ 0 r b r t r
b 1 = κ 10 a 0 + t 11 a 1 + κ 1 r b r t r ,
b r = ( κ r 0 a 0 + κ r 1 a 1 ) ( 1 t r t rr ) .
t rr β L r = 2 πn .
V = ( I max I min ) ( I max + I min ) ,
λ n a = η λ n eff .
S = s V λ n a ,
I = 1 ( 1 x 2 ) ( 1 y 2 ) ( 1 xy ) 2 + 4 xy sin 2 ( 2 πL n eff λ ) ,
S I | max 3 3 8 Q i λ ,
Q i = π x L n g ( 1 x ) λ ,

Metrics