Abstract

An optically illuminated micron-scale dielectric sphere can generate a photonic nanojet – a nonresonant propagating beam phenomenon of high amplitude, narrow waist, and substantial sensitivity to the presence of nanometer-scale particles and geometric features located within the beam. Via three-dimensional finite-difference time-domain computational electrodynamics modeling of illuminated graded-index microspheres, we have found that the useful length of a photonic nanojet can be increased by an order-of-magnitude to approximately 20 wavelengths. This is effectively a quasi one-dimensional light beam which may be useful for optical detection of natural or artificially introduced nanostructures deeply embedded within biological cells. Of particular interest in this regard is a potential application to visible-light detection of nanometer-scale anomalies within biological cells indicative of early-stage cancer.

© 2009 Optical Society of America

Full Article  |  PDF Article

Corrections

Soon-Cheol Kong, Allen Taflove, and Vadim Backman, "Quasi one-dimensional light beam generated by a graded-index microsphere: errata," Opt. Express 18, 3973-3973 (2010)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-18-4-3973

References

  • View by:
  • |
  • |
  • |

  1. Z. Chen, A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique," Opt. Express 12, 1214-1220 (2004).
    [CrossRef] [PubMed]
  2. X. Li, Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express 13, 526-533 (2005).
    [CrossRef] [PubMed]
  3. S. Lecler, Y. Takakura, and P. Meyrueis, "Properties of a three-dimensional photonic jet," Opt. Lett. 30, 2641-2643 (2005).
    [CrossRef] [PubMed]
  4. A. V. Itagi and W. A. Challener, "Optics of photonic nanojets," J. Opt. Soc. Am. A 22, 2847-2858 (2005).
    [CrossRef]
  5. Z. G. Chen, X. Li, A. Taflove, and V. Backman, "Superenhanced backscattering of light by nanoparticles," Opt. Lett. 31, 196-198 (2006).
    [CrossRef] [PubMed]
  6. A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
    [CrossRef]
  7. A. M. Kapitonov and V. N. Astratov, "Observation of nanojet-induced modes with small propagation losses in chains of coupled spherical cavities," Opt. Lett. 32, 409-411 (2007).
    [CrossRef] [PubMed]
  8. K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, "Enhanced Raman scattering by self-assembled silica spherical microparticles," J. Appl. Phys. 101, 063528 (2007).
    [CrossRef]
  9. S. Lecler, S. Haacke, N. Lecong, O. Crégut, J.-L. Rehspringer, and C. Hirlimann, "Photonic jet driven non-linear optics: Example of two-photon fluorescence enhancement by dielectric microspheres," Opt. Express 15, 4935-4942 (2007).
    [CrossRef] [PubMed]
  10. W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, "A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars," Nanotechnology 18, 485302 (2007).
    [CrossRef]
  11. A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, "Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere," Opt. Express 15, 17334-17342 (2007).
    [CrossRef] [PubMed]
  12. M. Gerlach, Y. P. Rakovich, and J. F. Donegan, "Nanojets and directional emission in symmetric photonic molecules," Opt. Express 15, 17343-17350 (2007).
    [CrossRef] [PubMed]
  13. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, "Direct imaging of photonic nanojets," Opt. Express 16, 6930-6940 (2008).
    [CrossRef] [PubMed]
  14. S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, "Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets," Appl. Phys. Lett. 92, 211102 (2008).
    [CrossRef]
  15. S. Yang and V. N. Astrov, "Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere," Appl. Phys. Lett. 92, 261111 (2008).
    [CrossRef]
  16. E. McLeod and C. B. Arnold, "Subwavelength direct-write nanopatterning using optically trapped microspheres," Nat. Nanotech. 3, 413-417 (2008).
    [CrossRef]
  17. Z. Chen, H. Chu, and S. Li, "Optical metrology using a photonic nanojet," U.S. Patent 7,394,535 (2008).
  18. X. Cui, D. Erni, and C. Hafner, "Optical forces on metallic nanoparticles induced by a photonic nanojet," Opt. Express 16, 13560-13568 (2008).
    [CrossRef] [PubMed]
  19. S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, "Photonic nanojet-enabled optical data storage," Opt. Express 16, 13713-13719 (2008).
    [CrossRef] [PubMed]
  20. A. Devilez, B. Stout, N. Bonod, and E. Popov, "Spectral analysis of three-dimensional photonic jets," Opt. Express 16, 14200-14212 (2008).
    [CrossRef] [PubMed]
  21. A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech, Boston, MA 2005).
  22. S.-C. Kong, J. J. Simpson, and V. Backman, "ADE-FDTD scattered-field formulation for dispersive materials," IEEE Microwave Wireless Comp. Lett. 18, 4-6 (2008).
    [CrossRef]
  23. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
    [CrossRef] [PubMed]
  24. J. F. Poco and L. W. Hrubesh, "Method of producing optical quality glass having a selected refractive index," U.S. Patent 6,158,244, (2008).
  25. O. V. Mazurin, M. V. Streltsina, and T. P. Shvaiko-Shavaikovskaya, Handbook of Glass Data (Elsevier, Amsterdam, 1993).
  26. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Appl. Opt. 22, 1099 (1983).
    [CrossRef] [PubMed]
  27. C. A. Balanis, Antenna Theory: Analysis and Design (John Wiley & Sons, New York, 1982).
  28. H. Subramanian, P. Pradhan, Y. Liu, I. Capoglu, X. Li, J. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, "Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells," Proc. National Acad. Sci. 105, 20124-20129 (2008).

2008 (9)

S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, "Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets," Appl. Phys. Lett. 92, 211102 (2008).
[CrossRef]

S. Yang and V. N. Astrov, "Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere," Appl. Phys. Lett. 92, 261111 (2008).
[CrossRef]

E. McLeod and C. B. Arnold, "Subwavelength direct-write nanopatterning using optically trapped microspheres," Nat. Nanotech. 3, 413-417 (2008).
[CrossRef]

S.-C. Kong, J. J. Simpson, and V. Backman, "ADE-FDTD scattered-field formulation for dispersive materials," IEEE Microwave Wireless Comp. Lett. 18, 4-6 (2008).
[CrossRef]

H. Subramanian, P. Pradhan, Y. Liu, I. Capoglu, X. Li, J. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, "Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells," Proc. National Acad. Sci. 105, 20124-20129 (2008).

P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, "Direct imaging of photonic nanojets," Opt. Express 16, 6930-6940 (2008).
[CrossRef] [PubMed]

X. Cui, D. Erni, and C. Hafner, "Optical forces on metallic nanoparticles induced by a photonic nanojet," Opt. Express 16, 13560-13568 (2008).
[CrossRef] [PubMed]

S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, "Photonic nanojet-enabled optical data storage," Opt. Express 16, 13713-13719 (2008).
[CrossRef] [PubMed]

A. Devilez, B. Stout, N. Bonod, and E. Popov, "Spectral analysis of three-dimensional photonic jets," Opt. Express 16, 14200-14212 (2008).
[CrossRef] [PubMed]

2007 (6)

2006 (2)

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Z. G. Chen, X. Li, A. Taflove, and V. Backman, "Superenhanced backscattering of light by nanoparticles," Opt. Lett. 31, 196-198 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (1)

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

1983 (1)

Alexander, R. W.

Arnold, C. B.

E. McLeod and C. B. Arnold, "Subwavelength direct-write nanopatterning using optically trapped microspheres," Nat. Nanotech. 3, 413-417 (2008).
[CrossRef]

Astratov, V. N.

Astrov, V. N.

S. Yang and V. N. Astrov, "Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere," Appl. Phys. Lett. 92, 261111 (2008).
[CrossRef]

Backman, V.

S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, "Photonic nanojet-enabled optical data storage," Opt. Express 16, 13713-13719 (2008).
[CrossRef] [PubMed]

H. Subramanian, P. Pradhan, Y. Liu, I. Capoglu, X. Li, J. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, "Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells," Proc. National Acad. Sci. 105, 20124-20129 (2008).

S.-C. Kong, J. J. Simpson, and V. Backman, "ADE-FDTD scattered-field formulation for dispersive materials," IEEE Microwave Wireless Comp. Lett. 18, 4-6 (2008).
[CrossRef]

S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, "Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets," Appl. Phys. Lett. 92, 211102 (2008).
[CrossRef]

A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, "Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere," Opt. Express 15, 17334-17342 (2007).
[CrossRef] [PubMed]

Z. G. Chen, X. Li, A. Taflove, and V. Backman, "Superenhanced backscattering of light by nanoparticles," Opt. Lett. 31, 196-198 (2006).
[CrossRef] [PubMed]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

X. Li, Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express 13, 526-533 (2005).
[CrossRef] [PubMed]

Z. Chen, A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique," Opt. Express 12, 1214-1220 (2004).
[CrossRef] [PubMed]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Bonod, N.

Capoglu, I.

H. Subramanian, P. Pradhan, Y. Liu, I. Capoglu, X. Li, J. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, "Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells," Proc. National Acad. Sci. 105, 20124-20129 (2008).

Challener, W. A.

Chen, Z.

Chen, Z. G.

Crégut, O.

Cui, X.

Devilez, A.

Donegan, J. F.

Erni, D.

Ferrand, P.

Gerlach, M.

Haacke, S.

Hafner, C.

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Heifetz, A.

H. Subramanian, P. Pradhan, Y. Liu, I. Capoglu, X. Li, J. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, "Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells," Proc. National Acad. Sci. 105, 20124-20129 (2008).

S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, "Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets," Appl. Phys. Lett. 92, 211102 (2008).
[CrossRef]

A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, "Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere," Opt. Express 15, 17334-17342 (2007).
[CrossRef] [PubMed]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Hirlimann, C.

Huang, K.

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Itagi, A. V.

Kapitonov, A. M.

Katsnelson, A.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, "A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars," Nanotechnology 18, 485302 (2007).
[CrossRef]

Kong, S.-C.

S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, "Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets," Appl. Phys. Lett. 92, 211102 (2008).
[CrossRef]

S.-C. Kong, J. J. Simpson, and V. Backman, "ADE-FDTD scattered-field formulation for dispersive materials," IEEE Microwave Wireless Comp. Lett. 18, 4-6 (2008).
[CrossRef]

S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, "Photonic nanojet-enabled optical data storage," Opt. Express 16, 13713-13719 (2008).
[CrossRef] [PubMed]

A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, "Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere," Opt. Express 15, 17334-17342 (2007).
[CrossRef] [PubMed]

Kunte, D.

H. Subramanian, P. Pradhan, Y. Liu, I. Capoglu, X. Li, J. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, "Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells," Proc. National Acad. Sci. 105, 20124-20129 (2008).

Lecler, S.

Lecong, N.

Li, X.

H. Subramanian, P. Pradhan, Y. Liu, I. Capoglu, X. Li, J. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, "Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells," Proc. National Acad. Sci. 105, 20124-20129 (2008).

Z. G. Chen, X. Li, A. Taflove, and V. Backman, "Superenhanced backscattering of light by nanoparticles," Opt. Lett. 31, 196-198 (2006).
[CrossRef] [PubMed]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

X. Li, Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express 13, 526-533 (2005).
[CrossRef] [PubMed]

Liu, Y.

H. Subramanian, P. Pradhan, Y. Liu, I. Capoglu, X. Li, J. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, "Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells," Proc. National Acad. Sci. 105, 20124-20129 (2008).

Long, L. L.

Lu, Y. F.

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, "Enhanced Raman scattering by self-assembled silica spherical microparticles," J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

McLeod, E.

E. McLeod and C. B. Arnold, "Subwavelength direct-write nanopatterning using optically trapped microspheres," Nat. Nanotech. 3, 413-417 (2008).
[CrossRef]

Memis, O. G.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, "A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars," Nanotechnology 18, 485302 (2007).
[CrossRef]

Meyrueis, P.

Mohseni, H.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, "A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars," Nanotechnology 18, 485302 (2007).
[CrossRef]

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Ordal, M. A.

Pianta, M.

Popov, E.

Pradhan, P.

H. Subramanian, P. Pradhan, Y. Liu, I. Capoglu, X. Li, J. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, "Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells," Proc. National Acad. Sci. 105, 20124-20129 (2008).

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Rakovich, Y. P.

Rehspringer, J.-L.

Rigneault, H.

Rogers, J.

H. Subramanian, P. Pradhan, Y. Liu, I. Capoglu, X. Li, J. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, "Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells," Proc. National Acad. Sci. 105, 20124-20129 (2008).

Roy, H. K.

H. Subramanian, P. Pradhan, Y. Liu, I. Capoglu, X. Li, J. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, "Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells," Proc. National Acad. Sci. 105, 20124-20129 (2008).

Sahakian, A. V.

S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, "Photonic nanojet-enabled optical data storage," Opt. Express 16, 13713-13719 (2008).
[CrossRef] [PubMed]

S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, "Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets," Appl. Phys. Lett. 92, 211102 (2008).
[CrossRef]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Simpson, J. J.

Stout, B.

Subramanian, H.

H. Subramanian, P. Pradhan, Y. Liu, I. Capoglu, X. Li, J. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, "Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells," Proc. National Acad. Sci. 105, 20124-20129 (2008).

Taflove, A.

S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, "Photonic nanojet-enabled optical data storage," Opt. Express 16, 13713-13719 (2008).
[CrossRef] [PubMed]

H. Subramanian, P. Pradhan, Y. Liu, I. Capoglu, X. Li, J. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, "Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells," Proc. National Acad. Sci. 105, 20124-20129 (2008).

S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, "Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets," Appl. Phys. Lett. 92, 211102 (2008).
[CrossRef]

A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, "Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere," Opt. Express 15, 17334-17342 (2007).
[CrossRef] [PubMed]

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

Z. G. Chen, X. Li, A. Taflove, and V. Backman, "Superenhanced backscattering of light by nanoparticles," Opt. Lett. 31, 196-198 (2006).
[CrossRef] [PubMed]

X. Li, Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express 13, 526-533 (2005).
[CrossRef] [PubMed]

Z. Chen, A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique," Opt. Express 12, 1214-1220 (2004).
[CrossRef] [PubMed]

Takakura, Y.

Wang, H.

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, "Enhanced Raman scattering by self-assembled silica spherical microparticles," J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

Ward, C. A.

Wenger, J.

Wu, W.

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, "A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars," Nanotechnology 18, 485302 (2007).
[CrossRef]

Yang, S.

S. Yang and V. N. Astrov, "Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere," Appl. Phys. Lett. 92, 261111 (2008).
[CrossRef]

Yang, Z. Y.

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, "Enhanced Raman scattering by self-assembled silica spherical microparticles," J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

Yi, K. J.

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, "Enhanced Raman scattering by self-assembled silica spherical microparticles," J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (3)

A. Heifetz, K. Huang, A. V. Sahakian, X. Li, A. Taflove, and V. Backman, "Experimental confirmation of backscattering enhancement induced by a photonic jet," Appl. Phys. Lett. 89, 221118 (2006).
[CrossRef]

S.-C. Kong, A. V. Sahakian, A. Heifetz, A. Taflove, and V. Backman, "Robust detection of deeply subwavelength pits in simulated optical data-storage disks using photonic jets," Appl. Phys. Lett. 92, 211102 (2008).
[CrossRef]

S. Yang and V. N. Astrov, "Photonic nanojet-induced modes in chains of size-disordered microspheres with an attenuation of only 0.08 dB per sphere," Appl. Phys. Lett. 92, 261111 (2008).
[CrossRef]

IEEE Microwave Wireless Comp. Lett. (1)

S.-C. Kong, J. J. Simpson, and V. Backman, "ADE-FDTD scattered-field formulation for dispersive materials," IEEE Microwave Wireless Comp. Lett. 18, 4-6 (2008).
[CrossRef]

J. Appl. Phys. (1)

K. J. Yi, H. Wang, Y. F. Lu, and Z. Y. Yang, "Enhanced Raman scattering by self-assembled silica spherical microparticles," J. Appl. Phys. 101, 063528 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nanotechnology (1)

W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, "A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars," Nanotechnology 18, 485302 (2007).
[CrossRef]

Nat. Nanotech. (1)

E. McLeod and C. B. Arnold, "Subwavelength direct-write nanopatterning using optically trapped microspheres," Nat. Nanotech. 3, 413-417 (2008).
[CrossRef]

Opt. Express (9)

A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, "Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mie-resonant dielectric microsphere," Opt. Express 15, 17334-17342 (2007).
[CrossRef] [PubMed]

M. Gerlach, Y. P. Rakovich, and J. F. Donegan, "Nanojets and directional emission in symmetric photonic molecules," Opt. Express 15, 17343-17350 (2007).
[CrossRef] [PubMed]

P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, "Direct imaging of photonic nanojets," Opt. Express 16, 6930-6940 (2008).
[CrossRef] [PubMed]

Z. Chen, A. Taflove, and V. Backman, "Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique," Opt. Express 12, 1214-1220 (2004).
[CrossRef] [PubMed]

X. Li, Z. Chen, A. Taflove, and V. Backman, "Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets," Opt. Express 13, 526-533 (2005).
[CrossRef] [PubMed]

S. Lecler, S. Haacke, N. Lecong, O. Crégut, J.-L. Rehspringer, and C. Hirlimann, "Photonic jet driven non-linear optics: Example of two-photon fluorescence enhancement by dielectric microspheres," Opt. Express 15, 4935-4942 (2007).
[CrossRef] [PubMed]

X. Cui, D. Erni, and C. Hafner, "Optical forces on metallic nanoparticles induced by a photonic nanojet," Opt. Express 16, 13560-13568 (2008).
[CrossRef] [PubMed]

S.-C. Kong, A. V. Sahakian, A. Taflove, and V. Backman, "Photonic nanojet-enabled optical data storage," Opt. Express 16, 13713-13719 (2008).
[CrossRef] [PubMed]

A. Devilez, B. Stout, N. Bonod, and E. Popov, "Spectral analysis of three-dimensional photonic jets," Opt. Express 16, 14200-14212 (2008).
[CrossRef] [PubMed]

Opt. Lett. (3)

Proc. National Acad. Sci. (1)

H. Subramanian, P. Pradhan, Y. Liu, I. Capoglu, X. Li, J. Rogers, A. Heifetz, D. Kunte, H. K. Roy, A. Taflove, and V. Backman, "Optical methodology for detecting histologically unapparent nanoscale consequences of genetic alterations in biological cells," Proc. National Acad. Sci. 105, 20124-20129 (2008).

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science 302, 419-422 (2003).
[CrossRef] [PubMed]

Other (5)

J. F. Poco and L. W. Hrubesh, "Method of producing optical quality glass having a selected refractive index," U.S. Patent 6,158,244, (2008).

O. V. Mazurin, M. V. Streltsina, and T. P. Shvaiko-Shavaikovskaya, Handbook of Glass Data (Elsevier, Amsterdam, 1993).

A. Taflove, and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd ed. (Artech, Boston, MA 2005).

C. A. Balanis, Antenna Theory: Analysis and Design (John Wiley & Sons, New York, 1982).

Z. Chen, H. Chu, and S. Li, "Optical metrology using a photonic nanojet," U.S. Patent 7,394,535 (2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Visualizations of the FDTD-computed scattered electric field for several 2 μm diameter dielectric microspheres for a 400 nm incident wavelength. Each panel spans 4 μm in the vertical (x) direction × 8 μm in the horizontal (z) direction).

Fig. 2.
Fig. 2.

FDTD-computed normalized optical electric field vs. distance from the microsphere shadow-side surface along the z-axis for the cases of Figs. 1(c), 1(d), and 1(e).

Fig. 3.
Fig. 3.

Arrow-plot visualization of the FDTD-computed electromagnetic power flow in the x-z plane. (a) Homogeneous polystyrene microsphere (n=1.59) of Fig. 1(a). (b) 100-shell graded-index microsphere of Fig. 1(c).

Fig. 4.
Fig. 4.

FDTD-computed photonic nanojet intensity relative to the incident plane wave vs. distance from the microsphere’s shadow-side surface along the z-axis. Illumination wavelength = 400 nm. Three cases: homogeneous n = 1.59 polystyrene microsphere of Fig. 1(a), homogeneous n=1.43 silica microsphere of Fig. 1(b), and 100-shell graded-index microsphere of Fig. 1(c).

Fig. 5.
Fig. 5.

FDTD-computed backscattered power of an isolated 2-μm diameter microsphere vs. wavelength. Three cases: homogeneous n = 1.59 polystyrene microsphere of Fig. 1(a), homogeneous n = 1.43 silica microsphere of Fig. 1(b), and 100-shell graded-index microsphere of Fig. 1(c).

Fig. 6.
Fig. 6.

(a) FDTD-computed backscattering perturbation of the microsphere with a 100-nm gold nanoparticle located on the z-axis. Horizontal scale: distance between the microsphere’s shadow-side surface and the center of the gold nanoparticle. Three cases: homogeneous n=1.59 polystyrene microsphere of Fig. 1(a), homogeneous n=1.43 silica microsphere of Fig. 1(b), and 100-shell graded-index microsphere of Fig. 1(c). (b) FDTD-computed backscattering enhancement factor of a gold nanoparticle located 8μm (20λ) beyond the shadow-side surface of the graded-index microsphere of Fig. 1(c).

Fig. 7.
Fig. 7.

(a) FDTD-computed photonic nanojet half-power beamwidth (HPBW) vs. distance from the microsphere’s shadow-side surface along the z-axis. (b) FDTD-computed figure of merit (ER × Lbeam/HPBW) vs. distance from the microsphere’s shadow-side surface along the z-axis.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n ( r ) = n max ( n max 1 ) a r
Δ I μ = I μ + v I μ I μ
EF v = I μ + v I μ I v

Metrics