Abstract

Metal films perforated by nanoholes constitute a powerful platform for surface plasmon resonance biosensing. We find that the refractive index sensitivity of nanohole arrays increases if their resonance is red-shifted by increasing the separation distance between holes. However, an additional sensitivity enhancement occurs if the nanohole sensors are manufactured on low index substrates, despite the fact such substrates significantly blue-shift the resonance. We find a ~40% higher bulk refractive index sensitivity for a system of ~100 nm holes in 20 nm gold films fabricated on Teflon substrates (n=1.32) compared to the case when conventional glass substrates (n=1.52) are used. A similar improvement is observed for the case when a thin layer of dielectric material is deposited on the samples. These results can be understood by considering the electric field distribution induced by the so-called antisymmetric surface plasmon polariton in the thin gold films.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Q1. B. Liedberg, C. Nylander, and I. Lundström, "Surface plasmon resonance for gas detection and biosensing," Sens. Act. 4, 299-304 (1983).
    [CrossRef]
  2. M. M. Miller and A. A. Lazarides, "Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment," J. Phys. Chem. B 109,21556-21565 (2005).
    [CrossRef]
  3. R. Karlsson, "SPR for molecular interaction analysis: a review of emerging application areas," J. Mol. Recognit. 17, 151-161 (2004).
    [CrossRef] [PubMed]
  4. A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, "A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer's disease," Nano Lett. 4, 1029-1034 (2004).
    [CrossRef]
  5. K. Shafer-Peltier, C. Haynes, M. Glucksberg, and R. Van Duyne, "Toward a Glucose Biosensor Based on Surface-Enhanced Raman Scattering," J. Am. Chem. Soc. 125, 588-593 (2003).
    [CrossRef] [PubMed]
  6. M. P. Kreuzer, R. Quidant, G. Badenes, and M. P. Marco, "Quantitative detection of doping substances by a localised surface plasmon sensor," Biosens. Bioelectron. 21, 1345-1349 (2006).
    [CrossRef]
  7. K. Fujiwara, H. Watarai, H. Itoh, E. Nakahama, and N. Ogawa, "Measurement of antibody binding to protein immobilized on gold nanoparticles by localized surface plasmon spectroscopy," Anal. Bioanal. Chem. 386, 639-644 (2006).
    [CrossRef] [PubMed]
  8. L. Olofsson, T. Rindzevicius, I. Pfeiffer, M. Kall, and F. Hook, "Surface-based gold-nanoparticle sensor for specific and quantitative DNA hybridization detection," Langmuir 19, 10414-10419 (2003).
    [CrossRef]
  9. T. Rindzevicius, Y. Alaverdyan, B. Sepúlveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. Garcia de Abajo, "Nanohole plasmons in optically thin gold films," J. Phys. Chem. C 111,1207-1212 (2007).
    [CrossRef]
  10. B. Sepúlveda, Y. Alaverdyan, J. Alegret, M. Käll, and P. Johansson, "Shape effects in the localized surface plasmon resonance of single nanoholes in thin metal films," Opt. Express 16, 5609-5616 (2008).
    [CrossRef] [PubMed]
  11. Q2. Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, "Optical antennas based on coupled nanoholes in thin metal films," Nature Phys. 3,884-889 (2007).
    [CrossRef]
  12. T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, "Plasmonic sensing characteristics of single nanometric holes," Nano Lett. 5, 2335-2339 (2005).
    [CrossRef] [PubMed]
  13. A. Dahlin, M. Zach, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, "Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events," J. Am. Chem. Soc. 127, 5043-5048 (2005).
    [CrossRef] [PubMed]
  14. P. Hanarp, M. Kall, and D. S. Sutherland, "Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography," J. Phys. Chem. B 107, 5768-5772 (2003).
    [CrossRef]
  15. S. Link and M. A. El-Sayed, "Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods," J. Phys. Chem. B 103,8410-8426 (1999).
    [CrossRef]
  16. H. Wang, D. W. Brandl, L. Fei, P. Nordlander, and N. J. Halas, "Nanorice: A Hybrid Plasmonic Nanostructure," Nano Lett. 6, 827-832 (2006).
    [CrossRef] [PubMed]
  17. E. Larsson, J. Alegret, M. Mikael Käll, and D. S. Sutherland, "Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors," Nano Lett. 7, 1256-1263 (2007).
    [CrossRef] [PubMed]
  18. P. Hanarp, Optical properties of nanometer disks, holes and rings prepared by colloidal lithography (Chalmers University of Technology, Göteborg, 2003).
  19. B. Sepulveda, L. Lechuga, and G. Armelles, "Magnetooptic effects in surface-plasmon-polaritons slab waveguides," J. Lightwave Technology,  24, 945- 955 (2006).
    [CrossRef]
  20. L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative Interpretation of the Response of Surface Plasmon Resonance Sensors to Adsorbed Films," Langmuir 14, 5636-5648 (1998).
    [CrossRef]
  21. T. Rindzevicius, Y. Alaverdyan, M. Kall, W. A. Murray, and W. L. Barnes, "Long-Range Refractive Index Sensing Using Plasmonic Nanostructures," J. Phys. Chem. C 111, 11806-11810 (2007).
    [CrossRef]

2008 (1)

2007 (4)

Q2. Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, "Optical antennas based on coupled nanoholes in thin metal films," Nature Phys. 3,884-889 (2007).
[CrossRef]

E. Larsson, J. Alegret, M. Mikael Käll, and D. S. Sutherland, "Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors," Nano Lett. 7, 1256-1263 (2007).
[CrossRef] [PubMed]

T. Rindzevicius, Y. Alaverdyan, M. Kall, W. A. Murray, and W. L. Barnes, "Long-Range Refractive Index Sensing Using Plasmonic Nanostructures," J. Phys. Chem. C 111, 11806-11810 (2007).
[CrossRef]

T. Rindzevicius, Y. Alaverdyan, B. Sepúlveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. Garcia de Abajo, "Nanohole plasmons in optically thin gold films," J. Phys. Chem. C 111,1207-1212 (2007).
[CrossRef]

2006 (4)

M. P. Kreuzer, R. Quidant, G. Badenes, and M. P. Marco, "Quantitative detection of doping substances by a localised surface plasmon sensor," Biosens. Bioelectron. 21, 1345-1349 (2006).
[CrossRef]

K. Fujiwara, H. Watarai, H. Itoh, E. Nakahama, and N. Ogawa, "Measurement of antibody binding to protein immobilized on gold nanoparticles by localized surface plasmon spectroscopy," Anal. Bioanal. Chem. 386, 639-644 (2006).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, L. Fei, P. Nordlander, and N. J. Halas, "Nanorice: A Hybrid Plasmonic Nanostructure," Nano Lett. 6, 827-832 (2006).
[CrossRef] [PubMed]

B. Sepulveda, L. Lechuga, and G. Armelles, "Magnetooptic effects in surface-plasmon-polaritons slab waveguides," J. Lightwave Technology,  24, 945- 955 (2006).
[CrossRef]

2005 (3)

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, "Plasmonic sensing characteristics of single nanometric holes," Nano Lett. 5, 2335-2339 (2005).
[CrossRef] [PubMed]

A. Dahlin, M. Zach, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, "Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events," J. Am. Chem. Soc. 127, 5043-5048 (2005).
[CrossRef] [PubMed]

M. M. Miller and A. A. Lazarides, "Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment," J. Phys. Chem. B 109,21556-21565 (2005).
[CrossRef]

2004 (2)

R. Karlsson, "SPR for molecular interaction analysis: a review of emerging application areas," J. Mol. Recognit. 17, 151-161 (2004).
[CrossRef] [PubMed]

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, "A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer's disease," Nano Lett. 4, 1029-1034 (2004).
[CrossRef]

2003 (3)

K. Shafer-Peltier, C. Haynes, M. Glucksberg, and R. Van Duyne, "Toward a Glucose Biosensor Based on Surface-Enhanced Raman Scattering," J. Am. Chem. Soc. 125, 588-593 (2003).
[CrossRef] [PubMed]

L. Olofsson, T. Rindzevicius, I. Pfeiffer, M. Kall, and F. Hook, "Surface-based gold-nanoparticle sensor for specific and quantitative DNA hybridization detection," Langmuir 19, 10414-10419 (2003).
[CrossRef]

P. Hanarp, M. Kall, and D. S. Sutherland, "Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography," J. Phys. Chem. B 107, 5768-5772 (2003).
[CrossRef]

1999 (1)

S. Link and M. A. El-Sayed, "Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods," J. Phys. Chem. B 103,8410-8426 (1999).
[CrossRef]

1998 (1)

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative Interpretation of the Response of Surface Plasmon Resonance Sensors to Adsorbed Films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

1983 (1)

Q1. B. Liedberg, C. Nylander, and I. Lundström, "Surface plasmon resonance for gas detection and biosensing," Sens. Act. 4, 299-304 (1983).
[CrossRef]

Aizpurua, J.

T. Rindzevicius, Y. Alaverdyan, B. Sepúlveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. Garcia de Abajo, "Nanohole plasmons in optically thin gold films," J. Phys. Chem. C 111,1207-1212 (2007).
[CrossRef]

Alaverdyan, Y.

B. Sepúlveda, Y. Alaverdyan, J. Alegret, M. Käll, and P. Johansson, "Shape effects in the localized surface plasmon resonance of single nanoholes in thin metal films," Opt. Express 16, 5609-5616 (2008).
[CrossRef] [PubMed]

T. Rindzevicius, Y. Alaverdyan, B. Sepúlveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. Garcia de Abajo, "Nanohole plasmons in optically thin gold films," J. Phys. Chem. C 111,1207-1212 (2007).
[CrossRef]

Q2. Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, "Optical antennas based on coupled nanoholes in thin metal films," Nature Phys. 3,884-889 (2007).
[CrossRef]

T. Rindzevicius, Y. Alaverdyan, M. Kall, W. A. Murray, and W. L. Barnes, "Long-Range Refractive Index Sensing Using Plasmonic Nanostructures," J. Phys. Chem. C 111, 11806-11810 (2007).
[CrossRef]

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, "Plasmonic sensing characteristics of single nanometric holes," Nano Lett. 5, 2335-2339 (2005).
[CrossRef] [PubMed]

Alegret, J.

B. Sepúlveda, Y. Alaverdyan, J. Alegret, M. Käll, and P. Johansson, "Shape effects in the localized surface plasmon resonance of single nanoholes in thin metal films," Opt. Express 16, 5609-5616 (2008).
[CrossRef] [PubMed]

E. Larsson, J. Alegret, M. Mikael Käll, and D. S. Sutherland, "Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors," Nano Lett. 7, 1256-1263 (2007).
[CrossRef] [PubMed]

Armelles, G.

B. Sepulveda, L. Lechuga, and G. Armelles, "Magnetooptic effects in surface-plasmon-polaritons slab waveguides," J. Lightwave Technology,  24, 945- 955 (2006).
[CrossRef]

Badenes, G.

M. P. Kreuzer, R. Quidant, G. Badenes, and M. P. Marco, "Quantitative detection of doping substances by a localised surface plasmon sensor," Biosens. Bioelectron. 21, 1345-1349 (2006).
[CrossRef]

Barnes, W. L.

T. Rindzevicius, Y. Alaverdyan, M. Kall, W. A. Murray, and W. L. Barnes, "Long-Range Refractive Index Sensing Using Plasmonic Nanostructures," J. Phys. Chem. C 111, 11806-11810 (2007).
[CrossRef]

Brandl, D. W.

H. Wang, D. W. Brandl, L. Fei, P. Nordlander, and N. J. Halas, "Nanorice: A Hybrid Plasmonic Nanostructure," Nano Lett. 6, 827-832 (2006).
[CrossRef] [PubMed]

Campbell, C. T.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative Interpretation of the Response of Surface Plasmon Resonance Sensors to Adsorbed Films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

Chang, L.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, "A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer's disease," Nano Lett. 4, 1029-1034 (2004).
[CrossRef]

Chinowsky, T. M.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative Interpretation of the Response of Surface Plasmon Resonance Sensors to Adsorbed Films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

Dahlin, A.

A. Dahlin, M. Zach, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, "Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events," J. Am. Chem. Soc. 127, 5043-5048 (2005).
[CrossRef] [PubMed]

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, "Plasmonic sensing characteristics of single nanometric holes," Nano Lett. 5, 2335-2339 (2005).
[CrossRef] [PubMed]

El-Sayed, M. A.

S. Link and M. A. El-Sayed, "Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods," J. Phys. Chem. B 103,8410-8426 (1999).
[CrossRef]

Eurenius, L.

Q2. Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, "Optical antennas based on coupled nanoholes in thin metal films," Nature Phys. 3,884-889 (2007).
[CrossRef]

Fei, L.

H. Wang, D. W. Brandl, L. Fei, P. Nordlander, and N. J. Halas, "Nanorice: A Hybrid Plasmonic Nanostructure," Nano Lett. 6, 827-832 (2006).
[CrossRef] [PubMed]

Fujiwara, K.

K. Fujiwara, H. Watarai, H. Itoh, E. Nakahama, and N. Ogawa, "Measurement of antibody binding to protein immobilized on gold nanoparticles by localized surface plasmon spectroscopy," Anal. Bioanal. Chem. 386, 639-644 (2006).
[CrossRef] [PubMed]

Garcia de Abajo, F. J.

T. Rindzevicius, Y. Alaverdyan, B. Sepúlveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. Garcia de Abajo, "Nanohole plasmons in optically thin gold films," J. Phys. Chem. C 111,1207-1212 (2007).
[CrossRef]

Glucksberg, M.

K. Shafer-Peltier, C. Haynes, M. Glucksberg, and R. Van Duyne, "Toward a Glucose Biosensor Based on Surface-Enhanced Raman Scattering," J. Am. Chem. Soc. 125, 588-593 (2003).
[CrossRef] [PubMed]

Haes, A. J.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, "A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer's disease," Nano Lett. 4, 1029-1034 (2004).
[CrossRef]

Halas, N. J.

H. Wang, D. W. Brandl, L. Fei, P. Nordlander, and N. J. Halas, "Nanorice: A Hybrid Plasmonic Nanostructure," Nano Lett. 6, 827-832 (2006).
[CrossRef] [PubMed]

Hall, W. P.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, "A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer's disease," Nano Lett. 4, 1029-1034 (2004).
[CrossRef]

Hanarp, P.

P. Hanarp, M. Kall, and D. S. Sutherland, "Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography," J. Phys. Chem. B 107, 5768-5772 (2003).
[CrossRef]

Haynes, C.

K. Shafer-Peltier, C. Haynes, M. Glucksberg, and R. Van Duyne, "Toward a Glucose Biosensor Based on Surface-Enhanced Raman Scattering," J. Am. Chem. Soc. 125, 588-593 (2003).
[CrossRef] [PubMed]

Hillenbrand, R.

T. Rindzevicius, Y. Alaverdyan, B. Sepúlveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. Garcia de Abajo, "Nanohole plasmons in optically thin gold films," J. Phys. Chem. C 111,1207-1212 (2007).
[CrossRef]

Hook, F.

L. Olofsson, T. Rindzevicius, I. Pfeiffer, M. Kall, and F. Hook, "Surface-based gold-nanoparticle sensor for specific and quantitative DNA hybridization detection," Langmuir 19, 10414-10419 (2003).
[CrossRef]

Höök, F.

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, "Plasmonic sensing characteristics of single nanometric holes," Nano Lett. 5, 2335-2339 (2005).
[CrossRef] [PubMed]

A. Dahlin, M. Zach, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, "Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events," J. Am. Chem. Soc. 127, 5043-5048 (2005).
[CrossRef] [PubMed]

Itoh, H.

K. Fujiwara, H. Watarai, H. Itoh, E. Nakahama, and N. Ogawa, "Measurement of antibody binding to protein immobilized on gold nanoparticles by localized surface plasmon spectroscopy," Anal. Bioanal. Chem. 386, 639-644 (2006).
[CrossRef] [PubMed]

Johansson, P.

Jung, L. S.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative Interpretation of the Response of Surface Plasmon Resonance Sensors to Adsorbed Films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

Kall, M.

T. Rindzevicius, Y. Alaverdyan, M. Kall, W. A. Murray, and W. L. Barnes, "Long-Range Refractive Index Sensing Using Plasmonic Nanostructures," J. Phys. Chem. C 111, 11806-11810 (2007).
[CrossRef]

P. Hanarp, M. Kall, and D. S. Sutherland, "Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography," J. Phys. Chem. B 107, 5768-5772 (2003).
[CrossRef]

L. Olofsson, T. Rindzevicius, I. Pfeiffer, M. Kall, and F. Hook, "Surface-based gold-nanoparticle sensor for specific and quantitative DNA hybridization detection," Langmuir 19, 10414-10419 (2003).
[CrossRef]

Käll, M.

B. Sepúlveda, Y. Alaverdyan, J. Alegret, M. Käll, and P. Johansson, "Shape effects in the localized surface plasmon resonance of single nanoholes in thin metal films," Opt. Express 16, 5609-5616 (2008).
[CrossRef] [PubMed]

T. Rindzevicius, Y. Alaverdyan, B. Sepúlveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. Garcia de Abajo, "Nanohole plasmons in optically thin gold films," J. Phys. Chem. C 111,1207-1212 (2007).
[CrossRef]

Q2. Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, "Optical antennas based on coupled nanoholes in thin metal films," Nature Phys. 3,884-889 (2007).
[CrossRef]

A. Dahlin, M. Zach, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, "Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events," J. Am. Chem. Soc. 127, 5043-5048 (2005).
[CrossRef] [PubMed]

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, "Plasmonic sensing characteristics of single nanometric holes," Nano Lett. 5, 2335-2339 (2005).
[CrossRef] [PubMed]

Karlsson, R.

R. Karlsson, "SPR for molecular interaction analysis: a review of emerging application areas," J. Mol. Recognit. 17, 151-161 (2004).
[CrossRef] [PubMed]

Klein, W. L.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, "A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer's disease," Nano Lett. 4, 1029-1034 (2004).
[CrossRef]

Kreuzer, M. P.

M. P. Kreuzer, R. Quidant, G. Badenes, and M. P. Marco, "Quantitative detection of doping substances by a localised surface plasmon sensor," Biosens. Bioelectron. 21, 1345-1349 (2006).
[CrossRef]

Larsson, E.

E. Larsson, J. Alegret, M. Mikael Käll, and D. S. Sutherland, "Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors," Nano Lett. 7, 1256-1263 (2007).
[CrossRef] [PubMed]

Lazarides, A. A.

M. M. Miller and A. A. Lazarides, "Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment," J. Phys. Chem. B 109,21556-21565 (2005).
[CrossRef]

Lechuga, L.

B. Sepulveda, L. Lechuga, and G. Armelles, "Magnetooptic effects in surface-plasmon-polaritons slab waveguides," J. Lightwave Technology,  24, 945- 955 (2006).
[CrossRef]

Liedberg, B.

Q1. B. Liedberg, C. Nylander, and I. Lundström, "Surface plasmon resonance for gas detection and biosensing," Sens. Act. 4, 299-304 (1983).
[CrossRef]

Link, S.

S. Link and M. A. El-Sayed, "Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods," J. Phys. Chem. B 103,8410-8426 (1999).
[CrossRef]

Lundström, I.

Q1. B. Liedberg, C. Nylander, and I. Lundström, "Surface plasmon resonance for gas detection and biosensing," Sens. Act. 4, 299-304 (1983).
[CrossRef]

Mar, M. N.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative Interpretation of the Response of Surface Plasmon Resonance Sensors to Adsorbed Films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

Marco, M. P.

M. P. Kreuzer, R. Quidant, G. Badenes, and M. P. Marco, "Quantitative detection of doping substances by a localised surface plasmon sensor," Biosens. Bioelectron. 21, 1345-1349 (2006).
[CrossRef]

Mikael Käll, M.

E. Larsson, J. Alegret, M. Mikael Käll, and D. S. Sutherland, "Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors," Nano Lett. 7, 1256-1263 (2007).
[CrossRef] [PubMed]

Miller, M. M.

M. M. Miller and A. A. Lazarides, "Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment," J. Phys. Chem. B 109,21556-21565 (2005).
[CrossRef]

Murray, W. A.

T. Rindzevicius, Y. Alaverdyan, M. Kall, W. A. Murray, and W. L. Barnes, "Long-Range Refractive Index Sensing Using Plasmonic Nanostructures," J. Phys. Chem. C 111, 11806-11810 (2007).
[CrossRef]

Nakahama, E.

K. Fujiwara, H. Watarai, H. Itoh, E. Nakahama, and N. Ogawa, "Measurement of antibody binding to protein immobilized on gold nanoparticles by localized surface plasmon spectroscopy," Anal. Bioanal. Chem. 386, 639-644 (2006).
[CrossRef] [PubMed]

Nordlander, P.

H. Wang, D. W. Brandl, L. Fei, P. Nordlander, and N. J. Halas, "Nanorice: A Hybrid Plasmonic Nanostructure," Nano Lett. 6, 827-832 (2006).
[CrossRef] [PubMed]

Nylander, C.

Q1. B. Liedberg, C. Nylander, and I. Lundström, "Surface plasmon resonance for gas detection and biosensing," Sens. Act. 4, 299-304 (1983).
[CrossRef]

Ogawa, N.

K. Fujiwara, H. Watarai, H. Itoh, E. Nakahama, and N. Ogawa, "Measurement of antibody binding to protein immobilized on gold nanoparticles by localized surface plasmon spectroscopy," Anal. Bioanal. Chem. 386, 639-644 (2006).
[CrossRef] [PubMed]

Olofsson, L.

L. Olofsson, T. Rindzevicius, I. Pfeiffer, M. Kall, and F. Hook, "Surface-based gold-nanoparticle sensor for specific and quantitative DNA hybridization detection," Langmuir 19, 10414-10419 (2003).
[CrossRef]

Olsson, E.

Q2. Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, "Optical antennas based on coupled nanoholes in thin metal films," Nature Phys. 3,884-889 (2007).
[CrossRef]

Pakizeh, T.

T. Rindzevicius, Y. Alaverdyan, B. Sepúlveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. Garcia de Abajo, "Nanohole plasmons in optically thin gold films," J. Phys. Chem. C 111,1207-1212 (2007).
[CrossRef]

Pfeiffer, I.

L. Olofsson, T. Rindzevicius, I. Pfeiffer, M. Kall, and F. Hook, "Surface-based gold-nanoparticle sensor for specific and quantitative DNA hybridization detection," Langmuir 19, 10414-10419 (2003).
[CrossRef]

Quidant, R.

M. P. Kreuzer, R. Quidant, G. Badenes, and M. P. Marco, "Quantitative detection of doping substances by a localised surface plasmon sensor," Biosens. Bioelectron. 21, 1345-1349 (2006).
[CrossRef]

Rindzevicius, T.

T. Rindzevicius, Y. Alaverdyan, M. Kall, W. A. Murray, and W. L. Barnes, "Long-Range Refractive Index Sensing Using Plasmonic Nanostructures," J. Phys. Chem. C 111, 11806-11810 (2007).
[CrossRef]

T. Rindzevicius, Y. Alaverdyan, B. Sepúlveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. Garcia de Abajo, "Nanohole plasmons in optically thin gold films," J. Phys. Chem. C 111,1207-1212 (2007).
[CrossRef]

A. Dahlin, M. Zach, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, "Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events," J. Am. Chem. Soc. 127, 5043-5048 (2005).
[CrossRef] [PubMed]

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, "Plasmonic sensing characteristics of single nanometric holes," Nano Lett. 5, 2335-2339 (2005).
[CrossRef] [PubMed]

L. Olofsson, T. Rindzevicius, I. Pfeiffer, M. Kall, and F. Hook, "Surface-based gold-nanoparticle sensor for specific and quantitative DNA hybridization detection," Langmuir 19, 10414-10419 (2003).
[CrossRef]

Sepulveda, B.

B. Sepulveda, L. Lechuga, and G. Armelles, "Magnetooptic effects in surface-plasmon-polaritons slab waveguides," J. Lightwave Technology,  24, 945- 955 (2006).
[CrossRef]

Sepúlveda, B.

B. Sepúlveda, Y. Alaverdyan, J. Alegret, M. Käll, and P. Johansson, "Shape effects in the localized surface plasmon resonance of single nanoholes in thin metal films," Opt. Express 16, 5609-5616 (2008).
[CrossRef] [PubMed]

Q2. Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, "Optical antennas based on coupled nanoholes in thin metal films," Nature Phys. 3,884-889 (2007).
[CrossRef]

T. Rindzevicius, Y. Alaverdyan, B. Sepúlveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. Garcia de Abajo, "Nanohole plasmons in optically thin gold films," J. Phys. Chem. C 111,1207-1212 (2007).
[CrossRef]

Shafer-Peltier, K.

K. Shafer-Peltier, C. Haynes, M. Glucksberg, and R. Van Duyne, "Toward a Glucose Biosensor Based on Surface-Enhanced Raman Scattering," J. Am. Chem. Soc. 125, 588-593 (2003).
[CrossRef] [PubMed]

Sutherland, D. S.

E. Larsson, J. Alegret, M. Mikael Käll, and D. S. Sutherland, "Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors," Nano Lett. 7, 1256-1263 (2007).
[CrossRef] [PubMed]

A. Dahlin, M. Zach, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, "Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events," J. Am. Chem. Soc. 127, 5043-5048 (2005).
[CrossRef] [PubMed]

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, "Plasmonic sensing characteristics of single nanometric holes," Nano Lett. 5, 2335-2339 (2005).
[CrossRef] [PubMed]

P. Hanarp, M. Kall, and D. S. Sutherland, "Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography," J. Phys. Chem. B 107, 5768-5772 (2003).
[CrossRef]

Van Duyne, R.

K. Shafer-Peltier, C. Haynes, M. Glucksberg, and R. Van Duyne, "Toward a Glucose Biosensor Based on Surface-Enhanced Raman Scattering," J. Am. Chem. Soc. 125, 588-593 (2003).
[CrossRef] [PubMed]

Van Duyne, R. P.

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, "A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer's disease," Nano Lett. 4, 1029-1034 (2004).
[CrossRef]

Wang, H.

H. Wang, D. W. Brandl, L. Fei, P. Nordlander, and N. J. Halas, "Nanorice: A Hybrid Plasmonic Nanostructure," Nano Lett. 6, 827-832 (2006).
[CrossRef] [PubMed]

Watarai, H.

K. Fujiwara, H. Watarai, H. Itoh, E. Nakahama, and N. Ogawa, "Measurement of antibody binding to protein immobilized on gold nanoparticles by localized surface plasmon spectroscopy," Anal. Bioanal. Chem. 386, 639-644 (2006).
[CrossRef] [PubMed]

Yee, S. S.

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative Interpretation of the Response of Surface Plasmon Resonance Sensors to Adsorbed Films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

Zach, M.

A. Dahlin, M. Zach, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, "Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events," J. Am. Chem. Soc. 127, 5043-5048 (2005).
[CrossRef] [PubMed]

Anal. Bioanal. Chem. (1)

K. Fujiwara, H. Watarai, H. Itoh, E. Nakahama, and N. Ogawa, "Measurement of antibody binding to protein immobilized on gold nanoparticles by localized surface plasmon spectroscopy," Anal. Bioanal. Chem. 386, 639-644 (2006).
[CrossRef] [PubMed]

Biosens. Bioelectron. (1)

M. P. Kreuzer, R. Quidant, G. Badenes, and M. P. Marco, "Quantitative detection of doping substances by a localised surface plasmon sensor," Biosens. Bioelectron. 21, 1345-1349 (2006).
[CrossRef]

J. Am. Chem. Soc. (2)

K. Shafer-Peltier, C. Haynes, M. Glucksberg, and R. Van Duyne, "Toward a Glucose Biosensor Based on Surface-Enhanced Raman Scattering," J. Am. Chem. Soc. 125, 588-593 (2003).
[CrossRef] [PubMed]

A. Dahlin, M. Zach, T. Rindzevicius, M. Käll, D. S. Sutherland, and F. Höök, "Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events," J. Am. Chem. Soc. 127, 5043-5048 (2005).
[CrossRef] [PubMed]

J. Lightwave Technology (1)

B. Sepulveda, L. Lechuga, and G. Armelles, "Magnetooptic effects in surface-plasmon-polaritons slab waveguides," J. Lightwave Technology,  24, 945- 955 (2006).
[CrossRef]

J. Mol. Recognit. (1)

R. Karlsson, "SPR for molecular interaction analysis: a review of emerging application areas," J. Mol. Recognit. 17, 151-161 (2004).
[CrossRef] [PubMed]

J. Phys. Chem. B (3)

M. M. Miller and A. A. Lazarides, "Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment," J. Phys. Chem. B 109,21556-21565 (2005).
[CrossRef]

P. Hanarp, M. Kall, and D. S. Sutherland, "Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography," J. Phys. Chem. B 107, 5768-5772 (2003).
[CrossRef]

S. Link and M. A. El-Sayed, "Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods," J. Phys. Chem. B 103,8410-8426 (1999).
[CrossRef]

J. Phys. Chem. C (2)

T. Rindzevicius, Y. Alaverdyan, B. Sepúlveda, T. Pakizeh, M. Käll, R. Hillenbrand, J. Aizpurua, and F. J. Garcia de Abajo, "Nanohole plasmons in optically thin gold films," J. Phys. Chem. C 111,1207-1212 (2007).
[CrossRef]

T. Rindzevicius, Y. Alaverdyan, M. Kall, W. A. Murray, and W. L. Barnes, "Long-Range Refractive Index Sensing Using Plasmonic Nanostructures," J. Phys. Chem. C 111, 11806-11810 (2007).
[CrossRef]

Langmuir (2)

L. S. Jung, C. T. Campbell, T. M. Chinowsky, M. N. Mar, and S. S. Yee, "Quantitative Interpretation of the Response of Surface Plasmon Resonance Sensors to Adsorbed Films," Langmuir 14, 5636-5648 (1998).
[CrossRef]

L. Olofsson, T. Rindzevicius, I. Pfeiffer, M. Kall, and F. Hook, "Surface-based gold-nanoparticle sensor for specific and quantitative DNA hybridization detection," Langmuir 19, 10414-10419 (2003).
[CrossRef]

Nano Lett. (4)

A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. Van Duyne, "A localized surface plasmon resonance biosensor: First steps toward an assay for Alzheimer's disease," Nano Lett. 4, 1029-1034 (2004).
[CrossRef]

H. Wang, D. W. Brandl, L. Fei, P. Nordlander, and N. J. Halas, "Nanorice: A Hybrid Plasmonic Nanostructure," Nano Lett. 6, 827-832 (2006).
[CrossRef] [PubMed]

E. Larsson, J. Alegret, M. Mikael Käll, and D. S. Sutherland, "Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors," Nano Lett. 7, 1256-1263 (2007).
[CrossRef] [PubMed]

T. Rindzevicius, Y. Alaverdyan, A. Dahlin, F. Höök, D. S. Sutherland, and M. Käll, "Plasmonic sensing characteristics of single nanometric holes," Nano Lett. 5, 2335-2339 (2005).
[CrossRef] [PubMed]

Nature Phys. (1)

Q2. Y. Alaverdyan, B. Sepúlveda, L. Eurenius, E. Olsson, and M. Käll, "Optical antennas based on coupled nanoholes in thin metal films," Nature Phys. 3,884-889 (2007).
[CrossRef]

Opt. Express (1)

Sens. Act. (1)

Q1. B. Liedberg, C. Nylander, and I. Lundström, "Surface plasmon resonance for gas detection and biosensing," Sens. Act. 4, 299-304 (1983).
[CrossRef]

Other (1)

P. Hanarp, Optical properties of nanometer disks, holes and rings prepared by colloidal lithography (Chalmers University of Technology, Göteborg, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Nanohole separations enable the tuning of the resonance into the NIR. (a) Illustration and SEM of nanohole chain, indicating polarization and the edge-to egde distance, d. (b) Scattering spectra for nanohole array with d = 300, 200 and 100 nm. The samples are covered with air (solid), water (dashed) and immersion oil (dotted). (c) Difference in peak position as a function of the refractive index of the sensing medium. Separations are given in the legend. (d) Bulk refractive index sensitivity as a function of the spectral peak position. A linear fitting of the data in (c) is used.

Fig. 2.
Fig. 2.

Calculated field distributions for inhomogeneous gold film environments. (a) Glass (b) Teflon, (c) TiO2. field distributions calculated using the transfer matrix method [19] (d) Fraction of field in sensing within sensing medium (e) Schematic cross-section of a gold film with nanoholes

Fig. 3.
Fig. 3.

SEM pictures of nanoholes in gold films prepared by colloidal lithography on different substrates: (a) Teflon (b) SiO2 (c) TiO2. Magnification is 16 000x and acceleration voltage is 5 kV. Center-to center nearest-neighbor distances for the three different substrates are shown.

Fig. 4.
Fig. 4.

Extinction spectra for nanohole arrays on Teflon (black), SiO2 (red) and TiO2 (green) substrates. (a) Spectral responses due to bulk refractive index changes are shown. Samples are immersed in air (solid) and water (dashed). (b) Bulk refractive index sensitivity. (c) and (d) show measured and fitted surface sensitivities in air and water.

Tables (1)

Tables Icon

Table 1: Experimental values of the bulk and surface sensitivity when the external medium is water, and decay length of the electromagnetic field in the sensing region, extracted from the experimental data.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

η bulk = δ λ SPR δ n d
η surface = δ λ SPR δ d b
Δ λ = η bulk ( n f n bulk ) ( 1 exp ( 2 d / δ ) )

Metrics