Abstract

Biomedical and chemical sensors utilizing surface plasmon resonance (SPR) in the mid-infrared range were developed with the aid of highly doped silicon owing to its tailored optical constants. SPR may be excited by light incident on a periodic doping profile embedded in an intrinsic silicon film without constraints on the flow of chemical solutions or activities of biomedical samples. General guidance for tuning SPR wavelengths based on dispersion curves to catch different target materials in free space or water was also provided. The feasibility of sensors was demonstrated with a sharp spectral–directional reflectance dip, which shifted with optical constants variation. The effects of doping concentration, doping profile, and angle of incidence on sensor performance were numerically studied with a rigorous coupled-wave analysis algorithm. Developed sensors could work well for a real target and show superiority in sensitivity over existing sensors.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sen.Actuator B-Chem. 54, 3-15 (1999).
    [CrossRef]
  2. K. Kim, S. J. Yoon, and D. Kim, "Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study," Opt. Express 14, 12419-12431 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-25-12419.
    [CrossRef] [PubMed]
  3. K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, "Study of the surface and bulk polaritons with a negative index metamaterial," J. Opt. Soc. Am. B 22, 1016-1023 (2005).
    [CrossRef]
  4. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  5. J. Homola, Surface Plasmon Resonance Based Sensors (Springer-Verlag, 2006).
    [CrossRef]
  6. S. J. Chen, F. C. Chien, G. Y. Lin, and K. C. Lee, "Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles," Opt. Lett. 29, 1390-1392 (2004).
    [CrossRef] [PubMed]
  7. J. N. Yih, Y. M. Chu, Y. C. Mao, W. H. Wang, F. C. Chien, C. Y. Lin, K. L. Lee, P. K. Wei, and S. J. Chen, "Optical waveguide biosensors constructed with subwavelength gratings," Appl. Opt. 45, 1938-1942 (2006).
    [CrossRef] [PubMed]
  8. S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Properties and sensing characteristics of surface-plasmon resonance in infrared light," J. Opt. Soc. Am. A 20, 1644-1650 (2003).
    [CrossRef]
  9. A. Ikehata, X. L. Li, T. Itoh, Y. Ozaki, and J. H. Jiang, "High sensitive detection of near-infrared absorption by surface plasmon resonance," Appl. Phys. Lett. 83, 2232-2234 (2003).
    [CrossRef]
  10. B. Schrader, Infrared and Raman Spectroscopy: Methods and Applications (Weinheim, 1994).
  11. G. G. Huang and J. Yang, "Development of infrared optical sensor for selective detection of tyrosine in biological fluids," Biosens. Bioelectron. 21, 408-418 (2005).
    [CrossRef] [PubMed]
  12. F. Crespi, M. Donini, A. Bandera, F. Congestri, F. Formenti, V. Sonntag, C. Heidbreder, and L. Rovati, "Near-infrared oxymeter biosensor prototype for non-invasive in vivo analysis of rat brain oxygenation: effects of drugs of abuse," J. Opt. A 8, S528-S534 (2006).
    [CrossRef]
  13. D. Enders, T. Nagao, A. Pucci, and T. Nakayama, "Reversible adsorption of Au nanoparticles on SiO2/Si: An in situ ATR-IR study," Surf. Sci. 600, L71-L75 (2006).
    [CrossRef]
  14. M. Laroche, F. Marquier, R. Carminati, and J. J. Greffet, "Tailoring silicon radiative properties," Opt. Commun. 250, 316-320 (2005).
    [CrossRef]
  15. S. Basu, B. J. Lee, and Z. M. Zhang, "Infrared radiative properties of heavily doped silicon at room temperature," J. Heat Transf.-Trans. ASME (to be published).
  16. F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, "Engineering infrared emission properties of silicon in the near field and the far field," Opt. Commun. 237, 379-388 (2004).
    [CrossRef]
  17. F. Marquier, M. Laroche, R. Carminati, and J. J. Greffet, "Anisotropic polarized emission of a doped silicon lamellar grating," J. Heat Transf.-Trans. ASME 129, 11-16 (2007).
    [CrossRef]
  18. Y.-B. Chen and Z. M. Zhang, "Heavily doped silicon complex gratings as wavelength-selective absorbing surfaces," J. Phys. D 41, 095406 (2008).
    [CrossRef]
  19. B. J. Lee, Y.-B. Chen, and Z. M. Zhang, "Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared," J. Comput. Theor. Nanosci. 5, 201-213 (2008).
  20. Y.-B. Chen and Z. M. Zhang, "Design of tungsten complex gratings for thermophotovoltaic radiators," Opt. Commun. 269, 411-417 (2007).
    [CrossRef]
  21. F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, "Coherent spontaneous emission of light by thermal sources," Phys. Rev. B 69, 155412 (2004).
    [CrossRef]
  22. M. R. Querry, D. M. Wieliczka, and D. J. Segelstein, "Water," in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, 1991).
  23. D. F. Edwards, "Silicon," in Handbook of Optical Constants of Solids III, E. D. Palik, ed. (Academic, 1998).
  24. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).
  25. K. Fu, Y.-B. Chen, P.-F. Hsu, Z. M. Zhang, and P. J. Timans, "Device scaling effect on the spectral-directional absorptance of wafer's front side," Int. J. Heat Mass Transf. 51, 4911-4925 (2008).
    [CrossRef]
  26. Y.-B. Chen, B. J. Lee, and Z. M. Zhang, "Infrared radiative properties of submicron metallic slits," J. Heat Transf.-Trans. ASME 130, 082404 (2008).
    [CrossRef]
  27. G. J. Boer, I. N. Sokolik, and S. T. Martin, "Infrared optical constants of aqueous sulfate-nitrate-ammonium multi-component tropospheric aerosols from attenuated total reflectance measurements—Part I: Results and analysis of spectral absorbing features," J. Quant. Spectrosc. Radiat. Transf. 108, 17-38 (2007).
    [CrossRef]

2008 (4)

Y.-B. Chen and Z. M. Zhang, "Heavily doped silicon complex gratings as wavelength-selective absorbing surfaces," J. Phys. D 41, 095406 (2008).
[CrossRef]

B. J. Lee, Y.-B. Chen, and Z. M. Zhang, "Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared," J. Comput. Theor. Nanosci. 5, 201-213 (2008).

K. Fu, Y.-B. Chen, P.-F. Hsu, Z. M. Zhang, and P. J. Timans, "Device scaling effect on the spectral-directional absorptance of wafer's front side," Int. J. Heat Mass Transf. 51, 4911-4925 (2008).
[CrossRef]

Y.-B. Chen, B. J. Lee, and Z. M. Zhang, "Infrared radiative properties of submicron metallic slits," J. Heat Transf.-Trans. ASME 130, 082404 (2008).
[CrossRef]

2007 (3)

G. J. Boer, I. N. Sokolik, and S. T. Martin, "Infrared optical constants of aqueous sulfate-nitrate-ammonium multi-component tropospheric aerosols from attenuated total reflectance measurements—Part I: Results and analysis of spectral absorbing features," J. Quant. Spectrosc. Radiat. Transf. 108, 17-38 (2007).
[CrossRef]

F. Marquier, M. Laroche, R. Carminati, and J. J. Greffet, "Anisotropic polarized emission of a doped silicon lamellar grating," J. Heat Transf.-Trans. ASME 129, 11-16 (2007).
[CrossRef]

Y.-B. Chen and Z. M. Zhang, "Design of tungsten complex gratings for thermophotovoltaic radiators," Opt. Commun. 269, 411-417 (2007).
[CrossRef]

2006 (4)

F. Crespi, M. Donini, A. Bandera, F. Congestri, F. Formenti, V. Sonntag, C. Heidbreder, and L. Rovati, "Near-infrared oxymeter biosensor prototype for non-invasive in vivo analysis of rat brain oxygenation: effects of drugs of abuse," J. Opt. A 8, S528-S534 (2006).
[CrossRef]

D. Enders, T. Nagao, A. Pucci, and T. Nakayama, "Reversible adsorption of Au nanoparticles on SiO2/Si: An in situ ATR-IR study," Surf. Sci. 600, L71-L75 (2006).
[CrossRef]

J. N. Yih, Y. M. Chu, Y. C. Mao, W. H. Wang, F. C. Chien, C. Y. Lin, K. L. Lee, P. K. Wei, and S. J. Chen, "Optical waveguide biosensors constructed with subwavelength gratings," Appl. Opt. 45, 1938-1942 (2006).
[CrossRef] [PubMed]

K. Kim, S. J. Yoon, and D. Kim, "Nanowire-based enhancement of localized surface plasmon resonance for highly sensitive detection: a theoretical study," Opt. Express 14, 12419-12431 (2006), http://www.opticsinfobase.org/oe/abstract.cfm?uri=oe-14-25-12419.
[CrossRef] [PubMed]

2005 (3)

K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, "Study of the surface and bulk polaritons with a negative index metamaterial," J. Opt. Soc. Am. B 22, 1016-1023 (2005).
[CrossRef]

M. Laroche, F. Marquier, R. Carminati, and J. J. Greffet, "Tailoring silicon radiative properties," Opt. Commun. 250, 316-320 (2005).
[CrossRef]

G. G. Huang and J. Yang, "Development of infrared optical sensor for selective detection of tyrosine in biological fluids," Biosens. Bioelectron. 21, 408-418 (2005).
[CrossRef] [PubMed]

2004 (3)

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, "Engineering infrared emission properties of silicon in the near field and the far field," Opt. Commun. 237, 379-388 (2004).
[CrossRef]

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, "Coherent spontaneous emission of light by thermal sources," Phys. Rev. B 69, 155412 (2004).
[CrossRef]

S. J. Chen, F. C. Chien, G. Y. Lin, and K. C. Lee, "Enhancement of the resolution of surface plasmon resonance biosensors by control of the size and distribution of nanoparticles," Opt. Lett. 29, 1390-1392 (2004).
[CrossRef] [PubMed]

2003 (2)

A. Ikehata, X. L. Li, T. Itoh, Y. Ozaki, and J. H. Jiang, "High sensitive detection of near-infrared absorption by surface plasmon resonance," Appl. Phys. Lett. 83, 2232-2234 (2003).
[CrossRef]

S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Properties and sensing characteristics of surface-plasmon resonance in infrared light," J. Opt. Soc. Am. A 20, 1644-1650 (2003).
[CrossRef]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sen.Actuator B-Chem. 54, 3-15 (1999).
[CrossRef]

Bandera, A.

F. Crespi, M. Donini, A. Bandera, F. Congestri, F. Formenti, V. Sonntag, C. Heidbreder, and L. Rovati, "Near-infrared oxymeter biosensor prototype for non-invasive in vivo analysis of rat brain oxygenation: effects of drugs of abuse," J. Opt. A 8, S528-S534 (2006).
[CrossRef]

Basu, S.

S. Basu, B. J. Lee, and Z. M. Zhang, "Infrared radiative properties of heavily doped silicon at room temperature," J. Heat Transf.-Trans. ASME (to be published).

Boer, G. J.

G. J. Boer, I. N. Sokolik, and S. T. Martin, "Infrared optical constants of aqueous sulfate-nitrate-ammonium multi-component tropospheric aerosols from attenuated total reflectance measurements—Part I: Results and analysis of spectral absorbing features," J. Quant. Spectrosc. Radiat. Transf. 108, 17-38 (2007).
[CrossRef]

Carminati, R.

F. Marquier, M. Laroche, R. Carminati, and J. J. Greffet, "Anisotropic polarized emission of a doped silicon lamellar grating," J. Heat Transf.-Trans. ASME 129, 11-16 (2007).
[CrossRef]

M. Laroche, F. Marquier, R. Carminati, and J. J. Greffet, "Tailoring silicon radiative properties," Opt. Commun. 250, 316-320 (2005).
[CrossRef]

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, "Engineering infrared emission properties of silicon in the near field and the far field," Opt. Commun. 237, 379-388 (2004).
[CrossRef]

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, "Coherent spontaneous emission of light by thermal sources," Phys. Rev. B 69, 155412 (2004).
[CrossRef]

Chen, S. J.

Chen, Y.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, "Coherent spontaneous emission of light by thermal sources," Phys. Rev. B 69, 155412 (2004).
[CrossRef]

Chen, Y.-B.

K. Fu, Y.-B. Chen, P.-F. Hsu, Z. M. Zhang, and P. J. Timans, "Device scaling effect on the spectral-directional absorptance of wafer's front side," Int. J. Heat Mass Transf. 51, 4911-4925 (2008).
[CrossRef]

Y.-B. Chen and Z. M. Zhang, "Heavily doped silicon complex gratings as wavelength-selective absorbing surfaces," J. Phys. D 41, 095406 (2008).
[CrossRef]

B. J. Lee, Y.-B. Chen, and Z. M. Zhang, "Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared," J. Comput. Theor. Nanosci. 5, 201-213 (2008).

Y.-B. Chen, B. J. Lee, and Z. M. Zhang, "Infrared radiative properties of submicron metallic slits," J. Heat Transf.-Trans. ASME 130, 082404 (2008).
[CrossRef]

Y.-B. Chen and Z. M. Zhang, "Design of tungsten complex gratings for thermophotovoltaic radiators," Opt. Commun. 269, 411-417 (2007).
[CrossRef]

Chien, F. C.

Chu, Y. M.

Congestri, F.

F. Crespi, M. Donini, A. Bandera, F. Congestri, F. Formenti, V. Sonntag, C. Heidbreder, and L. Rovati, "Near-infrared oxymeter biosensor prototype for non-invasive in vivo analysis of rat brain oxygenation: effects of drugs of abuse," J. Opt. A 8, S528-S534 (2006).
[CrossRef]

Crespi, F.

F. Crespi, M. Donini, A. Bandera, F. Congestri, F. Formenti, V. Sonntag, C. Heidbreder, and L. Rovati, "Near-infrared oxymeter biosensor prototype for non-invasive in vivo analysis of rat brain oxygenation: effects of drugs of abuse," J. Opt. A 8, S528-S534 (2006).
[CrossRef]

Donini, M.

F. Crespi, M. Donini, A. Bandera, F. Congestri, F. Formenti, V. Sonntag, C. Heidbreder, and L. Rovati, "Near-infrared oxymeter biosensor prototype for non-invasive in vivo analysis of rat brain oxygenation: effects of drugs of abuse," J. Opt. A 8, S528-S534 (2006).
[CrossRef]

Enders, D.

D. Enders, T. Nagao, A. Pucci, and T. Nakayama, "Reversible adsorption of Au nanoparticles on SiO2/Si: An in situ ATR-IR study," Surf. Sci. 600, L71-L75 (2006).
[CrossRef]

Formenti, F.

F. Crespi, M. Donini, A. Bandera, F. Congestri, F. Formenti, V. Sonntag, C. Heidbreder, and L. Rovati, "Near-infrared oxymeter biosensor prototype for non-invasive in vivo analysis of rat brain oxygenation: effects of drugs of abuse," J. Opt. A 8, S528-S534 (2006).
[CrossRef]

Fu, C.

Fu, K.

K. Fu, Y.-B. Chen, P.-F. Hsu, Z. M. Zhang, and P. J. Timans, "Device scaling effect on the spectral-directional absorptance of wafer's front side," Int. J. Heat Mass Transf. 51, 4911-4925 (2008).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sen.Actuator B-Chem. 54, 3-15 (1999).
[CrossRef]

Greffet, J. J.

F. Marquier, M. Laroche, R. Carminati, and J. J. Greffet, "Anisotropic polarized emission of a doped silicon lamellar grating," J. Heat Transf.-Trans. ASME 129, 11-16 (2007).
[CrossRef]

M. Laroche, F. Marquier, R. Carminati, and J. J. Greffet, "Tailoring silicon radiative properties," Opt. Commun. 250, 316-320 (2005).
[CrossRef]

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, "Engineering infrared emission properties of silicon in the near field and the far field," Opt. Commun. 237, 379-388 (2004).
[CrossRef]

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, "Coherent spontaneous emission of light by thermal sources," Phys. Rev. B 69, 155412 (2004).
[CrossRef]

Heidbreder, C.

F. Crespi, M. Donini, A. Bandera, F. Congestri, F. Formenti, V. Sonntag, C. Heidbreder, and L. Rovati, "Near-infrared oxymeter biosensor prototype for non-invasive in vivo analysis of rat brain oxygenation: effects of drugs of abuse," J. Opt. A 8, S528-S534 (2006).
[CrossRef]

Homola, J.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sen.Actuator B-Chem. 54, 3-15 (1999).
[CrossRef]

Hsu, P.-F.

K. Fu, Y.-B. Chen, P.-F. Hsu, Z. M. Zhang, and P. J. Timans, "Device scaling effect on the spectral-directional absorptance of wafer's front side," Int. J. Heat Mass Transf. 51, 4911-4925 (2008).
[CrossRef]

Huang, G. G.

G. G. Huang and J. Yang, "Development of infrared optical sensor for selective detection of tyrosine in biological fluids," Biosens. Bioelectron. 21, 408-418 (2005).
[CrossRef] [PubMed]

Ikehata, A.

A. Ikehata, X. L. Li, T. Itoh, Y. Ozaki, and J. H. Jiang, "High sensitive detection of near-infrared absorption by surface plasmon resonance," Appl. Phys. Lett. 83, 2232-2234 (2003).
[CrossRef]

Itoh, T.

A. Ikehata, X. L. Li, T. Itoh, Y. Ozaki, and J. H. Jiang, "High sensitive detection of near-infrared absorption by surface plasmon resonance," Appl. Phys. Lett. 83, 2232-2234 (2003).
[CrossRef]

Jiang, J. H.

A. Ikehata, X. L. Li, T. Itoh, Y. Ozaki, and J. H. Jiang, "High sensitive detection of near-infrared absorption by surface plasmon resonance," Appl. Phys. Lett. 83, 2232-2234 (2003).
[CrossRef]

Joulain, K.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, "Engineering infrared emission properties of silicon in the near field and the far field," Opt. Commun. 237, 379-388 (2004).
[CrossRef]

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, "Coherent spontaneous emission of light by thermal sources," Phys. Rev. B 69, 155412 (2004).
[CrossRef]

Kabashin, A. V.

Kim, D.

Kim, K.

Laroche, M.

F. Marquier, M. Laroche, R. Carminati, and J. J. Greffet, "Anisotropic polarized emission of a doped silicon lamellar grating," J. Heat Transf.-Trans. ASME 129, 11-16 (2007).
[CrossRef]

M. Laroche, F. Marquier, R. Carminati, and J. J. Greffet, "Tailoring silicon radiative properties," Opt. Commun. 250, 316-320 (2005).
[CrossRef]

Lee, B. J.

Y.-B. Chen, B. J. Lee, and Z. M. Zhang, "Infrared radiative properties of submicron metallic slits," J. Heat Transf.-Trans. ASME 130, 082404 (2008).
[CrossRef]

B. J. Lee, Y.-B. Chen, and Z. M. Zhang, "Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared," J. Comput. Theor. Nanosci. 5, 201-213 (2008).

K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, "Study of the surface and bulk polaritons with a negative index metamaterial," J. Opt. Soc. Am. B 22, 1016-1023 (2005).
[CrossRef]

S. Basu, B. J. Lee, and Z. M. Zhang, "Infrared radiative properties of heavily doped silicon at room temperature," J. Heat Transf.-Trans. ASME (to be published).

Lee, K. C.

Lee, K. L.

Li, X. L.

A. Ikehata, X. L. Li, T. Itoh, Y. Ozaki, and J. H. Jiang, "High sensitive detection of near-infrared absorption by surface plasmon resonance," Appl. Phys. Lett. 83, 2232-2234 (2003).
[CrossRef]

Lin, C. Y.

Lin, G. Y.

Luong, J. H. T.

Mao, Y. C.

Marquier, F.

F. Marquier, M. Laroche, R. Carminati, and J. J. Greffet, "Anisotropic polarized emission of a doped silicon lamellar grating," J. Heat Transf.-Trans. ASME 129, 11-16 (2007).
[CrossRef]

M. Laroche, F. Marquier, R. Carminati, and J. J. Greffet, "Tailoring silicon radiative properties," Opt. Commun. 250, 316-320 (2005).
[CrossRef]

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, "Engineering infrared emission properties of silicon in the near field and the far field," Opt. Commun. 237, 379-388 (2004).
[CrossRef]

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, "Coherent spontaneous emission of light by thermal sources," Phys. Rev. B 69, 155412 (2004).
[CrossRef]

Martin, S. T.

G. J. Boer, I. N. Sokolik, and S. T. Martin, "Infrared optical constants of aqueous sulfate-nitrate-ammonium multi-component tropospheric aerosols from attenuated total reflectance measurements—Part I: Results and analysis of spectral absorbing features," J. Quant. Spectrosc. Radiat. Transf. 108, 17-38 (2007).
[CrossRef]

Meunier, M.

Mulet, J. P.

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, "Coherent spontaneous emission of light by thermal sources," Phys. Rev. B 69, 155412 (2004).
[CrossRef]

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, "Engineering infrared emission properties of silicon in the near field and the far field," Opt. Commun. 237, 379-388 (2004).
[CrossRef]

Nagao, T.

D. Enders, T. Nagao, A. Pucci, and T. Nakayama, "Reversible adsorption of Au nanoparticles on SiO2/Si: An in situ ATR-IR study," Surf. Sci. 600, L71-L75 (2006).
[CrossRef]

Nakayama, T.

D. Enders, T. Nagao, A. Pucci, and T. Nakayama, "Reversible adsorption of Au nanoparticles on SiO2/Si: An in situ ATR-IR study," Surf. Sci. 600, L71-L75 (2006).
[CrossRef]

Ozaki, Y.

A. Ikehata, X. L. Li, T. Itoh, Y. Ozaki, and J. H. Jiang, "High sensitive detection of near-infrared absorption by surface plasmon resonance," Appl. Phys. Lett. 83, 2232-2234 (2003).
[CrossRef]

Park, K.

Patskovsky, S.

Pucci, A.

D. Enders, T. Nagao, A. Pucci, and T. Nakayama, "Reversible adsorption of Au nanoparticles on SiO2/Si: An in situ ATR-IR study," Surf. Sci. 600, L71-L75 (2006).
[CrossRef]

Rovati, L.

F. Crespi, M. Donini, A. Bandera, F. Congestri, F. Formenti, V. Sonntag, C. Heidbreder, and L. Rovati, "Near-infrared oxymeter biosensor prototype for non-invasive in vivo analysis of rat brain oxygenation: effects of drugs of abuse," J. Opt. A 8, S528-S534 (2006).
[CrossRef]

Sokolik, I. N.

G. J. Boer, I. N. Sokolik, and S. T. Martin, "Infrared optical constants of aqueous sulfate-nitrate-ammonium multi-component tropospheric aerosols from attenuated total reflectance measurements—Part I: Results and analysis of spectral absorbing features," J. Quant. Spectrosc. Radiat. Transf. 108, 17-38 (2007).
[CrossRef]

Sonntag, V.

F. Crespi, M. Donini, A. Bandera, F. Congestri, F. Formenti, V. Sonntag, C. Heidbreder, and L. Rovati, "Near-infrared oxymeter biosensor prototype for non-invasive in vivo analysis of rat brain oxygenation: effects of drugs of abuse," J. Opt. A 8, S528-S534 (2006).
[CrossRef]

Timans, P. J.

K. Fu, Y.-B. Chen, P.-F. Hsu, Z. M. Zhang, and P. J. Timans, "Device scaling effect on the spectral-directional absorptance of wafer's front side," Int. J. Heat Mass Transf. 51, 4911-4925 (2008).
[CrossRef]

Wang, W. H.

Wei, P. K.

Yang, J.

G. G. Huang and J. Yang, "Development of infrared optical sensor for selective detection of tyrosine in biological fluids," Biosens. Bioelectron. 21, 408-418 (2005).
[CrossRef] [PubMed]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sen.Actuator B-Chem. 54, 3-15 (1999).
[CrossRef]

Yih, J. N.

Yoon, S. J.

Zhang, Z. M.

Y.-B. Chen, B. J. Lee, and Z. M. Zhang, "Infrared radiative properties of submicron metallic slits," J. Heat Transf.-Trans. ASME 130, 082404 (2008).
[CrossRef]

K. Fu, Y.-B. Chen, P.-F. Hsu, Z. M. Zhang, and P. J. Timans, "Device scaling effect on the spectral-directional absorptance of wafer's front side," Int. J. Heat Mass Transf. 51, 4911-4925 (2008).
[CrossRef]

B. J. Lee, Y.-B. Chen, and Z. M. Zhang, "Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared," J. Comput. Theor. Nanosci. 5, 201-213 (2008).

Y.-B. Chen and Z. M. Zhang, "Heavily doped silicon complex gratings as wavelength-selective absorbing surfaces," J. Phys. D 41, 095406 (2008).
[CrossRef]

Y.-B. Chen and Z. M. Zhang, "Design of tungsten complex gratings for thermophotovoltaic radiators," Opt. Commun. 269, 411-417 (2007).
[CrossRef]

K. Park, B. J. Lee, C. Fu, and Z. M. Zhang, "Study of the surface and bulk polaritons with a negative index metamaterial," J. Opt. Soc. Am. B 22, 1016-1023 (2005).
[CrossRef]

S. Basu, B. J. Lee, and Z. M. Zhang, "Infrared radiative properties of heavily doped silicon at room temperature," J. Heat Transf.-Trans. ASME (to be published).

Actuator B-Chem. (1)

J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors: review," Sen.Actuator B-Chem. 54, 3-15 (1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A. Ikehata, X. L. Li, T. Itoh, Y. Ozaki, and J. H. Jiang, "High sensitive detection of near-infrared absorption by surface plasmon resonance," Appl. Phys. Lett. 83, 2232-2234 (2003).
[CrossRef]

Biosens. Bioelectron. (1)

G. G. Huang and J. Yang, "Development of infrared optical sensor for selective detection of tyrosine in biological fluids," Biosens. Bioelectron. 21, 408-418 (2005).
[CrossRef] [PubMed]

Int. J. Heat Mass Transf. (1)

K. Fu, Y.-B. Chen, P.-F. Hsu, Z. M. Zhang, and P. J. Timans, "Device scaling effect on the spectral-directional absorptance of wafer's front side," Int. J. Heat Mass Transf. 51, 4911-4925 (2008).
[CrossRef]

J. Comput. Theor. Nanosci. (1)

B. J. Lee, Y.-B. Chen, and Z. M. Zhang, "Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared," J. Comput. Theor. Nanosci. 5, 201-213 (2008).

J. Opt. A (1)

F. Crespi, M. Donini, A. Bandera, F. Congestri, F. Formenti, V. Sonntag, C. Heidbreder, and L. Rovati, "Near-infrared oxymeter biosensor prototype for non-invasive in vivo analysis of rat brain oxygenation: effects of drugs of abuse," J. Opt. A 8, S528-S534 (2006).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

Y.-B. Chen and Z. M. Zhang, "Heavily doped silicon complex gratings as wavelength-selective absorbing surfaces," J. Phys. D 41, 095406 (2008).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transf. (1)

G. J. Boer, I. N. Sokolik, and S. T. Martin, "Infrared optical constants of aqueous sulfate-nitrate-ammonium multi-component tropospheric aerosols from attenuated total reflectance measurements—Part I: Results and analysis of spectral absorbing features," J. Quant. Spectrosc. Radiat. Transf. 108, 17-38 (2007).
[CrossRef]

Opt. Commun. (3)

Y.-B. Chen and Z. M. Zhang, "Design of tungsten complex gratings for thermophotovoltaic radiators," Opt. Commun. 269, 411-417 (2007).
[CrossRef]

M. Laroche, F. Marquier, R. Carminati, and J. J. Greffet, "Tailoring silicon radiative properties," Opt. Commun. 250, 316-320 (2005).
[CrossRef]

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, and J. J. Greffet, "Engineering infrared emission properties of silicon in the near field and the far field," Opt. Commun. 237, 379-388 (2004).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. B (1)

F. Marquier, K. Joulain, J. P. Mulet, R. Carminati, J. J. Greffet, and Y. Chen, "Coherent spontaneous emission of light by thermal sources," Phys. Rev. B 69, 155412 (2004).
[CrossRef]

Surf. Sci. (1)

D. Enders, T. Nagao, A. Pucci, and T. Nakayama, "Reversible adsorption of Au nanoparticles on SiO2/Si: An in situ ATR-IR study," Surf. Sci. 600, L71-L75 (2006).
[CrossRef]

Trans. ASME (3)

F. Marquier, M. Laroche, R. Carminati, and J. J. Greffet, "Anisotropic polarized emission of a doped silicon lamellar grating," J. Heat Transf.-Trans. ASME 129, 11-16 (2007).
[CrossRef]

S. Basu, B. J. Lee, and Z. M. Zhang, "Infrared radiative properties of heavily doped silicon at room temperature," J. Heat Transf.-Trans. ASME (to be published).

Y.-B. Chen, B. J. Lee, and Z. M. Zhang, "Infrared radiative properties of submicron metallic slits," J. Heat Transf.-Trans. ASME 130, 082404 (2008).
[CrossRef]

Other (6)

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

J. Homola, Surface Plasmon Resonance Based Sensors (Springer-Verlag, 2006).
[CrossRef]

M. R. Querry, D. M. Wieliczka, and D. J. Segelstein, "Water," in Handbook of Optical Constants of Solids II, E. D. Palik, ed. (Academic, 1991).

D. F. Edwards, "Silicon," in Handbook of Optical Constants of Solids III, E. D. Palik, ed. (Academic, 1998).

Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, 2007).

B. Schrader, Infrared and Raman Spectroscopy: Methods and Applications (Weinheim, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Optical constants of water, intrinsic silicon, and highly doped silicon. (a) Refractive index, n; (b) extinction coefficient, κ.

Fig. 2.
Fig. 2.

Dispersion curves between semi-infinite, highly doped silicon and a working media. (a) Free space; (b) water.

Fig. 3.
Fig. 3.

Configuration of the optical setup with a developed mid-IR SPR-based sensor in a working medium. The magnified cross-sectional view of the sensor is also included.

Fig. 4.
Fig. 4.

Flipped dispersion curves in reduced zones for highly doped silicon (N P = 1×1021 cm-3) sensors with a different doping profile period (Λ). (a) Sensors working in free space with Λ = 4 and 10 μm; (b) sensors working in water with Λ = 2, 3, and 4 μm.

Fig. 5.
Fig. 5.

Reflectance dips for sensors working in free space at different doping concentrations (N P) and angle of incidence (θ). (a) N P = l×l021 cm-3 and θ = 0°; (b) N P = l×l021 cm-3 and θ = 45°; (c) N p = 5×l020 cm-3 and θ = 0°; (d) N P = 5×l020 cm-3 and θ = 45°; (e) N P = l×l020 cm-3 and θ = 0°; (f) N P = 1×l020 cm-3 and θ = 45°.

Fig. 6.
Fig. 6.

Reflectance dips for sensors working in water at doping concentration N P = 1×1021 cm-3 and different angle of incidence (θ). (a) θ = 0°; (b) θ = 45°.

Fig. 7.
Fig. 7.

(a) Complete spectral reflectance spectra for associated sensors of the same doping concentration (N P = 5×1020 cm-3) and period (Λ = 3 μm), but the filling ratio (f = 0.2, 0.5, and 0.8) and the intrinsic silicon thickness (d g = 0.3, 0.4, and 0.5 μm) are different. The working medium is water and the SPR is excited at λ = 4 μm for all sensors. (b) Developed sensors successfully catch a target material, an aqueous ammonium sulfate binary mixture (20% weight fraction (NH4)2SO4) at 298 K.

Fig. 8.
Fig. 8.

Reflectance spectra for selected sensors working in a medium with modified dielectric function based on a reference medium. The dielectric function ratio is 1.01, 1.03, 1.05, or 1.07 for free space, while it is 0.97, 1.01, 1.03, or 1.05 for water. The characteristics of sensors are (a) N P = 1×1021 cm-3, Λ = 4 μm, d g = 0.4 μm, f = 0.5, θ = 0°; (b) N P = 5×1020 cm-3, Λ = 10 μm, d g = 0.5 μm, f = 0.5, θ = 45°; (c)N P = 1×1020 cm-3, Λ = 2 μm, d g = 0.2 μm, f = 0.5, θ = 0°.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

k // 2 = ω 2 c 2 ( ε 1 · ε 2 ε 2 + ε 2 ) ,
f j th ( K / / ) = f ( σ k / / + 2 π Λ | j | ) ,

Metrics