Abstract

Propagations of coherent and partially coherent flat-topped beams through a focusing optical system are formulated. The radiation force on a Rayleigh dielectric sphere induced by focused coherent and partially coherent flat-topped beams is investigated theoretically. It is found that we can increase the transverse trapping range at the planes near the focal plane by increasing the flatness (i.e., beam order) of the flat-topped beam, and increase the transverse and longitudinal trapping ranges at the focal plane by decreasing the initial coherence of the flat-topped beam. Moreover the trapping stiffness of flat-topped beam becomes lower as the beam order increases or the initial coherence decreases. The trapping stability is also analyzed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. Cowan, J. Recolons, L. C. Andrews, and C. Y. Young, "Propagation of flattened Gaussian beams in the atmosphere: a comparison of theory with a computer simulation model," in Atmospheric Propagation III, C. Y. Young and G. C. Gilbreath, eds., Proc. SPIE 6215, 62150B (2006).
  2. H. T. Eyyuboğlu, A. Arpali, and Y. Baykal, "Flat topped beams and their characteristics in turbulent media," Opt. Express 14, 4196-4207 (2006).
    [CrossRef] [PubMed]
  3. Y. Baykal and H. T. Eyyuboğlu, "Scintillation index of flat-topped Gaussian beams," Appl. Opt. 45, 3793-3797 (2006).
    [CrossRef] [PubMed]
  4. Y. Cai, "Propagation of various flat-topped beams in a turbulent atmosphere," J. Opt. A: Pure Appl. Opt. 8, 537-545 (2006).
    [CrossRef]
  5. N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, "Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of inertial confinement fusion target," Opt. Rev. 7, 216-220 (2000).
    [CrossRef]
  6. D. W. Coutts, "Double-pass copper vapor laser master-oscillator power-amplifier systems: Generation of flat-top focused beams for fiber coupling and percussion drilling," IEEE J. Quantum Electron. 38, 1217-1224 (2002).
    [CrossRef]
  7. W. Wang, P. X. Wang, Y. K. Ho, Q. Kong, Z. Chen, Y. Gu, and S. J. Wang, "Field description and electron acceleration of focused flattened Gaussian laser beams," Europhys. Lett. 73, 211-217 (2006).
    [CrossRef]
  8. L. Wang and J. Xue, "Efficiency comparison analysis of second harmonic generation on flattened Gaussian and Gaussian beams through a crystal CsLiB6O10," Jpn. J. Appl. Phys. 41, 7373-7376 (2002).
    [CrossRef]
  9. M. S. Bowers, "Diffractive analysis of unstable optical resonator with super-Gaussian mirrors," Opt. Lett. 19, 1319-1321 (1992).
    [CrossRef]
  10. F. Gori, "Flattened gaussian beams," Opt. Commun. 107, 335-341 (1994).
    [CrossRef]
  11. Y. Li, "Light beam with flat-topped profiles," Opt. Lett. 27, 1007-1009 (2002).
    [CrossRef]
  12. A. A. Tovar, "Propagation of flat-topped multi-Gaussian laser beams," J. Opt. Soc. Am. A 18, 1897-1904 (2001).
    [CrossRef]
  13. S. A. Amarande, "Beam propagation factor and the kurtosis parameter of flattened Gaussian beams," Opt. Commun. 129, 311-317 (1996).
  14. R. Borghi, M. Santarsiero, and S. Vicalvi, "Focal shift of focused flat-topped beams," Opt. Commun. 154, 243-48 (1998).
    [CrossRef]
  15. V. Bagini, R. Borghi, F. Gori, A. M. Pacileo, and M. Santarsiero, "Propagation of axially symmetric flattened Gaussian beams," J. Opt. Soc. Am. A 13, 1385-1394 (1996).
    [CrossRef]
  16. Y. Cai and Q. Lin, "Properties of a flattened Gaussian beam in the fractional Fourier transform plane," J. Opt. A: Pure Appl. Opt. 5, 272-275 (2003).
    [CrossRef]
  17. X. Ji and B. Lu, "Focal shift and focal switch of flattened Gaussian beams in passage through an apertured bifocal lens," IEEE J. Quantum Electron. 39, 172-178 (2003).
    [CrossRef]
  18. Y. Cai and Q. Lin, "Light beams with elliptical flat-topped profiles," J. Opt. A: Pure Appl. Opt. 6, 390-395 (2004).
    [CrossRef]
  19. R. Borghi, "Elegant Laguerre-Gauss beams as a new tool for describing axisymmetric flattened Gaussian beams," J. Opt. Soc. Am. A. 18, 1627-1633 (2001).
    [CrossRef]
  20. X. Lü and Y. Cai, "Analytical formulas for a circular or non-circular flat-topped beam propagating through an apertured paraxial optical system," Opt. Commun. 269, 39-46 (2007).
    [CrossRef]
  21. G. Wu, H. Guo, and D. Deng, "Paraxial propagation of partially coherent flat-topped beam," Opt. Commun. 260, 687-690 (2006).
    [CrossRef]
  22. Y. Cai and S. He, "Partially coherent flattened Gaussian beam and its paraxial propagation properties," J. Opt. Soc. Am. A 23, 2623-2628 (2006).
    [CrossRef]
  23. R. Borghi and M. Santarsiero, "Modal decomposition of partially coherent flat-topped beams produced by multimode lasers," Opt. Lett. 23, 313-315 (1998).
    [CrossRef]
  24. Y. Zhang, B. Zhang, and Q. Wen, "Changes in the spectrum of partially coherent flat-top light beam propagating in dispersive or gain media," Opt. Commun. 266, 407-412 (2006).
    [CrossRef]
  25. M. Alavinejad and B. Ghafary, "Turbulence-induced degradation properties of partially coherent flat-topped beams," Opt. Lasers Eng. 46, 357-362 (2008).
    [CrossRef]
  26. M. Alavinejad, B. Ghafary, and D. Razzaghi, "Spectral changes of partially coherent flat topped beam in turbulent atmosphere," Opt. Commun. 281, 2173-2178 (2008).
    [CrossRef]
  27. Y. Baykal and H. T. Eyyuboğlu, "Scintillations of incoherent flat-topped Gaussian source field in turbulence," Appl. Opt. 46, 5044-5050 (2007).
    [CrossRef] [PubMed]
  28. F. Wang and Y. Cai, "Experimental generation of a partially coherent flat-topped beam," Opt. Lett. 33, 1795-1797 (2008).
    [CrossRef] [PubMed]
  29. A. Ashkin, "Acceleration and trapping of particles by radiation force," Phys. Rev. Lett. 24, 156-159 (1970).
    [CrossRef]
  30. A. Ashkin, "Trapping of atoms by resonance radiation pressure," Phys. Rev. Lett. 40, 729-732 (1978).
    [CrossRef]
  31. A. Ashkin, J. M. Dziezic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
    [CrossRef] [PubMed]
  32. Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).
    [CrossRef]
  33. P. Zemanek and C. J. Foot, "Atomic dipole trap formed by blue detuned strong Gaussian standing wave," Opt. Commun. 146, 119-123 (1998).
    [CrossRef]
  34. M. Steven, S. B. Block Lawrence, and Goldstein and Bruce J. Schnapp, "Bead movement by single kinesin molecules studied with optical tweezers," Nature. 348, 348 - 352 (1990).
    [CrossRef]
  35. L. Oroszi L, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, "Direct measurement of torque in an optical trap and its application to double-strand DNA," Phys. Rev. Lett. 97, 058301 (2006).
    [CrossRef] [PubMed]
  36. C. Day, "Optical trap resolves the stepwise transfer of genetic information from DNA to RNA," Phys. Today. 59, 26-27 (2006).
    [CrossRef]
  37. S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, "Experimental observation and manipulation of stuck particles with pulsed optical tweezers," Opt. Lett. 30, 1797-1799 (2005).
    [CrossRef]
  38. C. H. Chen, P. T. Tai, and W. F. Hsieh, "Bottle beam from a bare laser for single-beam trapping" Appl. Phys. Lett. 43, 6001-6006 (2004).
  39. J. Y. Ye. G. Q. Chang. T. B. Norris, C. Tse, M. J. Zohdy. K. W. Hollman, M. O’Donnell, and J. R. Baker, "Trapping cavitation bubbles with a self-focused laser beam," Opt. Lett. 29, 2136- 2138 (2004).
    [CrossRef] [PubMed]
  40. M. Bhattacharya and P. Meystre, "Using a Laguerre-Gaussian Beam to Trap and Cool the Rotational Motion of a Mirror," Phys. Rev. Lett. 99, 153603 (2007).
    [CrossRef] [PubMed]
  41. J. Tempere, J. T. Devreese, and E. R. I. Abraham, "Vortices in Bose-Einstein condensates confined in a multiply connected Laguerre-Gaussian optical trap," Phys. Rev. A 64, 023603 (2001).
  42. T. Meyrath, F. Schreck, J. Hanssen, C. Chuu, and M. Raizen, "A high frequency optical trap for atoms using Hermite-Gaussian beams," Opt. Express. 13, 2843-2851 (2005).
    [CrossRef] [PubMed]
  43. K. Okamoto and S. Kawata, "Radiation Force Exerted on Subwavelength Particles near a Nanoaperture," Phys. Rev. Lett. 83, 4534-4537 (1999).
    [CrossRef]
  44. Q. Zhan, "Trapping metallic Rayleigh particles with radial polarization," Opt. Express 12, 3377-3382 (2004).
    [CrossRef] [PubMed]
  45. L. G. Wang, C. L. Zhao, L. Q. Wang, X. H. Lu, and S. Y. Zhu, "Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere," Opt. Lett. 32, 1393-1395 (2007).
    [CrossRef] [PubMed]
  46. L. G. Wang and C. L. Zhao, "Dynamic radiation force of a pulsed Gaussian beam acting on a Rayleigh dielectric sphere," Opt. Express. 15, 10615-10621 (2007).
    [CrossRef] [PubMed]
  47. Q. Lin, S. Wang, J. Alda, and E. Bernabeu, "Transformation of non-symmetric Gaussian beam into symmetric one by means of tensor ABCD law," Optik. 85, 67-72 (1990).
  48. J. A. Arnaud, "Nonorthogonal optical waveguides and resonators," Bell Syst. Tech. J. 49, 2311-2348 (1970).
  49. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge, New York, 1995).
  50. Q. Lin and Y. Cai, "Tensor ABCD law for partially coherent twisted anisotropic Gaussian Schell-model beams," Opt. Lett. 27, 216-218 (2002).
    [CrossRef]

2008

M. Alavinejad and B. Ghafary, "Turbulence-induced degradation properties of partially coherent flat-topped beams," Opt. Lasers Eng. 46, 357-362 (2008).
[CrossRef]

M. Alavinejad, B. Ghafary, and D. Razzaghi, "Spectral changes of partially coherent flat topped beam in turbulent atmosphere," Opt. Commun. 281, 2173-2178 (2008).
[CrossRef]

F. Wang and Y. Cai, "Experimental generation of a partially coherent flat-topped beam," Opt. Lett. 33, 1795-1797 (2008).
[CrossRef] [PubMed]

2007

L. G. Wang, C. L. Zhao, L. Q. Wang, X. H. Lu, and S. Y. Zhu, "Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere," Opt. Lett. 32, 1393-1395 (2007).
[CrossRef] [PubMed]

Y. Baykal and H. T. Eyyuboğlu, "Scintillations of incoherent flat-topped Gaussian source field in turbulence," Appl. Opt. 46, 5044-5050 (2007).
[CrossRef] [PubMed]

X. Lü and Y. Cai, "Analytical formulas for a circular or non-circular flat-topped beam propagating through an apertured paraxial optical system," Opt. Commun. 269, 39-46 (2007).
[CrossRef]

M. Bhattacharya and P. Meystre, "Using a Laguerre-Gaussian Beam to Trap and Cool the Rotational Motion of a Mirror," Phys. Rev. Lett. 99, 153603 (2007).
[CrossRef] [PubMed]

L. G. Wang and C. L. Zhao, "Dynamic radiation force of a pulsed Gaussian beam acting on a Rayleigh dielectric sphere," Opt. Express. 15, 10615-10621 (2007).
[CrossRef] [PubMed]

2006

L. Oroszi L, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, "Direct measurement of torque in an optical trap and its application to double-strand DNA," Phys. Rev. Lett. 97, 058301 (2006).
[CrossRef] [PubMed]

C. Day, "Optical trap resolves the stepwise transfer of genetic information from DNA to RNA," Phys. Today. 59, 26-27 (2006).
[CrossRef]

Y. Zhang, B. Zhang, and Q. Wen, "Changes in the spectrum of partially coherent flat-top light beam propagating in dispersive or gain media," Opt. Commun. 266, 407-412 (2006).
[CrossRef]

G. Wu, H. Guo, and D. Deng, "Paraxial propagation of partially coherent flat-topped beam," Opt. Commun. 260, 687-690 (2006).
[CrossRef]

Y. Cai, "Propagation of various flat-topped beams in a turbulent atmosphere," J. Opt. A: Pure Appl. Opt. 8, 537-545 (2006).
[CrossRef]

W. Wang, P. X. Wang, Y. K. Ho, Q. Kong, Z. Chen, Y. Gu, and S. J. Wang, "Field description and electron acceleration of focused flattened Gaussian laser beams," Europhys. Lett. 73, 211-217 (2006).
[CrossRef]

H. T. Eyyuboğlu, A. Arpali, and Y. Baykal, "Flat topped beams and their characteristics in turbulent media," Opt. Express 14, 4196-4207 (2006).
[CrossRef] [PubMed]

Y. Baykal and H. T. Eyyuboğlu, "Scintillation index of flat-topped Gaussian beams," Appl. Opt. 45, 3793-3797 (2006).
[CrossRef] [PubMed]

Y. Cai and S. He, "Partially coherent flattened Gaussian beam and its paraxial propagation properties," J. Opt. Soc. Am. A 23, 2623-2628 (2006).
[CrossRef]

2005

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, "Experimental observation and manipulation of stuck particles with pulsed optical tweezers," Opt. Lett. 30, 1797-1799 (2005).
[CrossRef]

T. Meyrath, F. Schreck, J. Hanssen, C. Chuu, and M. Raizen, "A high frequency optical trap for atoms using Hermite-Gaussian beams," Opt. Express. 13, 2843-2851 (2005).
[CrossRef] [PubMed]

2004

C. H. Chen, P. T. Tai, and W. F. Hsieh, "Bottle beam from a bare laser for single-beam trapping" Appl. Phys. Lett. 43, 6001-6006 (2004).

Y. Cai and Q. Lin, "Light beams with elliptical flat-topped profiles," J. Opt. A: Pure Appl. Opt. 6, 390-395 (2004).
[CrossRef]

Q. Zhan, "Trapping metallic Rayleigh particles with radial polarization," Opt. Express 12, 3377-3382 (2004).
[CrossRef] [PubMed]

J. Y. Ye. G. Q. Chang. T. B. Norris, C. Tse, M. J. Zohdy. K. W. Hollman, M. O’Donnell, and J. R. Baker, "Trapping cavitation bubbles with a self-focused laser beam," Opt. Lett. 29, 2136- 2138 (2004).
[CrossRef] [PubMed]

2003

Y. Cai and Q. Lin, "Properties of a flattened Gaussian beam in the fractional Fourier transform plane," J. Opt. A: Pure Appl. Opt. 5, 272-275 (2003).
[CrossRef]

X. Ji and B. Lu, "Focal shift and focal switch of flattened Gaussian beams in passage through an apertured bifocal lens," IEEE J. Quantum Electron. 39, 172-178 (2003).
[CrossRef]

2002

L. Wang and J. Xue, "Efficiency comparison analysis of second harmonic generation on flattened Gaussian and Gaussian beams through a crystal CsLiB6O10," Jpn. J. Appl. Phys. 41, 7373-7376 (2002).
[CrossRef]

D. W. Coutts, "Double-pass copper vapor laser master-oscillator power-amplifier systems: Generation of flat-top focused beams for fiber coupling and percussion drilling," IEEE J. Quantum Electron. 38, 1217-1224 (2002).
[CrossRef]

Q. Lin and Y. Cai, "Tensor ABCD law for partially coherent twisted anisotropic Gaussian Schell-model beams," Opt. Lett. 27, 216-218 (2002).
[CrossRef]

Y. Li, "Light beam with flat-topped profiles," Opt. Lett. 27, 1007-1009 (2002).
[CrossRef]

2001

R. Borghi, "Elegant Laguerre-Gauss beams as a new tool for describing axisymmetric flattened Gaussian beams," J. Opt. Soc. Am. A. 18, 1627-1633 (2001).
[CrossRef]

A. A. Tovar, "Propagation of flat-topped multi-Gaussian laser beams," J. Opt. Soc. Am. A 18, 1897-1904 (2001).
[CrossRef]

J. Tempere, J. T. Devreese, and E. R. I. Abraham, "Vortices in Bose-Einstein condensates confined in a multiply connected Laguerre-Gaussian optical trap," Phys. Rev. A 64, 023603 (2001).

2000

N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, "Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of inertial confinement fusion target," Opt. Rev. 7, 216-220 (2000).
[CrossRef]

1999

K. Okamoto and S. Kawata, "Radiation Force Exerted on Subwavelength Particles near a Nanoaperture," Phys. Rev. Lett. 83, 4534-4537 (1999).
[CrossRef]

1998

R. Borghi and M. Santarsiero, "Modal decomposition of partially coherent flat-topped beams produced by multimode lasers," Opt. Lett. 23, 313-315 (1998).
[CrossRef]

R. Borghi, M. Santarsiero, and S. Vicalvi, "Focal shift of focused flat-topped beams," Opt. Commun. 154, 243-48 (1998).
[CrossRef]

P. Zemanek and C. J. Foot, "Atomic dipole trap formed by blue detuned strong Gaussian standing wave," Opt. Commun. 146, 119-123 (1998).
[CrossRef]

1996

Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).
[CrossRef]

S. A. Amarande, "Beam propagation factor and the kurtosis parameter of flattened Gaussian beams," Opt. Commun. 129, 311-317 (1996).

V. Bagini, R. Borghi, F. Gori, A. M. Pacileo, and M. Santarsiero, "Propagation of axially symmetric flattened Gaussian beams," J. Opt. Soc. Am. A 13, 1385-1394 (1996).
[CrossRef]

1994

F. Gori, "Flattened gaussian beams," Opt. Commun. 107, 335-341 (1994).
[CrossRef]

1992

1990

Q. Lin, S. Wang, J. Alda, and E. Bernabeu, "Transformation of non-symmetric Gaussian beam into symmetric one by means of tensor ABCD law," Optik. 85, 67-72 (1990).

M. Steven, S. B. Block Lawrence, and Goldstein and Bruce J. Schnapp, "Bead movement by single kinesin molecules studied with optical tweezers," Nature. 348, 348 - 352 (1990).
[CrossRef]

1986

1978

A. Ashkin, "Trapping of atoms by resonance radiation pressure," Phys. Rev. Lett. 40, 729-732 (1978).
[CrossRef]

1970

A. Ashkin, "Acceleration and trapping of particles by radiation force," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

J. A. Arnaud, "Nonorthogonal optical waveguides and resonators," Bell Syst. Tech. J. 49, 2311-2348 (1970).

Abraham, E. R. I.

J. Tempere, J. T. Devreese, and E. R. I. Abraham, "Vortices in Bose-Einstein condensates confined in a multiply connected Laguerre-Gaussian optical trap," Phys. Rev. A 64, 023603 (2001).

Alavinejad, M.

M. Alavinejad and B. Ghafary, "Turbulence-induced degradation properties of partially coherent flat-topped beams," Opt. Lasers Eng. 46, 357-362 (2008).
[CrossRef]

M. Alavinejad, B. Ghafary, and D. Razzaghi, "Spectral changes of partially coherent flat topped beam in turbulent atmosphere," Opt. Commun. 281, 2173-2178 (2008).
[CrossRef]

Alda, J.

Q. Lin, S. Wang, J. Alda, and E. Bernabeu, "Transformation of non-symmetric Gaussian beam into symmetric one by means of tensor ABCD law," Optik. 85, 67-72 (1990).

Amarande, S. A.

S. A. Amarande, "Beam propagation factor and the kurtosis parameter of flattened Gaussian beams," Opt. Commun. 129, 311-317 (1996).

Arnaud, J. A.

J. A. Arnaud, "Nonorthogonal optical waveguides and resonators," Bell Syst. Tech. J. 49, 2311-2348 (1970).

Arpali, A.

Asakura, T.

Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).
[CrossRef]

Ashkin, A.

Bagini, V.

Baykal, Y.

Bernabeu, E.

Q. Lin, S. Wang, J. Alda, and E. Bernabeu, "Transformation of non-symmetric Gaussian beam into symmetric one by means of tensor ABCD law," Optik. 85, 67-72 (1990).

Bhattacharya, M.

M. Bhattacharya and P. Meystre, "Using a Laguerre-Gaussian Beam to Trap and Cool the Rotational Motion of a Mirror," Phys. Rev. Lett. 99, 153603 (2007).
[CrossRef] [PubMed]

Bjorkholm, J. E.

Block Lawrence, S. B.

M. Steven, S. B. Block Lawrence, and Goldstein and Bruce J. Schnapp, "Bead movement by single kinesin molecules studied with optical tweezers," Nature. 348, 348 - 352 (1990).
[CrossRef]

Borghi, R.

R. Borghi, "Elegant Laguerre-Gauss beams as a new tool for describing axisymmetric flattened Gaussian beams," J. Opt. Soc. Am. A. 18, 1627-1633 (2001).
[CrossRef]

R. Borghi and M. Santarsiero, "Modal decomposition of partially coherent flat-topped beams produced by multimode lasers," Opt. Lett. 23, 313-315 (1998).
[CrossRef]

R. Borghi, M. Santarsiero, and S. Vicalvi, "Focal shift of focused flat-topped beams," Opt. Commun. 154, 243-48 (1998).
[CrossRef]

V. Bagini, R. Borghi, F. Gori, A. M. Pacileo, and M. Santarsiero, "Propagation of axially symmetric flattened Gaussian beams," J. Opt. Soc. Am. A 13, 1385-1394 (1996).
[CrossRef]

Bowers, M. S.

Cable, A.

Cai, Y.

F. Wang and Y. Cai, "Experimental generation of a partially coherent flat-topped beam," Opt. Lett. 33, 1795-1797 (2008).
[CrossRef] [PubMed]

X. Lü and Y. Cai, "Analytical formulas for a circular or non-circular flat-topped beam propagating through an apertured paraxial optical system," Opt. Commun. 269, 39-46 (2007).
[CrossRef]

Y. Cai and S. He, "Partially coherent flattened Gaussian beam and its paraxial propagation properties," J. Opt. Soc. Am. A 23, 2623-2628 (2006).
[CrossRef]

Y. Cai, "Propagation of various flat-topped beams in a turbulent atmosphere," J. Opt. A: Pure Appl. Opt. 8, 537-545 (2006).
[CrossRef]

Y. Cai and Q. Lin, "Light beams with elliptical flat-topped profiles," J. Opt. A: Pure Appl. Opt. 6, 390-395 (2004).
[CrossRef]

Y. Cai and Q. Lin, "Properties of a flattened Gaussian beam in the fractional Fourier transform plane," J. Opt. A: Pure Appl. Opt. 5, 272-275 (2003).
[CrossRef]

Q. Lin and Y. Cai, "Tensor ABCD law for partially coherent twisted anisotropic Gaussian Schell-model beams," Opt. Lett. 27, 216-218 (2002).
[CrossRef]

Chen, C. H.

C. H. Chen, P. T. Tai, and W. F. Hsieh, "Bottle beam from a bare laser for single-beam trapping" Appl. Phys. Lett. 43, 6001-6006 (2004).

Chen, Z.

W. Wang, P. X. Wang, Y. K. Ho, Q. Kong, Z. Chen, Y. Gu, and S. J. Wang, "Field description and electron acceleration of focused flattened Gaussian laser beams," Europhys. Lett. 73, 211-217 (2006).
[CrossRef]

Chu, S.

Chuu, C.

T. Meyrath, F. Schreck, J. Hanssen, C. Chuu, and M. Raizen, "A high frequency optical trap for atoms using Hermite-Gaussian beams," Opt. Express. 13, 2843-2851 (2005).
[CrossRef] [PubMed]

Coutts, D. W.

D. W. Coutts, "Double-pass copper vapor laser master-oscillator power-amplifier systems: Generation of flat-top focused beams for fiber coupling and percussion drilling," IEEE J. Quantum Electron. 38, 1217-1224 (2002).
[CrossRef]

Day, C.

C. Day, "Optical trap resolves the stepwise transfer of genetic information from DNA to RNA," Phys. Today. 59, 26-27 (2006).
[CrossRef]

Deng, D.

G. Wu, H. Guo, and D. Deng, "Paraxial propagation of partially coherent flat-topped beam," Opt. Commun. 260, 687-690 (2006).
[CrossRef]

Devreese, J. T.

J. Tempere, J. T. Devreese, and E. R. I. Abraham, "Vortices in Bose-Einstein condensates confined in a multiply connected Laguerre-Gaussian optical trap," Phys. Rev. A 64, 023603 (2001).

Dziezic, J. M.

Eyyuboglu, H. T.

Foot, C. J.

P. Zemanek and C. J. Foot, "Atomic dipole trap formed by blue detuned strong Gaussian standing wave," Opt. Commun. 146, 119-123 (1998).
[CrossRef]

Ghafary, B.

M. Alavinejad and B. Ghafary, "Turbulence-induced degradation properties of partially coherent flat-topped beams," Opt. Lasers Eng. 46, 357-362 (2008).
[CrossRef]

M. Alavinejad, B. Ghafary, and D. Razzaghi, "Spectral changes of partially coherent flat topped beam in turbulent atmosphere," Opt. Commun. 281, 2173-2178 (2008).
[CrossRef]

Goldstein, S. B.

M. Steven, S. B. Block Lawrence, and Goldstein and Bruce J. Schnapp, "Bead movement by single kinesin molecules studied with optical tweezers," Nature. 348, 348 - 352 (1990).
[CrossRef]

Gori, F.

Gu, Y.

W. Wang, P. X. Wang, Y. K. Ho, Q. Kong, Z. Chen, Y. Gu, and S. J. Wang, "Field description and electron acceleration of focused flattened Gaussian laser beams," Europhys. Lett. 73, 211-217 (2006).
[CrossRef]

Guo, H.

G. Wu, H. Guo, and D. Deng, "Paraxial propagation of partially coherent flat-topped beam," Opt. Commun. 260, 687-690 (2006).
[CrossRef]

Hanssen, J.

T. Meyrath, F. Schreck, J. Hanssen, C. Chuu, and M. Raizen, "A high frequency optical trap for atoms using Hermite-Gaussian beams," Opt. Express. 13, 2843-2851 (2005).
[CrossRef] [PubMed]

Harada, Y.

Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).
[CrossRef]

He, S.

Ho, Y. K.

W. Wang, P. X. Wang, Y. K. Ho, Q. Kong, Z. Chen, Y. Gu, and S. J. Wang, "Field description and electron acceleration of focused flattened Gaussian laser beams," Europhys. Lett. 73, 211-217 (2006).
[CrossRef]

Hsieh, W. F.

C. H. Chen, P. T. Tai, and W. F. Hsieh, "Bottle beam from a bare laser for single-beam trapping" Appl. Phys. Lett. 43, 6001-6006 (2004).

Ji, X.

X. Ji and B. Lu, "Focal shift and focal switch of flattened Gaussian beams in passage through an apertured bifocal lens," IEEE J. Quantum Electron. 39, 172-178 (2003).
[CrossRef]

Jitsuno, T.

N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, "Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of inertial confinement fusion target," Opt. Rev. 7, 216-220 (2000).
[CrossRef]

Kawata, S.

K. Okamoto and S. Kawata, "Radiation Force Exerted on Subwavelength Particles near a Nanoaperture," Phys. Rev. Lett. 83, 4534-4537 (1999).
[CrossRef]

Kong, Q.

W. Wang, P. X. Wang, Y. K. Ho, Q. Kong, Z. Chen, Y. Gu, and S. J. Wang, "Field description and electron acceleration of focused flattened Gaussian laser beams," Europhys. Lett. 73, 211-217 (2006).
[CrossRef]

Li, Y.

Lin, Q.

Y. Cai and Q. Lin, "Light beams with elliptical flat-topped profiles," J. Opt. A: Pure Appl. Opt. 6, 390-395 (2004).
[CrossRef]

Y. Cai and Q. Lin, "Properties of a flattened Gaussian beam in the fractional Fourier transform plane," J. Opt. A: Pure Appl. Opt. 5, 272-275 (2003).
[CrossRef]

Q. Lin and Y. Cai, "Tensor ABCD law for partially coherent twisted anisotropic Gaussian Schell-model beams," Opt. Lett. 27, 216-218 (2002).
[CrossRef]

Q. Lin, S. Wang, J. Alda, and E. Bernabeu, "Transformation of non-symmetric Gaussian beam into symmetric one by means of tensor ABCD law," Optik. 85, 67-72 (1990).

Lu, B.

X. Ji and B. Lu, "Focal shift and focal switch of flattened Gaussian beams in passage through an apertured bifocal lens," IEEE J. Quantum Electron. 39, 172-178 (2003).
[CrossRef]

Lu, X. H.

Lü, X.

X. Lü and Y. Cai, "Analytical formulas for a circular or non-circular flat-topped beam propagating through an apertured paraxial optical system," Opt. Commun. 269, 39-46 (2007).
[CrossRef]

Matsuoka, S.

N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, "Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of inertial confinement fusion target," Opt. Rev. 7, 216-220 (2000).
[CrossRef]

Meyrath, T.

T. Meyrath, F. Schreck, J. Hanssen, C. Chuu, and M. Raizen, "A high frequency optical trap for atoms using Hermite-Gaussian beams," Opt. Express. 13, 2843-2851 (2005).
[CrossRef] [PubMed]

Meystre, P.

M. Bhattacharya and P. Meystre, "Using a Laguerre-Gaussian Beam to Trap and Cool the Rotational Motion of a Mirror," Phys. Rev. Lett. 99, 153603 (2007).
[CrossRef] [PubMed]

Miyanaga, N.

N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, "Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of inertial confinement fusion target," Opt. Rev. 7, 216-220 (2000).
[CrossRef]

Nakatsuka, M.

N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, "Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of inertial confinement fusion target," Opt. Rev. 7, 216-220 (2000).
[CrossRef]

Nishi, N.

N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, "Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of inertial confinement fusion target," Opt. Rev. 7, 216-220 (2000).
[CrossRef]

Okamoto, K.

K. Okamoto and S. Kawata, "Radiation Force Exerted on Subwavelength Particles near a Nanoaperture," Phys. Rev. Lett. 83, 4534-4537 (1999).
[CrossRef]

Pacileo, A. M.

Raizen, M.

T. Meyrath, F. Schreck, J. Hanssen, C. Chuu, and M. Raizen, "A high frequency optical trap for atoms using Hermite-Gaussian beams," Opt. Express. 13, 2843-2851 (2005).
[CrossRef] [PubMed]

Razzaghi, D.

M. Alavinejad, B. Ghafary, and D. Razzaghi, "Spectral changes of partially coherent flat topped beam in turbulent atmosphere," Opt. Commun. 281, 2173-2178 (2008).
[CrossRef]

Santarsiero, M.

Schnapp, Bruce J.

M. Steven, S. B. Block Lawrence, and Goldstein and Bruce J. Schnapp, "Bead movement by single kinesin molecules studied with optical tweezers," Nature. 348, 348 - 352 (1990).
[CrossRef]

Schreck, F.

T. Meyrath, F. Schreck, J. Hanssen, C. Chuu, and M. Raizen, "A high frequency optical trap for atoms using Hermite-Gaussian beams," Opt. Express. 13, 2843-2851 (2005).
[CrossRef] [PubMed]

Steven, M.

M. Steven, S. B. Block Lawrence, and Goldstein and Bruce J. Schnapp, "Bead movement by single kinesin molecules studied with optical tweezers," Nature. 348, 348 - 352 (1990).
[CrossRef]

Tai, P. T.

C. H. Chen, P. T. Tai, and W. F. Hsieh, "Bottle beam from a bare laser for single-beam trapping" Appl. Phys. Lett. 43, 6001-6006 (2004).

Tempere, J.

J. Tempere, J. T. Devreese, and E. R. I. Abraham, "Vortices in Bose-Einstein condensates confined in a multiply connected Laguerre-Gaussian optical trap," Phys. Rev. A 64, 023603 (2001).

Tovar, A. A.

Tsubakimoto, K.

N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, "Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of inertial confinement fusion target," Opt. Rev. 7, 216-220 (2000).
[CrossRef]

Vicalvi, S.

R. Borghi, M. Santarsiero, and S. Vicalvi, "Focal shift of focused flat-topped beams," Opt. Commun. 154, 243-48 (1998).
[CrossRef]

Wang, F.

Wang, L.

L. Wang and J. Xue, "Efficiency comparison analysis of second harmonic generation on flattened Gaussian and Gaussian beams through a crystal CsLiB6O10," Jpn. J. Appl. Phys. 41, 7373-7376 (2002).
[CrossRef]

Wang, L. G.

L. G. Wang and C. L. Zhao, "Dynamic radiation force of a pulsed Gaussian beam acting on a Rayleigh dielectric sphere," Opt. Express. 15, 10615-10621 (2007).
[CrossRef] [PubMed]

L. G. Wang, C. L. Zhao, L. Q. Wang, X. H. Lu, and S. Y. Zhu, "Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere," Opt. Lett. 32, 1393-1395 (2007).
[CrossRef] [PubMed]

Wang, L. Q.

Wang, P. X.

W. Wang, P. X. Wang, Y. K. Ho, Q. Kong, Z. Chen, Y. Gu, and S. J. Wang, "Field description and electron acceleration of focused flattened Gaussian laser beams," Europhys. Lett. 73, 211-217 (2006).
[CrossRef]

Wang, S.

Q. Lin, S. Wang, J. Alda, and E. Bernabeu, "Transformation of non-symmetric Gaussian beam into symmetric one by means of tensor ABCD law," Optik. 85, 67-72 (1990).

Wang, S. J.

W. Wang, P. X. Wang, Y. K. Ho, Q. Kong, Z. Chen, Y. Gu, and S. J. Wang, "Field description and electron acceleration of focused flattened Gaussian laser beams," Europhys. Lett. 73, 211-217 (2006).
[CrossRef]

Wang, W.

W. Wang, P. X. Wang, Y. K. Ho, Q. Kong, Z. Chen, Y. Gu, and S. J. Wang, "Field description and electron acceleration of focused flattened Gaussian laser beams," Europhys. Lett. 73, 211-217 (2006).
[CrossRef]

Wen, Q.

Y. Zhang, B. Zhang, and Q. Wen, "Changes in the spectrum of partially coherent flat-top light beam propagating in dispersive or gain media," Opt. Commun. 266, 407-412 (2006).
[CrossRef]

Wu, G.

G. Wu, H. Guo, and D. Deng, "Paraxial propagation of partially coherent flat-topped beam," Opt. Commun. 260, 687-690 (2006).
[CrossRef]

Xue, J.

L. Wang and J. Xue, "Efficiency comparison analysis of second harmonic generation on flattened Gaussian and Gaussian beams through a crystal CsLiB6O10," Jpn. J. Appl. Phys. 41, 7373-7376 (2002).
[CrossRef]

Ye, J. Y.

Zemanek, P.

P. Zemanek and C. J. Foot, "Atomic dipole trap formed by blue detuned strong Gaussian standing wave," Opt. Commun. 146, 119-123 (1998).
[CrossRef]

Zhan, Q.

Zhang, B.

Y. Zhang, B. Zhang, and Q. Wen, "Changes in the spectrum of partially coherent flat-top light beam propagating in dispersive or gain media," Opt. Commun. 266, 407-412 (2006).
[CrossRef]

Zhang, Y.

Y. Zhang, B. Zhang, and Q. Wen, "Changes in the spectrum of partially coherent flat-top light beam propagating in dispersive or gain media," Opt. Commun. 266, 407-412 (2006).
[CrossRef]

Zhao, C. L.

L. G. Wang, C. L. Zhao, L. Q. Wang, X. H. Lu, and S. Y. Zhu, "Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere," Opt. Lett. 32, 1393-1395 (2007).
[CrossRef] [PubMed]

L. G. Wang and C. L. Zhao, "Dynamic radiation force of a pulsed Gaussian beam acting on a Rayleigh dielectric sphere," Opt. Express. 15, 10615-10621 (2007).
[CrossRef] [PubMed]

Zhu, S. Y.

Appl. Opt.

Appl. Phys. Lett.

C. H. Chen, P. T. Tai, and W. F. Hsieh, "Bottle beam from a bare laser for single-beam trapping" Appl. Phys. Lett. 43, 6001-6006 (2004).

Bell Syst. Tech. J.

J. A. Arnaud, "Nonorthogonal optical waveguides and resonators," Bell Syst. Tech. J. 49, 2311-2348 (1970).

Europhys. Lett.

W. Wang, P. X. Wang, Y. K. Ho, Q. Kong, Z. Chen, Y. Gu, and S. J. Wang, "Field description and electron acceleration of focused flattened Gaussian laser beams," Europhys. Lett. 73, 211-217 (2006).
[CrossRef]

IEEE J. Quantum Electron.

D. W. Coutts, "Double-pass copper vapor laser master-oscillator power-amplifier systems: Generation of flat-top focused beams for fiber coupling and percussion drilling," IEEE J. Quantum Electron. 38, 1217-1224 (2002).
[CrossRef]

X. Ji and B. Lu, "Focal shift and focal switch of flattened Gaussian beams in passage through an apertured bifocal lens," IEEE J. Quantum Electron. 39, 172-178 (2003).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

Y. Cai and Q. Lin, "Light beams with elliptical flat-topped profiles," J. Opt. A: Pure Appl. Opt. 6, 390-395 (2004).
[CrossRef]

Y. Cai, "Propagation of various flat-topped beams in a turbulent atmosphere," J. Opt. A: Pure Appl. Opt. 8, 537-545 (2006).
[CrossRef]

Y. Cai and Q. Lin, "Properties of a flattened Gaussian beam in the fractional Fourier transform plane," J. Opt. A: Pure Appl. Opt. 5, 272-275 (2003).
[CrossRef]

J. Opt. Soc. Am. A

J. Opt. Soc. Am. A.

R. Borghi, "Elegant Laguerre-Gauss beams as a new tool for describing axisymmetric flattened Gaussian beams," J. Opt. Soc. Am. A. 18, 1627-1633 (2001).
[CrossRef]

Jpn. J. Appl. Phys

L. Wang and J. Xue, "Efficiency comparison analysis of second harmonic generation on flattened Gaussian and Gaussian beams through a crystal CsLiB6O10," Jpn. J. Appl. Phys. 41, 7373-7376 (2002).
[CrossRef]

Nature.

M. Steven, S. B. Block Lawrence, and Goldstein and Bruce J. Schnapp, "Bead movement by single kinesin molecules studied with optical tweezers," Nature. 348, 348 - 352 (1990).
[CrossRef]

Opt. Commun.

F. Gori, "Flattened gaussian beams," Opt. Commun. 107, 335-341 (1994).
[CrossRef]

M. Alavinejad, B. Ghafary, and D. Razzaghi, "Spectral changes of partially coherent flat topped beam in turbulent atmosphere," Opt. Commun. 281, 2173-2178 (2008).
[CrossRef]

Y. Harada and T. Asakura, "Radiation forces on a dielectric sphere in the Rayleigh scattering regime," Opt. Commun. 124, 529-541 (1996).
[CrossRef]

P. Zemanek and C. J. Foot, "Atomic dipole trap formed by blue detuned strong Gaussian standing wave," Opt. Commun. 146, 119-123 (1998).
[CrossRef]

X. Lü and Y. Cai, "Analytical formulas for a circular or non-circular flat-topped beam propagating through an apertured paraxial optical system," Opt. Commun. 269, 39-46 (2007).
[CrossRef]

G. Wu, H. Guo, and D. Deng, "Paraxial propagation of partially coherent flat-topped beam," Opt. Commun. 260, 687-690 (2006).
[CrossRef]

S. A. Amarande, "Beam propagation factor and the kurtosis parameter of flattened Gaussian beams," Opt. Commun. 129, 311-317 (1996).

R. Borghi, M. Santarsiero, and S. Vicalvi, "Focal shift of focused flat-topped beams," Opt. Commun. 154, 243-48 (1998).
[CrossRef]

Y. Zhang, B. Zhang, and Q. Wen, "Changes in the spectrum of partially coherent flat-top light beam propagating in dispersive or gain media," Opt. Commun. 266, 407-412 (2006).
[CrossRef]

Opt. Express

Opt. Express.

T. Meyrath, F. Schreck, J. Hanssen, C. Chuu, and M. Raizen, "A high frequency optical trap for atoms using Hermite-Gaussian beams," Opt. Express. 13, 2843-2851 (2005).
[CrossRef] [PubMed]

L. G. Wang and C. L. Zhao, "Dynamic radiation force of a pulsed Gaussian beam acting on a Rayleigh dielectric sphere," Opt. Express. 15, 10615-10621 (2007).
[CrossRef] [PubMed]

Opt. Lasers Eng.

M. Alavinejad and B. Ghafary, "Turbulence-induced degradation properties of partially coherent flat-topped beams," Opt. Lasers Eng. 46, 357-362 (2008).
[CrossRef]

Opt. Lett.

A. Ashkin, J. M. Dziezic, J. E. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288-290 (1986).
[CrossRef] [PubMed]

M. S. Bowers, "Diffractive analysis of unstable optical resonator with super-Gaussian mirrors," Opt. Lett. 19, 1319-1321 (1992).
[CrossRef]

R. Borghi and M. Santarsiero, "Modal decomposition of partially coherent flat-topped beams produced by multimode lasers," Opt. Lett. 23, 313-315 (1998).
[CrossRef]

F. Wang and Y. Cai, "Experimental generation of a partially coherent flat-topped beam," Opt. Lett. 33, 1795-1797 (2008).
[CrossRef] [PubMed]

J. Y. Ye. G. Q. Chang. T. B. Norris, C. Tse, M. J. Zohdy. K. W. Hollman, M. O’Donnell, and J. R. Baker, "Trapping cavitation bubbles with a self-focused laser beam," Opt. Lett. 29, 2136- 2138 (2004).
[CrossRef] [PubMed]

S. Chu, J. E. Bjorkholm, A. Ashkin, and A. Cable, "Experimental observation and manipulation of stuck particles with pulsed optical tweezers," Opt. Lett. 30, 1797-1799 (2005).
[CrossRef]

L. G. Wang, C. L. Zhao, L. Q. Wang, X. H. Lu, and S. Y. Zhu, "Effect of spatial coherence on radiation forces acting on a Rayleigh dielectric sphere," Opt. Lett. 32, 1393-1395 (2007).
[CrossRef] [PubMed]

Q. Lin and Y. Cai, "Tensor ABCD law for partially coherent twisted anisotropic Gaussian Schell-model beams," Opt. Lett. 27, 216-218 (2002).
[CrossRef]

Y. Li, "Light beam with flat-topped profiles," Opt. Lett. 27, 1007-1009 (2002).
[CrossRef]

Opt. Rev.

N. Nishi, T. Jitsuno, K. Tsubakimoto, S. Matsuoka, N. Miyanaga, and M. Nakatsuka, "Two-dimensional multi-lens array with circular aperture spherical lens for flat-top irradiation of inertial confinement fusion target," Opt. Rev. 7, 216-220 (2000).
[CrossRef]

Optik.

Q. Lin, S. Wang, J. Alda, and E. Bernabeu, "Transformation of non-symmetric Gaussian beam into symmetric one by means of tensor ABCD law," Optik. 85, 67-72 (1990).

Phys. Rev. A

J. Tempere, J. T. Devreese, and E. R. I. Abraham, "Vortices in Bose-Einstein condensates confined in a multiply connected Laguerre-Gaussian optical trap," Phys. Rev. A 64, 023603 (2001).

Phys. Rev. Lett.

M. Bhattacharya and P. Meystre, "Using a Laguerre-Gaussian Beam to Trap and Cool the Rotational Motion of a Mirror," Phys. Rev. Lett. 99, 153603 (2007).
[CrossRef] [PubMed]

L. Oroszi L, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, "Direct measurement of torque in an optical trap and its application to double-strand DNA," Phys. Rev. Lett. 97, 058301 (2006).
[CrossRef] [PubMed]

A. Ashkin, "Acceleration and trapping of particles by radiation force," Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

A. Ashkin, "Trapping of atoms by resonance radiation pressure," Phys. Rev. Lett. 40, 729-732 (1978).
[CrossRef]

K. Okamoto and S. Kawata, "Radiation Force Exerted on Subwavelength Particles near a Nanoaperture," Phys. Rev. Lett. 83, 4534-4537 (1999).
[CrossRef]

Phys. Today.

C. Day, "Optical trap resolves the stepwise transfer of genetic information from DNA to RNA," Phys. Today. 59, 26-27 (2006).
[CrossRef]

Other

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge, New York, 1995).

D. C. Cowan, J. Recolons, L. C. Andrews, and C. Y. Young, "Propagation of flattened Gaussian beams in the atmosphere: a comparison of theory with a computer simulation model," in Atmospheric Propagation III, C. Y. Young and G. C. Gilbreath, eds., Proc. SPIE 6215, 62150B (2006).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1.

Intensity distribution of a flat-topped beam for four different values of N with w 0 = 10mm (a) contour graph, (b) cross line (y=0)

Fig. 2.
Fig. 2.

Schematic of a focusing optical system

Fig. 3.
Fig. 3.

Intensity distribution of a focused coherent flat-topped beam for different values of N at several propagation distances

Fig. 4.
Fig. 4.

Intensity distribution of a focused partially coherent flat-topped beam for different values of σ0 at several propagation distances

Fig. 5.
Fig. 5.

The scattering force ((a)-(c)) and the transverse gradient force ((d)-(f)) of a coherent flat-topped beam for four different values of N at different positions z 1 , and the longitudinal gradient force (g) and (f) for two different transverse positions x

Fig. 6.
Fig. 6.

Schematic of two face to face flat-topped beams focused on a particle

Fig. 7.
Fig. 7.

The scattering force ((a)-(c)) and the transverse gradient force ((d)-(f)) of a partially coherent flat-topped beam with N=3 for different values of σ0 at different positions z 1 , and the longitudinal gradient force (g) and (f) for two different transverse positions x

Fig. 8.
Fig. 8.

(a) Dependence of the radiation forces FSMcaatx , F Scat Max , F Grad-x Max and F Grad-z Max produced by a coherent flat-topped beam on initial beam order N at z 1=0, (b) Dependence of the radiation forces F Scat Max , F Grad-x Max and F Grad-z Max produced by a focused partially coherent flat-topped beam on σ0 at z 1=0 with N=3. F B is the Brownian force

Tables (2)

Tables Icon

Table 1. The trapping range of Fig. 5(f) for four different values of N.

Tables Icon

Table 2. The trapping range of Fig. 7(d) for four different values of σ0

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

E in N ( r , z = 0 ) = E 0 N n = 1 N ( 1 ) n 1 N N n exp ( n r 2 w 0 2 ) ,
P = + + I in N ( r , z = 0 ) dxdy ,
E 0 N = 4 nP / n = 1 N ( 1 ) 2 ( n 1 ) N 2 N n π w 0 2 n m ε 0 c .
E in N ( r , z = 0 ) = E 0 N n = 1 N ( 1 ) n 1 N N n exp ( ik 2 r T Q 1 n 1 r ) ,
Q 1 n 1 = ( 2 ni / k w 0 2 0 0 2 ni / k w 0 2 ) .
E out N ( ρ , z ) = E 0 N n = 1 N ( 1 ) n 1 N N n [ det ( A + B Q 1 n 1 ) ] 1 / 2 exp ( ik 2 ρ T Q 2 n 1 ρ ) ,
Q 2 n 1 = ( C + D Q 1 n 1 ) ( A + B Q 1 n 1 ) 1 .
Γ ( r 1 , r 2 , z = 0 ) = I ( r 1 , z = 0 ) I ( r 2 , z = 0 ) g ( r 1 r 2 ) ,
g ( r 1 r 2 ) = exp [ ( r 1 r 2 ) 2 2 σ 0 2 ] ,
Γ in N ( r 1 , r 2 , z = 0 ) = E 0 N 2 n = 1 N m = 1 N ( 1 ) n + m N 2 N n N m exp [ n r 1 2 + m r 2 2 w o 2 ( r 1 r 2 ) 2 2 σ 0 2 ] ,
Γ in N ( r 1 , r 2 , z = 0 ) = E 0 N 2 n = 1 N m = 1 N ( 1 ) n + m N 2 N n N m exp ( n r 1 2 + m r 2 2 w o 2 ) δ ( r 1 r 2 ) ,
Γ in N ( r ˜ , 0 ) = E 0 N 2 n = 1 N m = 1 N ( 1 ) n + m N 2 N n N m exp ( ik 2 r ˜ T M 1 nm 1 r ˜ ) ,
M 1 nm 1 = [ ( 2 ni k w 0 2 i k σ 0 2 ) I i k σ 0 2 I i k σ 0 2 I ( 2 mi k w 0 2 i k σ 0 2 ) I ] ,
Γ out N ( ρ 1 , ρ 2 , z ) = E 0 N 2 n = 1 N m = 1 N ( 1 ) n + m N 2 N n N m [ det ( A ̅ + B ̅ M 1 nm 1 ) ] 1 / 2 exp ( ik 2 ρ ˜ T M 2 nm 1 ρ ˜ ) ,
A ̅ = A 0 I 0 I A , B ̅ = B 0 I 0 I B , C ̅ = C 0 I 0 I C , D ̅ = D 0 I 0 I D .
M 2 nm 1 = ( C ̅ + D ̅ M 1 nm 1 ) ( A ̅ + B ̅ M 1 nm 1 ) 1 .
A B C D = I ( f + z 1 ) I 0 I I I 0 I ( 1 / f ) I I = ( z 1 / f ) I ( f + z 1 ) I ( 1 / f ) I I .
F Scat ( r , z ) = e z n m α I out / c ,
F Grad ( r , z ) = 2 π n m β I out / c ,

Metrics