Abstract

We propose a new hole-assisted polymer optical fiber design to eliminate the influence of dopant diffusion and to increase the UV writing efficiency in fiber Bragg grating inscription. The optical waveguide is formed inside a solid core surrounded by a ring of 3 large air holes in enhanced UV photosensitive PMMA with double-cladding. We determined a map of the single-mode and multi-mode phase transitions using a finite-element-based vectorial optical mode solver. We obtained a wide range of geometrical configuration for the single-transverse-mode (HE11) propagation in the visible. The design is optimized to operate at the minimum optical loss wavelengths of 580 nm and 770 nm.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Dobb, D. J. Webb, K. Kalli, A. Argyros, M. C. J. Large, and M. A. van Eijkelenborg, "Continuous wave ultraviolet light-induced fiber bragg gratings in few- and single-moded microstructured polymer optical fibers," Opt. Lett. 30, 3296-3298 (2005).
    [CrossRef]
  2. H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, "Observation of Type I and Type II gratings behaviour in polymer optical fiber," Opt. Commun. 220, 337-343 (2003).
    [CrossRef]
  3. J. M. Yu, X. M. Tao, and H. Y. Tam, "Trans-4-stilbenemethanol-doped photosensitive polymer fibers and gratings," Opt. Lett. 29, 156-158 (2004).
    [CrossRef] [PubMed]
  4. J. M. Yu, X. M. Tao, and H. Y. Tam, "Fabrication of UV sensitive single-mode polymeric optical fiber," Opt. Mater. 28, 181-188 (2006).
    [CrossRef]
  5. X. M. Tao, J. M. Yu, and H. Y. Tam, "Photosensitive polymer optical fibers and gratings," Trans. of the Institute of Meas. and Cont,  29, 255-270 (2007).
    [CrossRef]
  6. H. Y. Tam, G. Y. Zhou, and C. F. Pun, "Method of fabricating polymer optical fiber preform for polymer optical fibers," US patent Application No. 12/329, 545.
  7. H. Rogier, "Berenger and leaky mode in optical fibers terminated with a perfectly matched layer," J. Lightwave Technol. 20, 1141-1148 (2002).
    [CrossRef]
  8. G. B. Ren, Z. Wang, S. Q. Lou, and S. S. Jian, "Mode classification and degeneracy in photonic crystal fibers," Opt. Express. 11, 1310-1321 (2003).
    [CrossRef]
  9. H. P. Uranus, H. J. W. M. Hoekstra, and E. Groesen, "Mode of an endlessly single-mode photonic crystal fiber: a finite element investigation," Proc. Symp. IEEE/LEOS Benelux Chapter 311-314 (2004).
  10. K. Iiyama, Z. Yamashita, and S. Takamiya, "Design of dispersion flattened photonic crystal fiber with a large core and a concentric missing ring," Proc. of WFOPC2005 - 4th IEEE/LEOS Workshop on Fibers and Optical Passive Components 10-13 (2005).
    [CrossRef]
  11. R. E. Wagner and W. J. Tomlinson, "Coupling efficiency of optics in single-mode fiber components," Appl. Opt. 21, 2671-2688 (1982).
    [CrossRef] [PubMed]

2007 (1)

X. M. Tao, J. M. Yu, and H. Y. Tam, "Photosensitive polymer optical fibers and gratings," Trans. of the Institute of Meas. and Cont,  29, 255-270 (2007).
[CrossRef]

2006 (1)

J. M. Yu, X. M. Tao, and H. Y. Tam, "Fabrication of UV sensitive single-mode polymeric optical fiber," Opt. Mater. 28, 181-188 (2006).
[CrossRef]

2005 (1)

2004 (1)

2003 (2)

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, "Observation of Type I and Type II gratings behaviour in polymer optical fiber," Opt. Commun. 220, 337-343 (2003).
[CrossRef]

G. B. Ren, Z. Wang, S. Q. Lou, and S. S. Jian, "Mode classification and degeneracy in photonic crystal fibers," Opt. Express. 11, 1310-1321 (2003).
[CrossRef]

2002 (1)

1982 (1)

Argyros, A.

Chu, P. L.

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, "Observation of Type I and Type II gratings behaviour in polymer optical fiber," Opt. Commun. 220, 337-343 (2003).
[CrossRef]

Dobb, H.

Jian, S. S.

G. B. Ren, Z. Wang, S. Q. Lou, and S. S. Jian, "Mode classification and degeneracy in photonic crystal fibers," Opt. Express. 11, 1310-1321 (2003).
[CrossRef]

Kalli, K.

Large, M. C. J.

Liu, H. B.

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, "Observation of Type I and Type II gratings behaviour in polymer optical fiber," Opt. Commun. 220, 337-343 (2003).
[CrossRef]

Liu, H. Y.

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, "Observation of Type I and Type II gratings behaviour in polymer optical fiber," Opt. Commun. 220, 337-343 (2003).
[CrossRef]

Lou, S. Q.

G. B. Ren, Z. Wang, S. Q. Lou, and S. S. Jian, "Mode classification and degeneracy in photonic crystal fibers," Opt. Express. 11, 1310-1321 (2003).
[CrossRef]

Peng, G. D.

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, "Observation of Type I and Type II gratings behaviour in polymer optical fiber," Opt. Commun. 220, 337-343 (2003).
[CrossRef]

Ren, G. B.

G. B. Ren, Z. Wang, S. Q. Lou, and S. S. Jian, "Mode classification and degeneracy in photonic crystal fibers," Opt. Express. 11, 1310-1321 (2003).
[CrossRef]

Rogier, H.

Tam, H. Y.

X. M. Tao, J. M. Yu, and H. Y. Tam, "Photosensitive polymer optical fibers and gratings," Trans. of the Institute of Meas. and Cont,  29, 255-270 (2007).
[CrossRef]

J. M. Yu, X. M. Tao, and H. Y. Tam, "Fabrication of UV sensitive single-mode polymeric optical fiber," Opt. Mater. 28, 181-188 (2006).
[CrossRef]

J. M. Yu, X. M. Tao, and H. Y. Tam, "Trans-4-stilbenemethanol-doped photosensitive polymer fibers and gratings," Opt. Lett. 29, 156-158 (2004).
[CrossRef] [PubMed]

Tao, X. M.

X. M. Tao, J. M. Yu, and H. Y. Tam, "Photosensitive polymer optical fibers and gratings," Trans. of the Institute of Meas. and Cont,  29, 255-270 (2007).
[CrossRef]

J. M. Yu, X. M. Tao, and H. Y. Tam, "Fabrication of UV sensitive single-mode polymeric optical fiber," Opt. Mater. 28, 181-188 (2006).
[CrossRef]

J. M. Yu, X. M. Tao, and H. Y. Tam, "Trans-4-stilbenemethanol-doped photosensitive polymer fibers and gratings," Opt. Lett. 29, 156-158 (2004).
[CrossRef] [PubMed]

Tomlinson, W. J.

van Eijkelenborg, M. A.

Wagner, R. E.

Wang, Z.

G. B. Ren, Z. Wang, S. Q. Lou, and S. S. Jian, "Mode classification and degeneracy in photonic crystal fibers," Opt. Express. 11, 1310-1321 (2003).
[CrossRef]

Webb, D. J.

Yu, J. M.

X. M. Tao, J. M. Yu, and H. Y. Tam, "Photosensitive polymer optical fibers and gratings," Trans. of the Institute of Meas. and Cont,  29, 255-270 (2007).
[CrossRef]

J. M. Yu, X. M. Tao, and H. Y. Tam, "Fabrication of UV sensitive single-mode polymeric optical fiber," Opt. Mater. 28, 181-188 (2006).
[CrossRef]

J. M. Yu, X. M. Tao, and H. Y. Tam, "Trans-4-stilbenemethanol-doped photosensitive polymer fibers and gratings," Opt. Lett. 29, 156-158 (2004).
[CrossRef] [PubMed]

Appl. Opt. (1)

J. Lightwave Technol. (1)

Opt. Commun. (1)

H. Y. Liu, H. B. Liu, G. D. Peng, and P. L. Chu, "Observation of Type I and Type II gratings behaviour in polymer optical fiber," Opt. Commun. 220, 337-343 (2003).
[CrossRef]

Opt. Express. (1)

G. B. Ren, Z. Wang, S. Q. Lou, and S. S. Jian, "Mode classification and degeneracy in photonic crystal fibers," Opt. Express. 11, 1310-1321 (2003).
[CrossRef]

Opt. Lett. (2)

Opt. Mater. (1)

J. M. Yu, X. M. Tao, and H. Y. Tam, "Fabrication of UV sensitive single-mode polymeric optical fiber," Opt. Mater. 28, 181-188 (2006).
[CrossRef]

Trans. of the Institute of Meas. and Cont (1)

X. M. Tao, J. M. Yu, and H. Y. Tam, "Photosensitive polymer optical fibers and gratings," Trans. of the Institute of Meas. and Cont,  29, 255-270 (2007).
[CrossRef]

Other (3)

H. Y. Tam, G. Y. Zhou, and C. F. Pun, "Method of fabricating polymer optical fiber preform for polymer optical fibers," US patent Application No. 12/329, 545.

H. P. Uranus, H. J. W. M. Hoekstra, and E. Groesen, "Mode of an endlessly single-mode photonic crystal fiber: a finite element investigation," Proc. Symp. IEEE/LEOS Benelux Chapter 311-314 (2004).

K. Iiyama, Z. Yamashita, and S. Takamiya, "Design of dispersion flattened photonic crystal fiber with a large core and a concentric missing ring," Proc. of WFOPC2005 - 4th IEEE/LEOS Workshop on Fibers and Optical Passive Components 10-13 (2005).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1.

Schematic Diagram of a PMMA hole-assisted fiber with a structure of 3-hole and double-clad.

Fig. 2.
Fig. 2.

Measured refractive index profile of a photosensitive POF preform determined by the 2600 Plastic Optical Fiber Preform Analyzer, Photon Kinetics, Inc.

Fig. 3.
Fig. 3.

Measured refractive index of the bulk TS-doped PMMA sample as a function of wavelength (250 – 850 nm) which is determined by the Spectroscopic Ellipsometer, Model GES-5E, SOPRA, Inc.

Fig. 4.
Fig. 4.

The transverse magnetic fields of the first-five modes of the PMMA hole-assisted fiber with 3 holes. (a) HE11a-, (b) HE11b-, (c) TE01-, (d) TM01- and (e) HE21-like modes. (arrow denotes the field direction). The contour-line scale is in arbitrary unit.

Fig. 5.
Fig. 5.

The longitudinal component of the time averaged Poynting vector of (a) HE11-, (b) TE01-, (c) TM01-, (d) HE21 like modes of the 3-hole structure. The colour-coded scale is in arbitrary unit.

Fig. 6.
Fig. 6.

Single mode phase transition as a function of an effective core diameter on (a) 3-hole-assisted PMMA optical fiber and (b) PMMA-based POF.

Fig. 7.
Fig. 7.

Single mode phase transition as a function of bridge thickness on the 3-hole-assisted PMMA optical fiber with an effective core diameter of (a) 2.6μm and (b) 3.4μm, respectively.

Fig. 8.
Fig. 8.

Effective mode area and mode field diameter as a function of bridge thickness on the 3-hole-assisted PMMA optical fiber with an effective core diameter of (a) 2.6 μm and (b) 3.4 μm, respectively.

Fig. 9.
Fig. 9.

(a) Effective mode area and (b) confinement loss as a function of doped region diameter on the 3-hole-assisted PMMA optical fiber with an effective core diameter of 2.6 μm and 3.4 μm, respectively.

Fig. 10.
Fig. 10.

Optical power distribution across the 3-hole-assisted PMMA optical fiber after propagation of a plane wave at normal incidence transversally to the hole-assisted fiber. With a wavelength of 325 nm, the electric field propagated from left to right (arrow denotes the field direction). The colour-coded scale is in arbitrary unit.

Tables (3)

Tables Icon

Table 1. Effective refractive indices and confinement losses of first 5 propagation modes of the structure.

Tables Icon

Table 2. Optimized dimensions of the 3-hole-assisted PMMA optical fiber at λ= 580 & 770 nm, respectively.

Tables Icon

Table 3. Optical properties of the 3-hole-assisted PMMA optical fiber at λ = 580 & 770 nm, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

n ( λ ) = A . exp ( λ t ) + B
A eff = [ E 2 d x d y ] 2 E 4 d x d y
T = [ E 3 hole E S M 600 dxdy ] 2 E 3 hole 2 dxdy · E S M 600 2 dxdy

Metrics