Abstract

We introduce a novel sensor scheme combining nano-photonics and nano-fluidics on a single platform through the use of free-standing photonic crystals. By harnessing nano-scale openings, we theoretically and experimentally demonstrate that both fluidics and light can be manipulated at sub-wavelength scales. Compared to the conventional fluidic channels, we actively steer the convective flow through the nanohole openings for effective delivery of the analytes to the sensor surface. We apply our method to detect refractive index changes in aqueous solutions. Bulk measurements indicate that active delivery of the convective flow results in better sensitivities. The sensitivity of the sensor reaches 510 nm/RIU for resonance located around 850 nm with a line-width of ~10 nm in solution. Experimental results are matched very well with numerical simulations. We also show that cross-polarization measurements can be employed to further improve the detection limit by increasing the signal-to-noise ratio.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. N. Shipway, E. Katz, and I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” ChemPhysChem 1(1), 18–52 (2000).
    [CrossRef]
  2. R. Raiteria, M. Grattarola, and R. Berge, “Micromechanics senses biomolecules,” Materials Today 5(1), 22–29 (2002).
    [CrossRef]
  3. D. Erickson, S. Manda, H. J. Allen, Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale.” Microfluid. Nanofluid. 4(1–2), 33–52 (2007).
    [CrossRef]
  4. P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip, Volume 7(10), 1238–1255 (2007).
    [CrossRef]
  5. C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nature Photon. 1(2), 106–114 (2007).
    [CrossRef]
  6. B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: A review,” Analytica Chimica Acta 601(2), 141–155 (2007).
    [CrossRef] [PubMed]
  7. P. E. Sheehan and L. J. Whitman, “Detection limits for nanoscale biosensors,” Nano Lett. 5(4), 803–807 (2005).
    [CrossRef] [PubMed]
  8. J. Bishop, S. Blair, and A. Chagovetz, “Convective flow effects on DNA biosensors,” Biosens. Bioelectron. 22(9-10), 2192–2198 (2007).
    [CrossRef]
  9. T. M. Squires, R. J. Messinger, and S. R. Manalis, “Making it stick: convection, reaction and diffusion in surface-based biosensors,” Nature Biotechnol. 26(4), 417–426 (2008).
    [CrossRef]
  10. J. P. Golden, T. M. Floyd-Smith, D. R. Mott, and F. S. Ligler, “Target delivery in a microfluidic immunosensor,” Biosens. Bioelectron. 22(11Issue 11), 2763–2767 (2007).
    [CrossRef] [PubMed]
  11. R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Applied Optics, Volume 40(31Issue 31), 5742–5747 (2001).
    [CrossRef]
  12. A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “A Nanoscale Optical Biosensor: The Long Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles,” J. Phys. Chem. B 108(1), 109–116 (2004).
    [CrossRef]
  13. A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors.” Anal. Bioanal. Chem. 379(7–8), 920–930 (2004).
    [CrossRef] [PubMed]
  14. A. D. Leebeeck, L. K. Swaroop Kumar, V. D. Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-Chip Surface-Based Detection with Nanohole Arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
    [CrossRef] [PubMed]
  15. A. Artar, A. A. Yanik, and H. Altug, “Fabry–Pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phy. Lett. 95(5), 051105 (2009).
    [CrossRef]
  16. E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004).
    [CrossRef] [PubMed]
  17. H. Altug and J. Vuckovic, “Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays,” Opt. Lett. 30(9), 982 (2005).
    [CrossRef] [PubMed]
  18. N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
    [CrossRef] [PubMed]
  19. L. Shi, P. Pottier, Y.-A. Peter, and M. Skorobogatiy, “Guided-mode resonance photonic crystal slab sensors based on bead monolayer geometry,” Opt. Express 16(22), 17962–17971 (2008).
    [CrossRef] [PubMed]
  20. O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 2–9 (2007).
  21. D. Nedelkov and R. W. Nelson, “Surface plasmon resonance mass spectrometry: recent progress and outlooks,” Trends in Biotechnology, Volume 21(7Issue 7), 301–305 (2003).
    [CrossRef]
  22. S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008).
    [CrossRef] [PubMed]
  23. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities.” Science 317(5839), 783–787 (2007).
    [CrossRef] [PubMed]
  24. S. Chana, Y. Li, L. J. Rothberg, B. L. Miller, and P. M. Fauchet, “Nanoscale silicon microcavities for biosensing.” Mat. Scie. Engin. C 15(1–2), 277–282 (2001).
    [CrossRef]
  25. S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
    [CrossRef]
  26. I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sensors 8(3), 274–280 (2008).
    [CrossRef]
  27. K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31(10), (1528–1530).

2009 (1)

A. Artar, A. A. Yanik, and H. Altug, “Fabry–Pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phy. Lett. 95(5), 051105 (2009).
[CrossRef]

2008 (4)

T. M. Squires, R. J. Messinger, and S. R. Manalis, “Making it stick: convection, reaction and diffusion in surface-based biosensors,” Nature Biotechnol. 26(4), 417–426 (2008).
[CrossRef]

L. Shi, P. Pottier, Y.-A. Peter, and M. Skorobogatiy, “Guided-mode resonance photonic crystal slab sensors based on bead monolayer geometry,” Opt. Express 16(22), 17962–17971 (2008).
[CrossRef] [PubMed]

S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008).
[CrossRef] [PubMed]

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sensors 8(3), 274–280 (2008).
[CrossRef]

2007 (10)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities.” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 2–9 (2007).

J. P. Golden, T. M. Floyd-Smith, D. R. Mott, and F. S. Ligler, “Target delivery in a microfluidic immunosensor,” Biosens. Bioelectron. 22(11Issue 11), 2763–2767 (2007).
[CrossRef] [PubMed]

D. Erickson, S. Manda, H. J. Allen, Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale.” Microfluid. Nanofluid. 4(1–2), 33–52 (2007).
[CrossRef]

P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip, Volume 7(10), 1238–1255 (2007).
[CrossRef]

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nature Photon. 1(2), 106–114 (2007).
[CrossRef]

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: A review,” Analytica Chimica Acta 601(2), 141–155 (2007).
[CrossRef] [PubMed]

N. Skivesen, A. Têtu, M. Kristensen, J. Kjems, L. H. Frandsen, and P. I. Borel, “Photonic-crystal waveguide biosensor,” Opt. Express 15(6), 3169–3176 (2007).
[CrossRef] [PubMed]

J. Bishop, S. Blair, and A. Chagovetz, “Convective flow effects on DNA biosensors,” Biosens. Bioelectron. 22(9-10), 2192–2198 (2007).
[CrossRef]

A. D. Leebeeck, L. K. Swaroop Kumar, V. D. Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-Chip Surface-Based Detection with Nanohole Arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

2005 (2)

2004 (3)

E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompact biochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett. 29(10), 1093–1095 (2004).
[CrossRef] [PubMed]

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “A Nanoscale Optical Biosensor: The Long Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles,” J. Phys. Chem. B 108(1), 109–116 (2004).
[CrossRef]

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors.” Anal. Bioanal. Chem. 379(7–8), 920–930 (2004).
[CrossRef] [PubMed]

2003 (1)

D. Nedelkov and R. W. Nelson, “Surface plasmon resonance mass spectrometry: recent progress and outlooks,” Trends in Biotechnology, Volume 21(7Issue 7), 301–305 (2003).
[CrossRef]

2002 (2)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

R. Raiteria, M. Grattarola, and R. Berge, “Micromechanics senses biomolecules,” Materials Today 5(1), 22–29 (2002).
[CrossRef]

2001 (2)

R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Applied Optics, Volume 40(31Issue 31), 5742–5747 (2001).
[CrossRef]

S. Chana, Y. Li, L. J. Rothberg, B. L. Miller, and P. M. Fauchet, “Nanoscale silicon microcavities for biosensing.” Mat. Scie. Engin. C 15(1–2), 277–282 (2001).
[CrossRef]

2000 (1)

A. N. Shipway, E. Katz, and I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” ChemPhysChem 1(1), 18–52 (2000).
[CrossRef]

Allen, H. J.

D. Erickson, S. Manda, H. J. Allen, Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale.” Microfluid. Nanofluid. 4(1–2), 33–52 (2007).
[CrossRef]

Altug, H.

A. Artar, A. A. Yanik, and H. Altug, “Fabry–Pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phy. Lett. 95(5), 051105 (2009).
[CrossRef]

H. Altug and J. Vuckovic, “Polarization control and sensing with two-dimensional coupled photonic crystal microcavity arrays,” Opt. Lett. 30(9), 982 (2005).
[CrossRef] [PubMed]

Armani, A. M.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities.” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Artar, A.

A. Artar, A. A. Yanik, and H. Altug, “Fabry–Pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phy. Lett. 95(5), 051105 (2009).
[CrossRef]

Berge, R.

R. Raiteria, M. Grattarola, and R. Berge, “Micromechanics senses biomolecules,” Materials Today 5(1), 22–29 (2002).
[CrossRef]

Bishop, J.

J. Bishop, S. Blair, and A. Chagovetz, “Convective flow effects on DNA biosensors,” Biosens. Bioelectron. 22(9-10), 2192–2198 (2007).
[CrossRef]

Blair, S.

J. Bishop, S. Blair, and A. Chagovetz, “Convective flow effects on DNA biosensors,” Biosens. Bioelectron. 22(9-10), 2192–2198 (2007).
[CrossRef]

Block, I. D.

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sensors 8(3), 274–280 (2008).
[CrossRef]

Borel, P. I.

Boyd, R. W.

R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Applied Optics, Volume 40(31Issue 31), 5742–5747 (2001).
[CrossRef]

Brolo, A. G.

A. D. Leebeeck, L. K. Swaroop Kumar, V. D. Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-Chip Surface-Based Detection with Nanohole Arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

Brueck, S. R. J.

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 2–9 (2007).

Chagovetz, A.

J. Bishop, S. Blair, and A. Chagovetz, “Convective flow effects on DNA biosensors,” Biosens. Bioelectron. 22(9-10), 2192–2198 (2007).
[CrossRef]

Chana, S.

S. Chana, Y. Li, L. J. Rothberg, B. L. Miller, and P. M. Fauchet, “Nanoscale silicon microcavities for biosensing.” Mat. Scie. Engin. C 15(1–2), 277–282 (2001).
[CrossRef]

Chow, E.

Cordovez, B.

D. Erickson, S. Manda, H. J. Allen, Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale.” Microfluid. Nanofluid. 4(1–2), 33–52 (2007).
[CrossRef]

Craighead, H. G.

P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip, Volume 7(10), 1238–1255 (2007).
[CrossRef]

Cunningham, B. T.

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sensors 8(3), 274–280 (2008).
[CrossRef]

Domachuk, P.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nature Photon. 1(2), 106–114 (2007).
[CrossRef]

Eggleton, B. J.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nature Photon. 1(2), 106–114 (2007).
[CrossRef]

Erickson, D.

S. Mandal and D. Erickson, “Nanoscale optofluidic sensor arrays,” Opt. Express 16(3), 1623–1631 (2008).
[CrossRef] [PubMed]

D. Erickson, S. Manda, H. J. Allen, Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale.” Microfluid. Nanofluid. 4(1–2), 33–52 (2007).
[CrossRef]

Fainman, Y.

K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31(10), (1528–1530).

Fan, S.

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 2–9 (2007).

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

Fauchet, P. M.

S. Chana, Y. Li, L. J. Rothberg, B. L. Miller, and P. M. Fauchet, “Nanoscale silicon microcavities for biosensing.” Mat. Scie. Engin. C 15(1–2), 277–282 (2001).
[CrossRef]

Flagan, R. C.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities.” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Floyd-Smith, T. M.

J. P. Golden, T. M. Floyd-Smith, D. R. Mott, and F. S. Ligler, “Target delivery in a microfluidic immunosensor,” Biosens. Bioelectron. 22(11Issue 11), 2763–2767 (2007).
[CrossRef] [PubMed]

Frandsen, L. H.

Fraser, S. E.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities.” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Ganesh, N.

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sensors 8(3), 274–280 (2008).
[CrossRef]

Girolami, G.

Golden, J. P.

J. P. Golden, T. M. Floyd-Smith, D. R. Mott, and F. S. Ligler, “Target delivery in a microfluidic immunosensor,” Biosens. Bioelectron. 22(11Issue 11), 2763–2767 (2007).
[CrossRef] [PubMed]

Gordon, R.

A. D. Leebeeck, L. K. Swaroop Kumar, V. D. Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-Chip Surface-Based Detection with Nanohole Arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

Grattarola, M.

R. Raiteria, M. Grattarola, and R. Berge, “Micromechanics senses biomolecules,” Materials Today 5(1), 22–29 (2002).
[CrossRef]

Grot, A.

Haes, A. J.

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors.” Anal. Bioanal. Chem. 379(7–8), 920–930 (2004).
[CrossRef] [PubMed]

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “A Nanoscale Optical Biosensor: The Long Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles,” J. Phys. Chem. B 108(1), 109–116 (2004).
[CrossRef]

Harris, J. S.

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 2–9 (2007).

Heebner, J. E.

R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Applied Optics, Volume 40(31Issue 31), 5742–5747 (2001).
[CrossRef]

Huskens, J.

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: A review,” Analytica Chimica Acta 601(2), 141–155 (2007).
[CrossRef] [PubMed]

Joannopoulos, J. D.

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

Katz, E.

A. N. Shipway, E. Katz, and I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” ChemPhysChem 1(1), 18–52 (2000).
[CrossRef]

Kjems, J.

Kristensen, M.

Kulkarni, R. P.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities.” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Kuswandi, B.

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: A review,” Analytica Chimica Acta 601(2), 141–155 (2007).
[CrossRef] [PubMed]

Lange, V. D.

A. D. Leebeeck, L. K. Swaroop Kumar, V. D. Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-Chip Surface-Based Detection with Nanohole Arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

Lee, M. M.

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 2–9 (2007).

Leebeeck, A. D.

A. D. Leebeeck, L. K. Swaroop Kumar, V. D. Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-Chip Surface-Based Detection with Nanohole Arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

Levi, O.

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 2–9 (2007).

Li, Y.

S. Chana, Y. Li, L. J. Rothberg, B. L. Miller, and P. M. Fauchet, “Nanoscale silicon microcavities for biosensing.” Mat. Scie. Engin. C 15(1–2), 277–282 (2001).
[CrossRef]

Ligler, F. S.

J. P. Golden, T. M. Floyd-Smith, D. R. Mott, and F. S. Ligler, “Target delivery in a microfluidic immunosensor,” Biosens. Bioelectron. 22(11Issue 11), 2763–2767 (2007).
[CrossRef] [PubMed]

Lousse, V.

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 2–9 (2007).

Lu, M.

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sensors 8(3), 274–280 (2008).
[CrossRef]

Manalis, S. R.

T. M. Squires, R. J. Messinger, and S. R. Manalis, “Making it stick: convection, reaction and diffusion in surface-based biosensors,” Nature Biotechnol. 26(4), 417–426 (2008).
[CrossRef]

Manda, S.

D. Erickson, S. Manda, H. J. Allen, Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale.” Microfluid. Nanofluid. 4(1–2), 33–52 (2007).
[CrossRef]

Mandal, S.

Messinger, R. J.

T. M. Squires, R. J. Messinger, and S. R. Manalis, “Making it stick: convection, reaction and diffusion in surface-based biosensors,” Nature Biotechnol. 26(4), 417–426 (2008).
[CrossRef]

Miller, B. L.

S. Chana, Y. Li, L. J. Rothberg, B. L. Miller, and P. M. Fauchet, “Nanoscale silicon microcavities for biosensing.” Mat. Scie. Engin. C 15(1–2), 277–282 (2001).
[CrossRef]

Mirkarimi, L. W.

Monat, C.

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nature Photon. 1(2), 106–114 (2007).
[CrossRef]

Mott, D. R.

J. P. Golden, T. M. Floyd-Smith, D. R. Mott, and F. S. Ligler, “Target delivery in a microfluidic immunosensor,” Biosens. Bioelectron. 22(11Issue 11), 2763–2767 (2007).
[CrossRef] [PubMed]

Nedelkov, D.

D. Nedelkov and R. W. Nelson, “Surface plasmon resonance mass spectrometry: recent progress and outlooks,” Trends in Biotechnology, Volume 21(7Issue 7), 301–305 (2003).
[CrossRef]

Nelson, R. W.

D. Nedelkov and R. W. Nelson, “Surface plasmon resonance mass spectrometry: recent progress and outlooks,” Trends in Biotechnology, Volume 21(7Issue 7), 301–305 (2003).
[CrossRef]

Nuriman, J.

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: A review,” Analytica Chimica Acta 601(2), 141–155 (2007).
[CrossRef] [PubMed]

Pang, L.

K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31(10), (1528–1530).

Peter, Y.-A.

Pottier, P.

Raiteria, R.

R. Raiteria, M. Grattarola, and R. Berge, “Micromechanics senses biomolecules,” Materials Today 5(1), 22–29 (2002).
[CrossRef]

Rothberg, L. J.

S. Chana, Y. Li, L. J. Rothberg, B. L. Miller, and P. M. Fauchet, “Nanoscale silicon microcavities for biosensing.” Mat. Scie. Engin. C 15(1–2), 277–282 (2001).
[CrossRef]

Schatz, G. C.

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “A Nanoscale Optical Biosensor: The Long Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles,” J. Phys. Chem. B 108(1), 109–116 (2004).
[CrossRef]

Sheehan, P. E.

P. E. Sheehan and L. J. Whitman, “Detection limits for nanoscale biosensors,” Nano Lett. 5(4), 803–807 (2005).
[CrossRef] [PubMed]

Shi, L.

Shipway, A. N.

A. N. Shipway, E. Katz, and I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” ChemPhysChem 1(1), 18–52 (2000).
[CrossRef]

Sigalas, M.

Sinton, D.

A. D. Leebeeck, L. K. Swaroop Kumar, V. D. Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-Chip Surface-Based Detection with Nanohole Arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

Skivesen, N.

Skorobogatiy, M.

Squires, T. M.

T. M. Squires, R. J. Messinger, and S. R. Manalis, “Making it stick: convection, reaction and diffusion in surface-based biosensors,” Nature Biotechnol. 26(4), 417–426 (2008).
[CrossRef]

Swaroop Kumar, L. K.

A. D. Leebeeck, L. K. Swaroop Kumar, V. D. Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-Chip Surface-Based Detection with Nanohole Arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

Têtu, A.

Tetz, K. A.

K. A. Tetz, L. Pang, and Y. Fainman, “High-resolution surface plasmon resonance sensor based on linewidth-optimized nanohole array transmittance,” Opt. Lett. 31(10), (1528–1530).

Vahala, K. J.

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities.” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Van Duyne, R. P.

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “A Nanoscale Optical Biosensor: The Long Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles,” J. Phys. Chem. B 108(1), 109–116 (2004).
[CrossRef]

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors.” Anal. Bioanal. Chem. 379(7–8), 920–930 (2004).
[CrossRef] [PubMed]

Verboom, W.

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: A review,” Analytica Chimica Acta 601(2), 141–155 (2007).
[CrossRef] [PubMed]

Vuckovic, J.

Waggoner, P. S.

P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip, Volume 7(10), 1238–1255 (2007).
[CrossRef]

Whitman, L. J.

P. E. Sheehan and L. J. Whitman, “Detection limits for nanoscale biosensors,” Nano Lett. 5(4), 803–807 (2005).
[CrossRef] [PubMed]

Willner, I.

A. N. Shipway, E. Katz, and I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” ChemPhysChem 1(1), 18–52 (2000).
[CrossRef]

Yang,

D. Erickson, S. Manda, H. J. Allen, Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale.” Microfluid. Nanofluid. 4(1–2), 33–52 (2007).
[CrossRef]

Yanik, A. A.

A. Artar, A. A. Yanik, and H. Altug, “Fabry–Pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phy. Lett. 95(5), 051105 (2009).
[CrossRef]

Zhang, J.

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 2–9 (2007).

Zou, S.

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “A Nanoscale Optical Biosensor: The Long Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles,” J. Phys. Chem. B 108(1), 109–116 (2004).
[CrossRef]

Anal. Bioanal. Chem. (1)

A. J. Haes and R. P. Van Duyne, “A unified view of propagating and localized surface plasmon resonance biosensors.” Anal. Bioanal. Chem. 379(7–8), 920–930 (2004).
[CrossRef] [PubMed]

Anal. Chem. (1)

A. D. Leebeeck, L. K. Swaroop Kumar, V. D. Lange, D. Sinton, R. Gordon, and A. G. Brolo, “On-Chip Surface-Based Detection with Nanohole Arrays,” Anal. Chem. 79(11), 4094–4100 (2007).
[CrossRef] [PubMed]

Analytica Chimica Acta (1)

B. Kuswandi, J. Nuriman, J. Huskens, and W. Verboom, “Optical sensing systems for microfluidic devices: A review,” Analytica Chimica Acta 601(2), 141–155 (2007).
[CrossRef] [PubMed]

Appl. Phy. Lett. (1)

A. Artar, A. A. Yanik, and H. Altug, “Fabry–Pérot nanocavities in multilayered plasmonic crystals for enhanced biosensing,” Appl. Phy. Lett. 95(5), 051105 (2009).
[CrossRef]

Applied Optics, Volume (1)

R. W. Boyd and J. E. Heebner, “Sensitive disk resonator photonic biosensor,” Applied Optics, Volume 40(31Issue 31), 5742–5747 (2001).
[CrossRef]

Biosens. Bioelectron. (2)

J. P. Golden, T. M. Floyd-Smith, D. R. Mott, and F. S. Ligler, “Target delivery in a microfluidic immunosensor,” Biosens. Bioelectron. 22(11Issue 11), 2763–2767 (2007).
[CrossRef] [PubMed]

J. Bishop, S. Blair, and A. Chagovetz, “Convective flow effects on DNA biosensors,” Biosens. Bioelectron. 22(9-10), 2192–2198 (2007).
[CrossRef]

ChemPhysChem (1)

A. N. Shipway, E. Katz, and I. Willner, “Nanoparticle arrays on surfaces for electronic, optical, and sensor applications,” ChemPhysChem 1(1), 18–52 (2000).
[CrossRef]

IEEE Sensors (1)

I. D. Block, N. Ganesh, M. Lu, and B. T. Cunningham, “A sensitivity model for predicting photonic crystal biosensor performance,” IEEE Sensors 8(3), 274–280 (2008).
[CrossRef]

J. Phys. Chem. B (1)

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “A Nanoscale Optical Biosensor: The Long Range Distance Dependence of the Localized Surface Plasmon Resonance of Noble Metal Nanoparticles,” J. Phys. Chem. B 108(1), 109–116 (2004).
[CrossRef]

Lab Chip, Volume (1)

P. S. Waggoner and H. G. Craighead, “Micro- and nanomechanical sensors for environmental, chemical, and biological detection,” Lab Chip, Volume 7(10), 1238–1255 (2007).
[CrossRef]

Mat. Scie. Engin. C (1)

S. Chana, Y. Li, L. J. Rothberg, B. L. Miller, and P. M. Fauchet, “Nanoscale silicon microcavities for biosensing.” Mat. Scie. Engin. C 15(1–2), 277–282 (2001).
[CrossRef]

Materials Today (1)

R. Raiteria, M. Grattarola, and R. Berge, “Micromechanics senses biomolecules,” Materials Today 5(1), 22–29 (2002).
[CrossRef]

Microfluid. Nanofluid. (1)

D. Erickson, S. Manda, H. J. Allen, Yang, and B. Cordovez, “Nanobiosensors: optofluidic, electrical and mechanical approaches to biomolecular detection at the nanoscale.” Microfluid. Nanofluid. 4(1–2), 33–52 (2007).
[CrossRef]

Nano Lett. (1)

P. E. Sheehan and L. J. Whitman, “Detection limits for nanoscale biosensors,” Nano Lett. 5(4), 803–807 (2005).
[CrossRef] [PubMed]

Nature Biotechnol. (1)

T. M. Squires, R. J. Messinger, and S. R. Manalis, “Making it stick: convection, reaction and diffusion in surface-based biosensors,” Nature Biotechnol. 26(4), 417–426 (2008).
[CrossRef]

Nature Photon. (1)

C. Monat, P. Domachuk, and B. J. Eggleton, “Integrated optofluidics: A new river of light,” Nature Photon. 1(2), 106–114 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. B (1)

S. Fan and J. D. Joannopoulos, “Analysis of guided resonances in photonic crystal slabs,” Phys. Rev. B 65(23), 235112 (2002).
[CrossRef]

Proc. SPIE (1)

O. Levi, M. M. Lee, J. Zhang, V. Lousse, S. R. J. Brueck, S. Fan, and J. S. Harris, “Sensitivity analysis of a photonic crystal structure for index-of-refraction sensing,” Proc. SPIE 6447, 2–9 (2007).

Science (1)

A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, “Label-Free, Single-Molecule Detection with Optical Microcavities.” Science 317(5839), 783–787 (2007).
[CrossRef] [PubMed]

Trends in Biotechnology, Volume (1)

D. Nedelkov and R. W. Nelson, “Surface plasmon resonance mass spectrometry: recent progress and outlooks,” Trends in Biotechnology, Volume 21(7Issue 7), 301–305 (2003).
[CrossRef]

Supplementary Material (1)

» Media 1: MOV (415 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Illustration of the actively controlled flow scheme. Solution directed to the structure surface goes through the nano-scale hole arrays and flows to the bottom channel. The nanohole arrays are used as sensing structures as well as nanofluidic channels. (b) Conventional (passively controlled) flow scheme is illustrated. Convective flow stream passes over the surface of the sensor. (c)-(d) Velocity distribution of solutions are calculated by solving the Navier-Stokes equations for actively and passively controlled flow scheme. Insets show the distribution around the nanohole arrays in detail.

Fig. 2
Fig. 2

(a) Fabrication scheme. Structure is first patterned on Polymethyl methacrylate (PMMA) layer using EBL. Then reactive ion etching (RIE) is used to dry etch the SiNx slab. PMMA left on the structure is cleaned using O2 plasma asher, resulting in a suspended PhC membrane. (b)-(c) SEM top view of the structure. (d) SEM cross-view of the structure titled at 40°.

Fig. 3
Fig. 3

PhC sensor design: (a) Transmission spectra calculated by 3D-FDTD simulations are shown when the PhC slab is emerged in three different media: air (blue), water (red) and an IPA-chloroform mixture (green), respectively. Inset shows the schematic view of the design. Parameters for the structure are: r = 270 nm, a = 600 nm and d=90nm. (b) Electromagnetic intensity distribution of the 1st mode when the structure is in air. Top and cross section views are shown, respectively.

Fig. 4
Fig. 4

(Media 1) images of the actively directed perpendicular convective flow: (a) Bottom channel is almost filled up with IPA. (b) IPA starts to go through the nanohole openings. (c) IPA spreads over the surface. (d) The whole structure is emerged in IPA.

Fig. 5
Fig. 5

(a) Experimental comparison of transmission spectra for two different flow schemes. Actively controlled flow scheme (red) shows better sensitivity and narrower linewidth compared to the conventional scheme (green). (b) Experimentally measured transmission spectrum in air (blue) is overlaid with the simulation result (black). (c) Experimentally measured transmission spectrum in water (red) is overlaid with the simulation result (black).

Fig. 6
Fig. 6

(a) Experimentally measured transmission spectra of PhC slab using actively controlled delivery scheme in air (blue), water (red), IPA (green) and an IPA-chloroform mixture (black). (b) Shifts of the 1st resonant peaks in wavelength versus the surrounding refractive index. Resonance peak positions found in experiments (blue stars) match very well with the simulation results (green circles). Red line is a linear fitting to the experimental results.

Fig. 7
Fig. 7

(a) Cross polarization spectrum (blue) and the regular unpolarized measurement (red). (b) Green curves correspond to the fitting of the resonance feature in the spectrum with single Lorentzian functions. Their summation is denoted in red dashed line and overlaid with the experimental result (blue curve).

Tables (1)

Tables Icon

Table 1 Sensitivity results with different hole radius and slab thickness (in unit of nm/RIU)

Metrics