Abstract

In this paper, we present a method of using digital micro-mirror devices to dynamic range enhancement of a digital optical microscope images. Our adaptive feedback illumination control generates a high dynamic range image through an algorithm that combines the DMD-to-camera pixel geometrical mapping and a feedback operation. The feedback process automatically generates an illumination pattern in an iterative fashion that spatially modulates the DMD array elements on pixel-by-pixel level. Via experiment, we demonstrate a system that uses precise DMD control of the projector to enhance the dynamic range ideally by a factor of 573. Results are presented showing approximately 5 times the camera dynamic range, enabling visualization over a wide range of specimen characteristics.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Dudley, W. M. Duncan, and J. Slaughter, "Emerging digital micromirror device (DMD) applications," Proc. SPIE 4985, 14-25 (2003).
    [CrossRef]
  2. A. L. P. Dlugan and C. E. MacAulay, "Update on the use of digital micromirror devices in quantitative microscopy," Proc. SPIE 3604, 253-262 (1999).
    [CrossRef]
  3. V. Bansal, S. Patel, and P. Saggau, "A High speed confocal laser-scanning microscope based on acousto-optic deflectors and a digital micromirror device," in Proceedings of the IEEE conference on engineering in medicine and biology society (Institute of Electrical and Electronics Engineers, TX, 2003), 17-21.
  4. P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. van Vliet and T. M. Jovin, "Theory of confocal fluorescence imaging in the Programmable Array Microscope (PAM)," J. Microsc, A 189, 192-198 (1998).
    [CrossRef]
  5. M. Liang, R. L. Stehr, and A. W. Krause, "Confocal pattern period in multiple-aperture confocal imaging systems with coherent illumination," Opt. Lett. A 22, 751-753 (1997).
    [CrossRef]
  6. E. Reinhard, G. Ward, S Pattanaik, and P. Debevec, High dynamic range imaging: acquisition, display, and image-based lighting (Morgan Kaufmann, 2006), Chap. 4.
  7. S. K. Nayar, V. Branzoi, and T. E. Boult, "Programmable Imaging Using a Digital Micromirror Array," in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, (CVPR, 2004), 436-443.
  8. S. K. Nayar and V. Branzoi, "Adaptive Dynamic Range Imaging: Optical Control of Pixel Exposures over Space and Time," in Proceedings of IEEE International Conference on Computer Vision, (ICCV, 2003), 1168-1175.
    [CrossRef]
  9. M. D. Grossberg and S. K. Nayar, "High dynamic range from multiple images: which exposure to combine?," presented at ICCV Workshop on Color and Photometric Methods in Computer Vision (CPMCV), Nice, France, 11-17 Oct., 2003.
  10. P. E. Debevec and J. Malik, "Recovering high dynamic range radiance maps from photographs," in Proceedings of annual conference on computer graphics and interactive techniques, (ACM Press/Addison-Wesley Publishing, NY, 1997), 369-378.
  11. T. Mitsunaga and S. K. Nayar, "Radiometric self calibration," in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, (CVPR, 1999), 374-380.
  12. S. K. Nayar and T. Mitsunaga, "High dynamic imaging: spatially varying pixel exposures," in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, (CVPR, 2000), 472-479.
    [CrossRef]

2003 (1)

D. Dudley, W. M. Duncan, and J. Slaughter, "Emerging digital micromirror device (DMD) applications," Proc. SPIE 4985, 14-25 (2003).
[CrossRef]

1999 (1)

A. L. P. Dlugan and C. E. MacAulay, "Update on the use of digital micromirror devices in quantitative microscopy," Proc. SPIE 3604, 253-262 (1999).
[CrossRef]

1997 (1)

M. Liang, R. L. Stehr, and A. W. Krause, "Confocal pattern period in multiple-aperture confocal imaging systems with coherent illumination," Opt. Lett. A 22, 751-753 (1997).
[CrossRef]

Branzoi, V.

S. K. Nayar and V. Branzoi, "Adaptive Dynamic Range Imaging: Optical Control of Pixel Exposures over Space and Time," in Proceedings of IEEE International Conference on Computer Vision, (ICCV, 2003), 1168-1175.
[CrossRef]

Dlugan, A. L. P.

A. L. P. Dlugan and C. E. MacAulay, "Update on the use of digital micromirror devices in quantitative microscopy," Proc. SPIE 3604, 253-262 (1999).
[CrossRef]

Dudley, D.

D. Dudley, W. M. Duncan, and J. Slaughter, "Emerging digital micromirror device (DMD) applications," Proc. SPIE 4985, 14-25 (2003).
[CrossRef]

Duncan, W. M.

D. Dudley, W. M. Duncan, and J. Slaughter, "Emerging digital micromirror device (DMD) applications," Proc. SPIE 4985, 14-25 (2003).
[CrossRef]

Krause, A. W.

M. Liang, R. L. Stehr, and A. W. Krause, "Confocal pattern period in multiple-aperture confocal imaging systems with coherent illumination," Opt. Lett. A 22, 751-753 (1997).
[CrossRef]

Liang, M.

M. Liang, R. L. Stehr, and A. W. Krause, "Confocal pattern period in multiple-aperture confocal imaging systems with coherent illumination," Opt. Lett. A 22, 751-753 (1997).
[CrossRef]

MacAulay, C. E.

A. L. P. Dlugan and C. E. MacAulay, "Update on the use of digital micromirror devices in quantitative microscopy," Proc. SPIE 3604, 253-262 (1999).
[CrossRef]

Nayar, S. K.

S. K. Nayar and V. Branzoi, "Adaptive Dynamic Range Imaging: Optical Control of Pixel Exposures over Space and Time," in Proceedings of IEEE International Conference on Computer Vision, (ICCV, 2003), 1168-1175.
[CrossRef]

Slaughter, J.

D. Dudley, W. M. Duncan, and J. Slaughter, "Emerging digital micromirror device (DMD) applications," Proc. SPIE 4985, 14-25 (2003).
[CrossRef]

Stehr, R. L.

M. Liang, R. L. Stehr, and A. W. Krause, "Confocal pattern period in multiple-aperture confocal imaging systems with coherent illumination," Opt. Lett. A 22, 751-753 (1997).
[CrossRef]

Opt. Lett. A (1)

M. Liang, R. L. Stehr, and A. W. Krause, "Confocal pattern period in multiple-aperture confocal imaging systems with coherent illumination," Opt. Lett. A 22, 751-753 (1997).
[CrossRef]

Proc. SPIE (2)

D. Dudley, W. M. Duncan, and J. Slaughter, "Emerging digital micromirror device (DMD) applications," Proc. SPIE 4985, 14-25 (2003).
[CrossRef]

A. L. P. Dlugan and C. E. MacAulay, "Update on the use of digital micromirror devices in quantitative microscopy," Proc. SPIE 3604, 253-262 (1999).
[CrossRef]

Other (9)

V. Bansal, S. Patel, and P. Saggau, "A High speed confocal laser-scanning microscope based on acousto-optic deflectors and a digital micromirror device," in Proceedings of the IEEE conference on engineering in medicine and biology society (Institute of Electrical and Electronics Engineers, TX, 2003), 17-21.

P. J. Verveer, Q. S. Hanley, P. W. Verbeek, L. J. van Vliet and T. M. Jovin, "Theory of confocal fluorescence imaging in the Programmable Array Microscope (PAM)," J. Microsc, A 189, 192-198 (1998).
[CrossRef]

E. Reinhard, G. Ward, S Pattanaik, and P. Debevec, High dynamic range imaging: acquisition, display, and image-based lighting (Morgan Kaufmann, 2006), Chap. 4.

S. K. Nayar, V. Branzoi, and T. E. Boult, "Programmable Imaging Using a Digital Micromirror Array," in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, (CVPR, 2004), 436-443.

S. K. Nayar and V. Branzoi, "Adaptive Dynamic Range Imaging: Optical Control of Pixel Exposures over Space and Time," in Proceedings of IEEE International Conference on Computer Vision, (ICCV, 2003), 1168-1175.
[CrossRef]

M. D. Grossberg and S. K. Nayar, "High dynamic range from multiple images: which exposure to combine?," presented at ICCV Workshop on Color and Photometric Methods in Computer Vision (CPMCV), Nice, France, 11-17 Oct., 2003.

P. E. Debevec and J. Malik, "Recovering high dynamic range radiance maps from photographs," in Proceedings of annual conference on computer graphics and interactive techniques, (ACM Press/Addison-Wesley Publishing, NY, 1997), 369-378.

T. Mitsunaga and S. K. Nayar, "Radiometric self calibration," in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, (CVPR, 1999), 374-380.

S. K. Nayar and T. Mitsunaga, "High dynamic imaging: spatially varying pixel exposures," in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, (CVPR, 2000), 472-479.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1.
Fig. 1.

Images of Honeybee leg captured at low (a) and high (b) exposure settings

Fig. 2.
Fig. 2.

Adaptive feedback control illumination

Fig. 3.
Fig. 3.

PSF of the AFIC system

Fig. 4.
Fig. 4.

Adaptive feedback illumination control algorithm

Fig. 5.
Fig. 5.

DMD Output power vs. digital level

Fig. 6.
Fig. 6.

Spatially varying intensity pattern generated in Matlab before modulating the DMD array

Fig. 7.
Fig. 7.

Captured frame of spatially varying intensity patches

Fig. 8.
Fig. 8.

Recovered response curve of the camera used in the setup

Fig. 9.
Fig. 9.

Results from dynamic range enhancement process of Honeybee leg: (a) the initial image with saturation in region 1, 2, 3, and 4 (b) Calculated modulation array from the initial image, (c) second image showing saturation in region 2, 3, and 4 (d) Calculated modulation array from (c), (e) third image showing saturation in the region 4 (f) Calculated modulation pattern from (e), (g) fourth image captured with application of (f), (h) Calculated modulation array from (g), (i) recalculated final image with compressed image feature, (j) 8 bit tone mapped HDR data from the final image.

Fig. 10.
Fig. 10.

Normalized histograms of the calculated HDR data

Fig. 11.
Fig. 11.

Multiple exposure capture images of Honeybee leg

Fig. 12.
Fig. 12.

Tone mapped image of multiple exposure capture HDR data of Honeybee leg

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

DR AFIC = ( B max B min * D max D min )
P D = T f ( D )
B = g ( P D * E )
P D ξη = f ( D ξη )
R xy = g 1 ( B xy ) E
H xy = P D xy R xy = f 1 ( D ξη ) * E g 1 ( B xy )

Metrics