Abstract

We use the finite difference time domain method to predict how optical plasmon properties are modified if the symmetrical geometry of gold shell nanostructures is broken. The simulations include three kinds of gold open shell nanostructures of nanobowls, open nanocages, and open eggshells. For all structures, the optical extinction spectra commonly display a distinct red shift when the full shell geometry is broken and a hyperbola-like dipolar plasmonic shift when the fractional height continuously decreases. The optical transitions of gold open shell nanostructures are explained by the plasmon hybridization theory combined with numerical calculations. Furthermore, the calculations exhibit that the local electric fields are strongly enhanced at the edges of the open nanoapertures on those symmetry-broken structures, which suggests a potential application in surface-enhanced Raman spectroscopy.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Halas, “Playing with plasmons: tuning the optical resonant properties of metallic nanoshells,” MRS Bull. 30, 362–367 (2005).
    [CrossRef]
  2. L. Au, D. Zheng, F. Zhou, Z. Y. Li, X. Li, and Y. Xia, “A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells,” ACS Nano 2(8), 1645–1652 (2008).
    [CrossRef] [PubMed]
  3. H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
    [CrossRef] [PubMed]
  4. H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
    [CrossRef] [PubMed]
  5. C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. B 107(30), 7327–7333 (2003).
    [CrossRef]
  6. J. Liu, A. I. Maaroof, L. Wieczorek, and M. B. Cortie, “Fabrication of hollow metal nanocaps and their red-shifted optical absorption spectra,” Adv. Mater. 17(10), 1276–1281 (2005).
    [CrossRef]
  7. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
    [CrossRef]
  8. G. A. Baker and D. S. Moore, “Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis,” Anal. Bioanal. Chem. 382(8), 1751–1770 (2005).
    [CrossRef] [PubMed]
  9. Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
    [CrossRef] [PubMed]
  10. J.-H. Cho and D. H. Gracias, “Self-assembly of lithographically patterned nanoparticles,” Nano Lett. ASAP, DOI: 10.1021/nl9022176.
    [CrossRef]
  11. J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir 25(3), 1822–1827 (2009).
    [CrossRef] [PubMed]
  12. J. Ye, P. Van Dorpe, W. Van Roy, K. Lodewijks, I. De Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
    [CrossRef]
  13. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
    [CrossRef] [PubMed]
  14. H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40(1), 53–62 (2007).
    [CrossRef] [PubMed]
  15. J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20(46), 1–6 (2009).
    [CrossRef]
  16. J. P. Marton and B. D. Jordan, “Optical properties of aggregated metal system: interband transitions,” Phys. Rev. B 15(4), 1719–1727 (1977).
    [CrossRef]
  17. F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(1–4), (2006).
    [CrossRef] [PubMed]
  18. T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 1–12 (2006).
    [CrossRef]
  19. J. Britt Lassiter, M. W. Knight, N. A. Mirin, and N. J. Halas, “Reshaping the plasmonic properties of an individual nanoparticle,” Nano Lett. Articles ASAP (DOI: 10.1021/nl9025665).
    [CrossRef]

2009

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir 25(3), 1822–1827 (2009).
[CrossRef] [PubMed]

J. Ye, P. Van Dorpe, W. Van Roy, K. Lodewijks, I. De Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[CrossRef]

J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20(46), 1–6 (2009).
[CrossRef]

2008

L. Au, D. Zheng, F. Zhou, Z. Y. Li, X. Li, and Y. Xia, “A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells,” ACS Nano 2(8), 1645–1652 (2008).
[CrossRef] [PubMed]

2007

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40(1), 53–62 (2007).
[CrossRef] [PubMed]

2006

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(1–4), (2006).
[CrossRef] [PubMed]

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 1–12 (2006).
[CrossRef]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

2005

J. Liu, A. I. Maaroof, L. Wieczorek, and M. B. Cortie, “Fabrication of hollow metal nanocaps and their red-shifted optical absorption spectra,” Adv. Mater. 17(10), 1276–1281 (2005).
[CrossRef]

G. A. Baker and D. S. Moore, “Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis,” Anal. Bioanal. Chem. 382(8), 1751–1770 (2005).
[CrossRef] [PubMed]

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[CrossRef] [PubMed]

N. Halas, “Playing with plasmons: tuning the optical resonant properties of metallic nanoshells,” MRS Bull. 30, 362–367 (2005).
[CrossRef]

2003

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. B 107(30), 7327–7333 (2003).
[CrossRef]

1997

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

1977

J. P. Marton and B. D. Jordan, “Optical properties of aggregated metal system: interband transitions,” Phys. Rev. B 15(4), 1719–1727 (1977).
[CrossRef]

Abdelsalam, M. E.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 1–12 (2006).
[CrossRef]

Au, L.

L. Au, D. Zheng, F. Zhou, Z. Y. Li, X. Li, and Y. Xia, “A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells,” ACS Nano 2(8), 1645–1652 (2008).
[CrossRef] [PubMed]

Baker, G. A.

G. A. Baker and D. S. Moore, “Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis,” Anal. Bioanal. Chem. 382(8), 1751–1770 (2005).
[CrossRef] [PubMed]

Bartlett, P. N.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 1–12 (2006).
[CrossRef]

Baumberg, J. J.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 1–12 (2006).
[CrossRef]

Borghs, G.

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir 25(3), 1822–1827 (2009).
[CrossRef] [PubMed]

J. Ye, P. Van Dorpe, W. Van Roy, K. Lodewijks, I. De Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[CrossRef]

J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20(46), 1–6 (2009).
[CrossRef]

Bradley, R. K.

C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. B 107(30), 7327–7333 (2003).
[CrossRef]

Brandl, D. W.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40(1), 53–62 (2007).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

Charnay, C.

C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. B 107(30), 7327–7333 (2003).
[CrossRef]

Cintra, S.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 1–12 (2006).
[CrossRef]

Cole, R. M.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 1–12 (2006).
[CrossRef]

Cortie, M. B.

J. Liu, A. I. Maaroof, L. Wieczorek, and M. B. Cortie, “Fabrication of hollow metal nanocaps and their red-shifted optical absorption spectra,” Adv. Mater. 17(10), 1276–1281 (2005).
[CrossRef]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

De Vlaminck, I.

J. Ye, P. Van Dorpe, W. Van Roy, K. Lodewijks, I. De Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[CrossRef]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Hafner, J. H.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Halas, N.

N. Halas, “Playing with plasmons: tuning the optical resonant properties of metallic nanoshells,” MRS Bull. 30, 362–367 (2005).
[CrossRef]

C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. B 107(30), 7327–7333 (2003).
[CrossRef]

Halas, N. J.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40(1), 53–62 (2007).
[CrossRef] [PubMed]

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Jordan, B. D.

J. P. Marton and B. D. Jordan, “Optical properties of aggregated metal system: interband transitions,” Phys. Rev. B 15(4), 1719–1727 (1977).
[CrossRef]

Kelf, T. A.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 1–12 (2006).
[CrossRef]

Kim, J.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[CrossRef] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Lagae, L.

J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20(46), 1–6 (2009).
[CrossRef]

Lassiter, B.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Le, F.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

Lee, A.

C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. B 107(30), 7327–7333 (2003).
[CrossRef]

Lee, L. P.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[CrossRef] [PubMed]

Li, X.

L. Au, D. Zheng, F. Zhou, Z. Y. Li, X. Li, and Y. Xia, “A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells,” ACS Nano 2(8), 1645–1652 (2008).
[CrossRef] [PubMed]

Li, Z. Y.

L. Au, D. Zheng, F. Zhou, Z. Y. Li, X. Li, and Y. Xia, “A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells,” ACS Nano 2(8), 1645–1652 (2008).
[CrossRef] [PubMed]

Liu, G. L.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[CrossRef] [PubMed]

Liu, J.

J. Liu, A. I. Maaroof, L. Wieczorek, and M. B. Cortie, “Fabrication of hollow metal nanocaps and their red-shifted optical absorption spectra,” Adv. Mater. 17(10), 1276–1281 (2005).
[CrossRef]

Lodewijks, K.

J. Ye, P. Van Dorpe, W. Van Roy, K. Lodewijks, I. De Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[CrossRef]

Lu, Y.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[CrossRef] [PubMed]

Maaroof, A. I.

J. Liu, A. I. Maaroof, L. Wieczorek, and M. B. Cortie, “Fabrication of hollow metal nanocaps and their red-shifted optical absorption spectra,” Adv. Mater. 17(10), 1276–1281 (2005).
[CrossRef]

Maes, G.

J. Ye, P. Van Dorpe, W. Van Roy, K. Lodewijks, I. De Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[CrossRef]

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir 25(3), 1822–1827 (2009).
[CrossRef] [PubMed]

J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20(46), 1–6 (2009).
[CrossRef]

Mahajan, S.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 1–12 (2006).
[CrossRef]

Man, S.

C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. B 107(30), 7327–7333 (2003).
[CrossRef]

Marton, J. P.

J. P. Marton and B. D. Jordan, “Optical properties of aggregated metal system: interband transitions,” Phys. Rev. B 15(4), 1719–1727 (1977).
[CrossRef]

Mejia, Y. X.

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[CrossRef] [PubMed]

Moore, D. S.

G. A. Baker and D. S. Moore, “Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis,” Anal. Bioanal. Chem. 382(8), 1751–1770 (2005).
[CrossRef] [PubMed]

Moran, C. E.

C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. B 107(30), 7327–7333 (2003).
[CrossRef]

Nehl, C. L.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Nordlander, P.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40(1), 53–62 (2007).
[CrossRef] [PubMed]

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. B 107(30), 7327–7333 (2003).
[CrossRef]

Russell, A. E.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 1–12 (2006).
[CrossRef]

Shen, Y. R.

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(1–4), (2006).
[CrossRef] [PubMed]

Sugawara, Y.

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 1–12 (2006).
[CrossRef]

Van Dorpe, P.

J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20(46), 1–6 (2009).
[CrossRef]

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir 25(3), 1822–1827 (2009).
[CrossRef] [PubMed]

J. Ye, P. Van Dorpe, W. Van Roy, K. Lodewijks, I. De Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[CrossRef]

Van Roy, W.

J. Ye, P. Van Dorpe, W. Van Roy, K. Lodewijks, I. De Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[CrossRef]

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir 25(3), 1822–1827 (2009).
[CrossRef] [PubMed]

Wang, F.

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(1–4), (2006).
[CrossRef] [PubMed]

Wang, H.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40(1), 53–62 (2007).
[CrossRef] [PubMed]

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Wieczorek, L.

J. Liu, A. I. Maaroof, L. Wieczorek, and M. B. Cortie, “Fabrication of hollow metal nanocaps and their red-shifted optical absorption spectra,” Adv. Mater. 17(10), 1276–1281 (2005).
[CrossRef]

Wu, Y.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Xia, Y.

L. Au, D. Zheng, F. Zhou, Z. Y. Li, X. Li, and Y. Xia, “A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells,” ACS Nano 2(8), 1645–1652 (2008).
[CrossRef] [PubMed]

Ye, J.

J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20(46), 1–6 (2009).
[CrossRef]

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir 25(3), 1822–1827 (2009).
[CrossRef] [PubMed]

J. Ye, P. Van Dorpe, W. Van Roy, K. Lodewijks, I. De Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[CrossRef]

Zheng, D.

L. Au, D. Zheng, F. Zhou, Z. Y. Li, X. Li, and Y. Xia, “A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells,” ACS Nano 2(8), 1645–1652 (2008).
[CrossRef] [PubMed]

Zhou, F.

L. Au, D. Zheng, F. Zhou, Z. Y. Li, X. Li, and Y. Xia, “A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells,” ACS Nano 2(8), 1645–1652 (2008).
[CrossRef] [PubMed]

Acc. Chem. Res.

H. Wang, D. W. Brandl, P. Nordlander, and N. J. Halas, “Plasmonic nanostructures: artificial molecules,” Acc. Chem. Res. 40(1), 53–62 (2007).
[CrossRef] [PubMed]

ACS Nano

L. Au, D. Zheng, F. Zhou, Z. Y. Li, X. Li, and Y. Xia, “A quantitative study on the photothermal effect of immuno gold nanocages targeted to breast cancer cells,” ACS Nano 2(8), 1645–1652 (2008).
[CrossRef] [PubMed]

Adv. Mater.

J. Liu, A. I. Maaroof, L. Wieczorek, and M. B. Cortie, “Fabrication of hollow metal nanocaps and their red-shifted optical absorption spectra,” Adv. Mater. 17(10), 1276–1281 (2005).
[CrossRef]

Anal. Bioanal. Chem.

G. A. Baker and D. S. Moore, “Progress in plasmonic engineering of surface-enhanced Raman-scattering substrates toward ultra-trace analysis,” Anal. Bioanal. Chem. 382(8), 1751–1770 (2005).
[CrossRef] [PubMed]

J. Phys. Chem. B

C. Charnay, A. Lee, S. Man, C. E. Moran, C. Radloff, R. K. Bradley, and N. Halas, “Reduced symmetry metallodielectric nanoparticles: chemical synthesis and plasmonic properties,” J. Phys. Chem. B 107(30), 7327–7333 (2003).
[CrossRef]

J. Phys. Chem. C

J. Ye, P. Van Dorpe, W. Van Roy, K. Lodewijks, I. De Vlaminck, G. Maes, and G. Borghs, “Fabrication and optical properties of gold semishells,” J. Phys. Chem. C 113(8), 3110–3115 (2009).
[CrossRef]

Langmuir

J. Ye, P. Van Dorpe, W. Van Roy, G. Borghs, and G. Maes, “Fabrication, characterization, and optical properties of gold nanobowl submonolayer structures,” Langmuir 25(3), 1822–1827 (2009).
[CrossRef] [PubMed]

MRS Bull.

N. Halas, “Playing with plasmons: tuning the optical resonant properties of metallic nanoshells,” MRS Bull. 30, 362–367 (2005).
[CrossRef]

Nano Lett.

H. Wang, D. W. Brandl, F. Le, P. Nordlander, and N. J. Halas, “Nanorice: a hybrid plasmonic nanostructure,” Nano Lett. 6(4), 827–832 (2006).
[CrossRef] [PubMed]

Y. Lu, G. L. Liu, J. Kim, Y. X. Mejia, and L. P. Lee, “Nanophotonic crescent moon structures with sharp edge for ultrasensitive biomolecular detection by local electromagnetic field enhancement effect,” Nano Lett. 5(1), 119–124 (2005).
[CrossRef] [PubMed]

Nanotechnology

J. Ye, P. Van Dorpe, L. Lagae, G. Maes, and G. Borghs, “Observation of plasmonic dipolar anti-bonding mode in silver nanoring structures,” Nanotechnology 20(46), 1–6 (2009).
[CrossRef]

Phys. Rev. B

J. P. Marton and B. D. Jordan, “Optical properties of aggregated metal system: interband transitions,” Phys. Rev. B 15(4), 1719–1727 (1977).
[CrossRef]

T. A. Kelf, Y. Sugawara, R. M. Cole, J. J. Baumberg, M. E. Abdelsalam, S. Cintra, S. Mahajan, A. E. Russell, and P. N. Bartlett, “Localized and delocalized plasmons in metallic nanovoids,” Phys. Rev. B 74(24), 1–12 (2006).
[CrossRef]

Phys. Rev. Lett.

F. Wang and Y. R. Shen, “General properties of local plasmons in metal nanostructures,” Phys. Rev. Lett. 97(1–4), (2006).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett. 78(9), 1667–1670 (1997).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

H. Wang, Y. Wu, B. Lassiter, C. L. Nehl, J. H. Hafner, P. Nordlander, and N. J. Halas, “Symmetry breaking in individual plasmonic nanoparticles,” Proc. Natl. Acad. Sci. U.S.A. 103(29), 10856–10860 (2006).
[CrossRef] [PubMed]

Science

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science 302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Other

J. Britt Lassiter, M. W. Knight, N. A. Mirin, and N. J. Halas, “Reshaping the plasmonic properties of an individual nanoparticle,” Nano Lett. Articles ASAP (DOI: 10.1021/nl9025665).
[CrossRef]

J.-H. Cho and D. H. Gracias, “Self-assembly of lithographically patterned nanoparticles,” Nano Lett. ASAP, DOI: 10.1021/nl9022176.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Geometry illustration of the Au open shell nanostructures used in FDTD calculations: (a) a Au nanobowl, (b) a Au open nanocage, and (c) a Au open eggshell.

Fig. 2
Fig. 2

Calculated fractional height (h) dependent optical properties of (a) a Au nanobowl (R = 130 nm, T = 15 nm), (b) a Au open nanocage (L = 260 nm, T = 15 nm), and (c) a Au open eggshell (U = 130 nm, r = 50 nm, T = 15 nm). Arrows in (a) and (b) indicate the splitting of the quadrupolar band for the Au nanobowl and open nanocage.

Fig. 3
Fig. 3

Electric field profiles of a Au nanobowl, a Au open nanocage, and a Au open eggshell with different fractional height (h) values. Insets: surface charge distribution on the top surfaces of a Au nanobowl (left, h = 0.75) and a Au open nanocage (right, h = 0.5).

Fig. 4
Fig. 4

Plasmon hybridization schemes and calculated surface charge distribution for (a) a nanobowl (h = 0.875) resulting from interacting nanoshell and nanoholes plasmons and for (b) an open nanocage (h = 0.75) from nanocage and nanoholes plasmons. Dipole-dipole and quadrupole-dipole hybridizations lead to a splitting with a low-energy “bonding” mode and a high-energy “anti-bonding” mode.

Fig. 5
Fig. 5

Maximum extinction cross section (Qmax ) and maximum electric field (|E|2 max ) intensity of Au open nanocages with different fractional height (h) values.

Metrics