Abstract

An optical epifluorescence microscope, coupled to a CCD camera, a standard webcam and a microspectrofluorimeter, are used to record in vivo real-time changes in the autofluorescence of spores and hyphae in Aspergillus niger, a fungus containing melanin, while exposed to UV irradiation. The results point out major changes in both signal intensity and the spectral shape of the autofluorescence signal after only few minutes of exposure, and can contribute to the interpretation of data obtained with other fluorescence techniques, including those, such as GPF labeling, in which endogenous fluorophores constitute a major disturbance.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Palumbo, and R. Pratesi, Laser and current optical techniques in biology (ESP RSC Publishing, Cambridge, 2004).
  2. N. Billinton and A. W. Knight, “Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence,” Anal. Biochem. 291(2), 175–197 (2001).
    [CrossRef] [PubMed]
  3. J. K. Li, E. C. Asali, A. E. Humphrey, and J. J. Horvath, “Monitoring cell concentration and activity by multiple excitation fluorometry,” Biotechnol. Prog. 7(1), 21–27 (1991).
    [CrossRef] [PubMed]
  4. S. Marose, C. Lindemann, and T. Scheper, “Two-dimensional fluorescence spectroscopy: a new tool for on-line bioprocess monitoring,” Biotechnol. Prog. 14(1), 63–74 (1998).
    [CrossRef] [PubMed]
  5. M. Ganzlin, S. Marose, X. Lu, B. Hitzmann, T. Scheper, and U. Rinas, “In situ multi-wavelength fluorescence spectroscopy as effective tool to simultaneously monitor spore germination, metabolic activity and quantitative protein production in recombinant Aspergillus niger fed-batch cultures,” J. Biotechnol. 132(4), 461–468 (2007).
    [CrossRef] [PubMed]
  6. A. R. Graham, “Fungal autofluorescence with ultraviolet illumination,” Am. J. Clin. Pathol. 79(2), 231–234 (1983).
    [PubMed]
  7. M. Dellinger, M. Geze, R. Santus, E. Kohen, C. Kohen, J. G. Hirschberg, and M. Monti, “Imaging of cells by autofluorescence: a new tool in the probing of biopharmaceutical effects at the intracellular level,” Biotechnol. Appl. Biochem. 28(Pt 1), 25–32 (1998).
    [PubMed]
  8. P. Asawanonda and C. R. Taylor, “Wood's light in dermatology,” Review International Journal of Dermatology 38(11), 801–807 (1999).
    [CrossRef]
  9. D. M. Elston, “Fluorescence of fungi in superficial and deep fungal infections,” BMC Microbiol. 1(1), 21 (2001).
    [CrossRef] [PubMed]
  10. G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J. P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004).
    [CrossRef]
  11. V. Sivaprakasam, A. L. Huston, C. Scotto, and J. D. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt. Express 12(19), 4457–4466 (2004).
    [CrossRef] [PubMed]
  12. K. Davitt, Y.-K. Song, W. R. Patterson, A. V. Nurmikko, M. Gherasimova, J. Han, Y.-L. Pan, and R. K. Chang, “290 and 340 nm UV LED arrays for fluorescence detection from single airborne particles,” Opt. Express 13(23), 9548–9555 (2005).
    [CrossRef] [PubMed]
  13. H. Kanaani, M. Hargreaves, Z. Ristovski, and L. Morawska, “Performance assessment of UVAPS: influence of fungal spore age and air exposure,” J. Aerosol Sci. 38(1), 83–96 (2007).
    [CrossRef]
  14. C. Arcangeli, L. Zucconi, S. Onofri, and S. Cannistraro, “Fluorescence study on whole Antarctic fungal spores under enhanced UV irradiation,” J. Photochem. Photobiol. B 39(3), 258–264 (1997).
    [CrossRef]
  15. C. Arcangeli, W. Yu, S. Cannistraro, and E. Gratton, “Two-photon autofluorescence microscopy and spectroscopy of Antarctic fungus: new approach for studying effects of UV-B irradiation,” Biopolymers 57(4), 218–225 (2000).
    [CrossRef] [PubMed]
  16. D. Rativa, J. P. Batista Barbalho, J. Ferreira Martins Filho, R. Evangelista de Araujo, A. Stevens, L. Gomes, L. Gonzaga de Castro Souza Filho, and A. Marsden, “Perspectives on in vitro fungal diagnosis with UV light,” Revista Brasileira de Engenharia Biomédica 23, 25–30 (2007).
  17. M. Bengtsson, S. Wallström, M. Sjöholm, R. Grönlund, B. Anderson, A. Larsson, S. Karlsson, S. Kröll, and S. Svanberg, “Fungus covered insulator materials studied with laser-induced fluorescence and principal component analysis,” Appl. Spectrosc. 59(8), 1037–1041 (2005).
    [CrossRef] [PubMed]
  18. M. Bengtsson, R. Grönlund, M. Sjöholm, C. Abrahamsson, A. D. Dernfalk, S. Wallström, A. Larsson, P. Weibring, S. Karlsson, S. M. Gubanski, S. Kröll, and S. Svanberg, “Fluorescence lidar imaging of fungal growth on high-voltage outdoor composite insulators,” Opt. Lasers Eng. 43(6), 624–632 (2005).
    [CrossRef]
  19. V. Raimondi, L. Palombi, G. Cecchi, D. Lognoli, M. Trambusti, and I. Gomoiu, “Remote detection of laser-induced autofluorescence on pure cultures of fungal and bacterial strains and their analysis with multivariate techniques,” Opt. Commun. 273(1), 219–225 (2007).
    [CrossRef]
  20. L. Rigacci, R. Alterini, P. A. Bernabei, P. R. Ferrini, G. Agati, F. Fusi, and M. Monici, “Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues,” Photochem. Photobiol. 71(6), 737–742 (2000).
    [CrossRef] [PubMed]
  21. F. Sidney, Velick, “Spectra and structure in enzyme complexes of pyridine and flavine nucleotides,” in Light and Life, W. D. McElroy and B. Glass, eds. (Johns Hopkins Press, Baltimore, 1961).
  22. K. König, M. W. Berns, and B. J. Tromberg, “Time-resolved and steady-state fluorescence measurements of beta-nicotinamide adenine dinucleotide-alcohol dehydrogenase complex during UVA exposure,” J. Photochem. Photobiol. B 37(1-2), 91–95 (1997).
    [CrossRef] [PubMed]
  23. J. Eng, R. M. Lynch, and R. S. Balaban, “Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes,” Biophys. J. 55(4), 621–630 (1989).
    [CrossRef] [PubMed]
  24. F. Joubert, H. M. Fales, H. Wen, C. A. Combs, and R. S. Balaban, “NADH enzyme-dependent fluorescence recovery after photobleaching: applications to enzyme and mitochondrial reactions kinetics, in vitro,” Biophys. J. 86(1), 629–645 (2004).
    [CrossRef] [PubMed]
  25. L. M. Tiede, M. G. Nichols, and LeA, “Photobleaching of reduced nicotinamide adenine dinucleotide and the development of highly fluorescent lesions in rat basophilic leukemia cells during multiphoton microscopy,” Photochem. Photobiol. 82(3), 656–664 (2006).
    [CrossRef] [PubMed]
  26. K. Konig, T. Krasieva, E. Bauer, U. Fiedler, M. W. Berns, B. J. Tromberg, and K. O. Greulich, “Cell damage by UVA radiation of a mercury microscopy lamp probed by autofluorescence modifications, cloning assay and comet assay,” J. Biochem. Opt. 1, 217–222 (1996).
  27. C. A. Combs and R. S. Balaban, “Direct imaging of dehydrogenase activity within living cells using enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP),” Biophys. J. 80(4), 2018–2028 (2001).
    [CrossRef] [PubMed]
  28. P. Kayatz, G. Thumann, T. T. Luther, J. F. Jordan, K. U. Bartz-Schmidt, P. J. Esser, and U. Schraermeyer, “Oxidation causes melanin fluorescence,” Invest. Ophthalmol. Vis. Sci. 42(1), 241–246 (2001).
    [PubMed]
  29. R. C. Benson, R. A. Meyer, M. E. Zaruba, and G. M. McKhann, “Cellular autofluorescence--is it due to flavins?” J. Histochem. Cytochem. 27(1), 44–48 (1979).
    [CrossRef] [PubMed]
  30. I. Gomoiu, E. Saratopoulou, Z. Kollia, A. C. Cefalas, J. van Loon, D. Mogaldea, D. Hasegan, and V. Valeanu, “Colored fungal spores as candidates for space experiments,” Orig. Life Evol. Biosph. (to be published).

2007 (4)

M. Ganzlin, S. Marose, X. Lu, B. Hitzmann, T. Scheper, and U. Rinas, “In situ multi-wavelength fluorescence spectroscopy as effective tool to simultaneously monitor spore germination, metabolic activity and quantitative protein production in recombinant Aspergillus niger fed-batch cultures,” J. Biotechnol. 132(4), 461–468 (2007).
[CrossRef] [PubMed]

H. Kanaani, M. Hargreaves, Z. Ristovski, and L. Morawska, “Performance assessment of UVAPS: influence of fungal spore age and air exposure,” J. Aerosol Sci. 38(1), 83–96 (2007).
[CrossRef]

D. Rativa, J. P. Batista Barbalho, J. Ferreira Martins Filho, R. Evangelista de Araujo, A. Stevens, L. Gomes, L. Gonzaga de Castro Souza Filho, and A. Marsden, “Perspectives on in vitro fungal diagnosis with UV light,” Revista Brasileira de Engenharia Biomédica 23, 25–30 (2007).

V. Raimondi, L. Palombi, G. Cecchi, D. Lognoli, M. Trambusti, and I. Gomoiu, “Remote detection of laser-induced autofluorescence on pure cultures of fungal and bacterial strains and their analysis with multivariate techniques,” Opt. Commun. 273(1), 219–225 (2007).
[CrossRef]

2006 (1)

L. M. Tiede, M. G. Nichols, and LeA, “Photobleaching of reduced nicotinamide adenine dinucleotide and the development of highly fluorescent lesions in rat basophilic leukemia cells during multiphoton microscopy,” Photochem. Photobiol. 82(3), 656–664 (2006).
[CrossRef] [PubMed]

2005 (3)

2004 (3)

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J. P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004).
[CrossRef]

V. Sivaprakasam, A. L. Huston, C. Scotto, and J. D. Eversole, “Multiple UV wavelength excitation and fluorescence of bioaerosols,” Opt. Express 12(19), 4457–4466 (2004).
[CrossRef] [PubMed]

F. Joubert, H. M. Fales, H. Wen, C. A. Combs, and R. S. Balaban, “NADH enzyme-dependent fluorescence recovery after photobleaching: applications to enzyme and mitochondrial reactions kinetics, in vitro,” Biophys. J. 86(1), 629–645 (2004).
[CrossRef] [PubMed]

2001 (4)

C. A. Combs and R. S. Balaban, “Direct imaging of dehydrogenase activity within living cells using enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP),” Biophys. J. 80(4), 2018–2028 (2001).
[CrossRef] [PubMed]

P. Kayatz, G. Thumann, T. T. Luther, J. F. Jordan, K. U. Bartz-Schmidt, P. J. Esser, and U. Schraermeyer, “Oxidation causes melanin fluorescence,” Invest. Ophthalmol. Vis. Sci. 42(1), 241–246 (2001).
[PubMed]

N. Billinton and A. W. Knight, “Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence,” Anal. Biochem. 291(2), 175–197 (2001).
[CrossRef] [PubMed]

D. M. Elston, “Fluorescence of fungi in superficial and deep fungal infections,” BMC Microbiol. 1(1), 21 (2001).
[CrossRef] [PubMed]

2000 (2)

C. Arcangeli, W. Yu, S. Cannistraro, and E. Gratton, “Two-photon autofluorescence microscopy and spectroscopy of Antarctic fungus: new approach for studying effects of UV-B irradiation,” Biopolymers 57(4), 218–225 (2000).
[CrossRef] [PubMed]

L. Rigacci, R. Alterini, P. A. Bernabei, P. R. Ferrini, G. Agati, F. Fusi, and M. Monici, “Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues,” Photochem. Photobiol. 71(6), 737–742 (2000).
[CrossRef] [PubMed]

1999 (1)

P. Asawanonda and C. R. Taylor, “Wood's light in dermatology,” Review International Journal of Dermatology 38(11), 801–807 (1999).
[CrossRef]

1998 (2)

S. Marose, C. Lindemann, and T. Scheper, “Two-dimensional fluorescence spectroscopy: a new tool for on-line bioprocess monitoring,” Biotechnol. Prog. 14(1), 63–74 (1998).
[CrossRef] [PubMed]

M. Dellinger, M. Geze, R. Santus, E. Kohen, C. Kohen, J. G. Hirschberg, and M. Monti, “Imaging of cells by autofluorescence: a new tool in the probing of biopharmaceutical effects at the intracellular level,” Biotechnol. Appl. Biochem. 28(Pt 1), 25–32 (1998).
[PubMed]

1997 (2)

C. Arcangeli, L. Zucconi, S. Onofri, and S. Cannistraro, “Fluorescence study on whole Antarctic fungal spores under enhanced UV irradiation,” J. Photochem. Photobiol. B 39(3), 258–264 (1997).
[CrossRef]

K. König, M. W. Berns, and B. J. Tromberg, “Time-resolved and steady-state fluorescence measurements of beta-nicotinamide adenine dinucleotide-alcohol dehydrogenase complex during UVA exposure,” J. Photochem. Photobiol. B 37(1-2), 91–95 (1997).
[CrossRef] [PubMed]

1996 (1)

K. Konig, T. Krasieva, E. Bauer, U. Fiedler, M. W. Berns, B. J. Tromberg, and K. O. Greulich, “Cell damage by UVA radiation of a mercury microscopy lamp probed by autofluorescence modifications, cloning assay and comet assay,” J. Biochem. Opt. 1, 217–222 (1996).

1991 (1)

J. K. Li, E. C. Asali, A. E. Humphrey, and J. J. Horvath, “Monitoring cell concentration and activity by multiple excitation fluorometry,” Biotechnol. Prog. 7(1), 21–27 (1991).
[CrossRef] [PubMed]

1989 (1)

J. Eng, R. M. Lynch, and R. S. Balaban, “Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes,” Biophys. J. 55(4), 621–630 (1989).
[CrossRef] [PubMed]

1983 (1)

A. R. Graham, “Fungal autofluorescence with ultraviolet illumination,” Am. J. Clin. Pathol. 79(2), 231–234 (1983).
[PubMed]

1979 (1)

R. C. Benson, R. A. Meyer, M. E. Zaruba, and G. M. McKhann, “Cellular autofluorescence--is it due to flavins?” J. Histochem. Cytochem. 27(1), 44–48 (1979).
[CrossRef] [PubMed]

Abrahamsson, C.

M. Bengtsson, R. Grönlund, M. Sjöholm, C. Abrahamsson, A. D. Dernfalk, S. Wallström, A. Larsson, P. Weibring, S. Karlsson, S. M. Gubanski, S. Kröll, and S. Svanberg, “Fluorescence lidar imaging of fungal growth on high-voltage outdoor composite insulators,” Opt. Lasers Eng. 43(6), 624–632 (2005).
[CrossRef]

Agati, G.

L. Rigacci, R. Alterini, P. A. Bernabei, P. R. Ferrini, G. Agati, F. Fusi, and M. Monici, “Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues,” Photochem. Photobiol. 71(6), 737–742 (2000).
[CrossRef] [PubMed]

Alterini, R.

L. Rigacci, R. Alterini, P. A. Bernabei, P. R. Ferrini, G. Agati, F. Fusi, and M. Monici, “Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues,” Photochem. Photobiol. 71(6), 737–742 (2000).
[CrossRef] [PubMed]

Anderson, B.

Arcangeli, C.

C. Arcangeli, W. Yu, S. Cannistraro, and E. Gratton, “Two-photon autofluorescence microscopy and spectroscopy of Antarctic fungus: new approach for studying effects of UV-B irradiation,” Biopolymers 57(4), 218–225 (2000).
[CrossRef] [PubMed]

C. Arcangeli, L. Zucconi, S. Onofri, and S. Cannistraro, “Fluorescence study on whole Antarctic fungal spores under enhanced UV irradiation,” J. Photochem. Photobiol. B 39(3), 258–264 (1997).
[CrossRef]

Asali, E. C.

J. K. Li, E. C. Asali, A. E. Humphrey, and J. J. Horvath, “Monitoring cell concentration and activity by multiple excitation fluorometry,” Biotechnol. Prog. 7(1), 21–27 (1991).
[CrossRef] [PubMed]

Asawanonda, P.

P. Asawanonda and C. R. Taylor, “Wood's light in dermatology,” Review International Journal of Dermatology 38(11), 801–807 (1999).
[CrossRef]

Balaban, R. S.

F. Joubert, H. M. Fales, H. Wen, C. A. Combs, and R. S. Balaban, “NADH enzyme-dependent fluorescence recovery after photobleaching: applications to enzyme and mitochondrial reactions kinetics, in vitro,” Biophys. J. 86(1), 629–645 (2004).
[CrossRef] [PubMed]

C. A. Combs and R. S. Balaban, “Direct imaging of dehydrogenase activity within living cells using enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP),” Biophys. J. 80(4), 2018–2028 (2001).
[CrossRef] [PubMed]

J. Eng, R. M. Lynch, and R. S. Balaban, “Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes,” Biophys. J. 55(4), 621–630 (1989).
[CrossRef] [PubMed]

Bartz-Schmidt, K. U.

P. Kayatz, G. Thumann, T. T. Luther, J. F. Jordan, K. U. Bartz-Schmidt, P. J. Esser, and U. Schraermeyer, “Oxidation causes melanin fluorescence,” Invest. Ophthalmol. Vis. Sci. 42(1), 241–246 (2001).
[PubMed]

Batista Barbalho, J. P.

D. Rativa, J. P. Batista Barbalho, J. Ferreira Martins Filho, R. Evangelista de Araujo, A. Stevens, L. Gomes, L. Gonzaga de Castro Souza Filho, and A. Marsden, “Perspectives on in vitro fungal diagnosis with UV light,” Revista Brasileira de Engenharia Biomédica 23, 25–30 (2007).

Bauer, E.

K. Konig, T. Krasieva, E. Bauer, U. Fiedler, M. W. Berns, B. J. Tromberg, and K. O. Greulich, “Cell damage by UVA radiation of a mercury microscopy lamp probed by autofluorescence modifications, cloning assay and comet assay,” J. Biochem. Opt. 1, 217–222 (1996).

Bengtsson, M.

M. Bengtsson, R. Grönlund, M. Sjöholm, C. Abrahamsson, A. D. Dernfalk, S. Wallström, A. Larsson, P. Weibring, S. Karlsson, S. M. Gubanski, S. Kröll, and S. Svanberg, “Fluorescence lidar imaging of fungal growth on high-voltage outdoor composite insulators,” Opt. Lasers Eng. 43(6), 624–632 (2005).
[CrossRef]

M. Bengtsson, S. Wallström, M. Sjöholm, R. Grönlund, B. Anderson, A. Larsson, S. Karlsson, S. Kröll, and S. Svanberg, “Fungus covered insulator materials studied with laser-induced fluorescence and principal component analysis,” Appl. Spectrosc. 59(8), 1037–1041 (2005).
[CrossRef] [PubMed]

Benson, R. C.

R. C. Benson, R. A. Meyer, M. E. Zaruba, and G. M. McKhann, “Cellular autofluorescence--is it due to flavins?” J. Histochem. Cytochem. 27(1), 44–48 (1979).
[CrossRef] [PubMed]

Bernabei, P. A.

L. Rigacci, R. Alterini, P. A. Bernabei, P. R. Ferrini, G. Agati, F. Fusi, and M. Monici, “Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues,” Photochem. Photobiol. 71(6), 737–742 (2000).
[CrossRef] [PubMed]

Berns, M. W.

K. König, M. W. Berns, and B. J. Tromberg, “Time-resolved and steady-state fluorescence measurements of beta-nicotinamide adenine dinucleotide-alcohol dehydrogenase complex during UVA exposure,” J. Photochem. Photobiol. B 37(1-2), 91–95 (1997).
[CrossRef] [PubMed]

K. Konig, T. Krasieva, E. Bauer, U. Fiedler, M. W. Berns, B. J. Tromberg, and K. O. Greulich, “Cell damage by UVA radiation of a mercury microscopy lamp probed by autofluorescence modifications, cloning assay and comet assay,” J. Biochem. Opt. 1, 217–222 (1996).

Billinton, N.

N. Billinton and A. W. Knight, “Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence,” Anal. Biochem. 291(2), 175–197 (2001).
[CrossRef] [PubMed]

Cannistraro, S.

C. Arcangeli, W. Yu, S. Cannistraro, and E. Gratton, “Two-photon autofluorescence microscopy and spectroscopy of Antarctic fungus: new approach for studying effects of UV-B irradiation,” Biopolymers 57(4), 218–225 (2000).
[CrossRef] [PubMed]

C. Arcangeli, L. Zucconi, S. Onofri, and S. Cannistraro, “Fluorescence study on whole Antarctic fungal spores under enhanced UV irradiation,” J. Photochem. Photobiol. B 39(3), 258–264 (1997).
[CrossRef]

Cecchi, G.

V. Raimondi, L. Palombi, G. Cecchi, D. Lognoli, M. Trambusti, and I. Gomoiu, “Remote detection of laser-induced autofluorescence on pure cultures of fungal and bacterial strains and their analysis with multivariate techniques,” Opt. Commun. 273(1), 219–225 (2007).
[CrossRef]

Cefalas, A. C.

I. Gomoiu, E. Saratopoulou, Z. Kollia, A. C. Cefalas, J. van Loon, D. Mogaldea, D. Hasegan, and V. Valeanu, “Colored fungal spores as candidates for space experiments,” Orig. Life Evol. Biosph. (to be published).

Chang, R. K.

Combs, C. A.

F. Joubert, H. M. Fales, H. Wen, C. A. Combs, and R. S. Balaban, “NADH enzyme-dependent fluorescence recovery after photobleaching: applications to enzyme and mitochondrial reactions kinetics, in vitro,” Biophys. J. 86(1), 629–645 (2004).
[CrossRef] [PubMed]

C. A. Combs and R. S. Balaban, “Direct imaging of dehydrogenase activity within living cells using enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP),” Biophys. J. 80(4), 2018–2028 (2001).
[CrossRef] [PubMed]

Davitt, K.

Dellinger, M.

M. Dellinger, M. Geze, R. Santus, E. Kohen, C. Kohen, J. G. Hirschberg, and M. Monti, “Imaging of cells by autofluorescence: a new tool in the probing of biopharmaceutical effects at the intracellular level,” Biotechnol. Appl. Biochem. 28(Pt 1), 25–32 (1998).
[PubMed]

Dernfalk, A. D.

M. Bengtsson, R. Grönlund, M. Sjöholm, C. Abrahamsson, A. D. Dernfalk, S. Wallström, A. Larsson, P. Weibring, S. Karlsson, S. M. Gubanski, S. Kröll, and S. Svanberg, “Fluorescence lidar imaging of fungal growth on high-voltage outdoor composite insulators,” Opt. Lasers Eng. 43(6), 624–632 (2005).
[CrossRef]

Elston, D. M.

D. M. Elston, “Fluorescence of fungi in superficial and deep fungal infections,” BMC Microbiol. 1(1), 21 (2001).
[CrossRef] [PubMed]

Eng, J.

J. Eng, R. M. Lynch, and R. S. Balaban, “Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes,” Biophys. J. 55(4), 621–630 (1989).
[CrossRef] [PubMed]

Esser, P. J.

P. Kayatz, G. Thumann, T. T. Luther, J. F. Jordan, K. U. Bartz-Schmidt, P. J. Esser, and U. Schraermeyer, “Oxidation causes melanin fluorescence,” Invest. Ophthalmol. Vis. Sci. 42(1), 241–246 (2001).
[PubMed]

Evangelista de Araujo, R.

D. Rativa, J. P. Batista Barbalho, J. Ferreira Martins Filho, R. Evangelista de Araujo, A. Stevens, L. Gomes, L. Gonzaga de Castro Souza Filho, and A. Marsden, “Perspectives on in vitro fungal diagnosis with UV light,” Revista Brasileira de Engenharia Biomédica 23, 25–30 (2007).

Eversole, J. D.

Fales, H. M.

F. Joubert, H. M. Fales, H. Wen, C. A. Combs, and R. S. Balaban, “NADH enzyme-dependent fluorescence recovery after photobleaching: applications to enzyme and mitochondrial reactions kinetics, in vitro,” Biophys. J. 86(1), 629–645 (2004).
[CrossRef] [PubMed]

Ferreira Martins Filho, J.

D. Rativa, J. P. Batista Barbalho, J. Ferreira Martins Filho, R. Evangelista de Araujo, A. Stevens, L. Gomes, L. Gonzaga de Castro Souza Filho, and A. Marsden, “Perspectives on in vitro fungal diagnosis with UV light,” Revista Brasileira de Engenharia Biomédica 23, 25–30 (2007).

Ferrini, P. R.

L. Rigacci, R. Alterini, P. A. Bernabei, P. R. Ferrini, G. Agati, F. Fusi, and M. Monici, “Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues,” Photochem. Photobiol. 71(6), 737–742 (2000).
[CrossRef] [PubMed]

Fiedler, U.

K. Konig, T. Krasieva, E. Bauer, U. Fiedler, M. W. Berns, B. J. Tromberg, and K. O. Greulich, “Cell damage by UVA radiation of a mercury microscopy lamp probed by autofluorescence modifications, cloning assay and comet assay,” J. Biochem. Opt. 1, 217–222 (1996).

Frey, S.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J. P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004).
[CrossRef]

Fusi, F.

L. Rigacci, R. Alterini, P. A. Bernabei, P. R. Ferrini, G. Agati, F. Fusi, and M. Monici, “Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues,” Photochem. Photobiol. 71(6), 737–742 (2000).
[CrossRef] [PubMed]

Ganzlin, M.

M. Ganzlin, S. Marose, X. Lu, B. Hitzmann, T. Scheper, and U. Rinas, “In situ multi-wavelength fluorescence spectroscopy as effective tool to simultaneously monitor spore germination, metabolic activity and quantitative protein production in recombinant Aspergillus niger fed-batch cultures,” J. Biotechnol. 132(4), 461–468 (2007).
[CrossRef] [PubMed]

Geze, M.

M. Dellinger, M. Geze, R. Santus, E. Kohen, C. Kohen, J. G. Hirschberg, and M. Monti, “Imaging of cells by autofluorescence: a new tool in the probing of biopharmaceutical effects at the intracellular level,” Biotechnol. Appl. Biochem. 28(Pt 1), 25–32 (1998).
[PubMed]

Gherasimova, M.

Gomes, L.

D. Rativa, J. P. Batista Barbalho, J. Ferreira Martins Filho, R. Evangelista de Araujo, A. Stevens, L. Gomes, L. Gonzaga de Castro Souza Filho, and A. Marsden, “Perspectives on in vitro fungal diagnosis with UV light,” Revista Brasileira de Engenharia Biomédica 23, 25–30 (2007).

Gomoiu, I.

V. Raimondi, L. Palombi, G. Cecchi, D. Lognoli, M. Trambusti, and I. Gomoiu, “Remote detection of laser-induced autofluorescence on pure cultures of fungal and bacterial strains and their analysis with multivariate techniques,” Opt. Commun. 273(1), 219–225 (2007).
[CrossRef]

I. Gomoiu, E. Saratopoulou, Z. Kollia, A. C. Cefalas, J. van Loon, D. Mogaldea, D. Hasegan, and V. Valeanu, “Colored fungal spores as candidates for space experiments,” Orig. Life Evol. Biosph. (to be published).

Gonzaga de Castro Souza Filho, L.

D. Rativa, J. P. Batista Barbalho, J. Ferreira Martins Filho, R. Evangelista de Araujo, A. Stevens, L. Gomes, L. Gonzaga de Castro Souza Filho, and A. Marsden, “Perspectives on in vitro fungal diagnosis with UV light,” Revista Brasileira de Engenharia Biomédica 23, 25–30 (2007).

Graham, A. R.

A. R. Graham, “Fungal autofluorescence with ultraviolet illumination,” Am. J. Clin. Pathol. 79(2), 231–234 (1983).
[PubMed]

Gratton, E.

C. Arcangeli, W. Yu, S. Cannistraro, and E. Gratton, “Two-photon autofluorescence microscopy and spectroscopy of Antarctic fungus: new approach for studying effects of UV-B irradiation,” Biopolymers 57(4), 218–225 (2000).
[CrossRef] [PubMed]

Greulich, K. O.

K. Konig, T. Krasieva, E. Bauer, U. Fiedler, M. W. Berns, B. J. Tromberg, and K. O. Greulich, “Cell damage by UVA radiation of a mercury microscopy lamp probed by autofluorescence modifications, cloning assay and comet assay,” J. Biochem. Opt. 1, 217–222 (1996).

Grönlund, R.

M. Bengtsson, R. Grönlund, M. Sjöholm, C. Abrahamsson, A. D. Dernfalk, S. Wallström, A. Larsson, P. Weibring, S. Karlsson, S. M. Gubanski, S. Kröll, and S. Svanberg, “Fluorescence lidar imaging of fungal growth on high-voltage outdoor composite insulators,” Opt. Lasers Eng. 43(6), 624–632 (2005).
[CrossRef]

M. Bengtsson, S. Wallström, M. Sjöholm, R. Grönlund, B. Anderson, A. Larsson, S. Karlsson, S. Kröll, and S. Svanberg, “Fungus covered insulator materials studied with laser-induced fluorescence and principal component analysis,” Appl. Spectrosc. 59(8), 1037–1041 (2005).
[CrossRef] [PubMed]

Gubanski, S. M.

M. Bengtsson, R. Grönlund, M. Sjöholm, C. Abrahamsson, A. D. Dernfalk, S. Wallström, A. Larsson, P. Weibring, S. Karlsson, S. M. Gubanski, S. Kröll, and S. Svanberg, “Fluorescence lidar imaging of fungal growth on high-voltage outdoor composite insulators,” Opt. Lasers Eng. 43(6), 624–632 (2005).
[CrossRef]

Han, J.

Hargreaves, M.

H. Kanaani, M. Hargreaves, Z. Ristovski, and L. Morawska, “Performance assessment of UVAPS: influence of fungal spore age and air exposure,” J. Aerosol Sci. 38(1), 83–96 (2007).
[CrossRef]

Hasegan, D.

I. Gomoiu, E. Saratopoulou, Z. Kollia, A. C. Cefalas, J. van Loon, D. Mogaldea, D. Hasegan, and V. Valeanu, “Colored fungal spores as candidates for space experiments,” Orig. Life Evol. Biosph. (to be published).

Hirschberg, J. G.

M. Dellinger, M. Geze, R. Santus, E. Kohen, C. Kohen, J. G. Hirschberg, and M. Monti, “Imaging of cells by autofluorescence: a new tool in the probing of biopharmaceutical effects at the intracellular level,” Biotechnol. Appl. Biochem. 28(Pt 1), 25–32 (1998).
[PubMed]

Hitzmann, B.

M. Ganzlin, S. Marose, X. Lu, B. Hitzmann, T. Scheper, and U. Rinas, “In situ multi-wavelength fluorescence spectroscopy as effective tool to simultaneously monitor spore germination, metabolic activity and quantitative protein production in recombinant Aspergillus niger fed-batch cultures,” J. Biotechnol. 132(4), 461–468 (2007).
[CrossRef] [PubMed]

Horvath, J. J.

J. K. Li, E. C. Asali, A. E. Humphrey, and J. J. Horvath, “Monitoring cell concentration and activity by multiple excitation fluorometry,” Biotechnol. Prog. 7(1), 21–27 (1991).
[CrossRef] [PubMed]

Humphrey, A. E.

J. K. Li, E. C. Asali, A. E. Humphrey, and J. J. Horvath, “Monitoring cell concentration and activity by multiple excitation fluorometry,” Biotechnol. Prog. 7(1), 21–27 (1991).
[CrossRef] [PubMed]

Huston, A. L.

Jordan, J. F.

P. Kayatz, G. Thumann, T. T. Luther, J. F. Jordan, K. U. Bartz-Schmidt, P. J. Esser, and U. Schraermeyer, “Oxidation causes melanin fluorescence,” Invest. Ophthalmol. Vis. Sci. 42(1), 241–246 (2001).
[PubMed]

Joubert, F.

F. Joubert, H. M. Fales, H. Wen, C. A. Combs, and R. S. Balaban, “NADH enzyme-dependent fluorescence recovery after photobleaching: applications to enzyme and mitochondrial reactions kinetics, in vitro,” Biophys. J. 86(1), 629–645 (2004).
[CrossRef] [PubMed]

Kanaani, H.

H. Kanaani, M. Hargreaves, Z. Ristovski, and L. Morawska, “Performance assessment of UVAPS: influence of fungal spore age and air exposure,” J. Aerosol Sci. 38(1), 83–96 (2007).
[CrossRef]

Karlsson, S.

M. Bengtsson, R. Grönlund, M. Sjöholm, C. Abrahamsson, A. D. Dernfalk, S. Wallström, A. Larsson, P. Weibring, S. Karlsson, S. M. Gubanski, S. Kröll, and S. Svanberg, “Fluorescence lidar imaging of fungal growth on high-voltage outdoor composite insulators,” Opt. Lasers Eng. 43(6), 624–632 (2005).
[CrossRef]

M. Bengtsson, S. Wallström, M. Sjöholm, R. Grönlund, B. Anderson, A. Larsson, S. Karlsson, S. Kröll, and S. Svanberg, “Fungus covered insulator materials studied with laser-induced fluorescence and principal component analysis,” Appl. Spectrosc. 59(8), 1037–1041 (2005).
[CrossRef] [PubMed]

Kasparian, J.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J. P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004).
[CrossRef]

Kayatz, P.

P. Kayatz, G. Thumann, T. T. Luther, J. F. Jordan, K. U. Bartz-Schmidt, P. J. Esser, and U. Schraermeyer, “Oxidation causes melanin fluorescence,” Invest. Ophthalmol. Vis. Sci. 42(1), 241–246 (2001).
[PubMed]

Knight, A. W.

N. Billinton and A. W. Knight, “Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence,” Anal. Biochem. 291(2), 175–197 (2001).
[CrossRef] [PubMed]

Kohen, C.

M. Dellinger, M. Geze, R. Santus, E. Kohen, C. Kohen, J. G. Hirschberg, and M. Monti, “Imaging of cells by autofluorescence: a new tool in the probing of biopharmaceutical effects at the intracellular level,” Biotechnol. Appl. Biochem. 28(Pt 1), 25–32 (1998).
[PubMed]

Kohen, E.

M. Dellinger, M. Geze, R. Santus, E. Kohen, C. Kohen, J. G. Hirschberg, and M. Monti, “Imaging of cells by autofluorescence: a new tool in the probing of biopharmaceutical effects at the intracellular level,” Biotechnol. Appl. Biochem. 28(Pt 1), 25–32 (1998).
[PubMed]

Kollia, Z.

I. Gomoiu, E. Saratopoulou, Z. Kollia, A. C. Cefalas, J. van Loon, D. Mogaldea, D. Hasegan, and V. Valeanu, “Colored fungal spores as candidates for space experiments,” Orig. Life Evol. Biosph. (to be published).

Konig, K.

K. Konig, T. Krasieva, E. Bauer, U. Fiedler, M. W. Berns, B. J. Tromberg, and K. O. Greulich, “Cell damage by UVA radiation of a mercury microscopy lamp probed by autofluorescence modifications, cloning assay and comet assay,” J. Biochem. Opt. 1, 217–222 (1996).

König, K.

K. König, M. W. Berns, and B. J. Tromberg, “Time-resolved and steady-state fluorescence measurements of beta-nicotinamide adenine dinucleotide-alcohol dehydrogenase complex during UVA exposure,” J. Photochem. Photobiol. B 37(1-2), 91–95 (1997).
[CrossRef] [PubMed]

Krasieva, T.

K. Konig, T. Krasieva, E. Bauer, U. Fiedler, M. W. Berns, B. J. Tromberg, and K. O. Greulich, “Cell damage by UVA radiation of a mercury microscopy lamp probed by autofluorescence modifications, cloning assay and comet assay,” J. Biochem. Opt. 1, 217–222 (1996).

Kröll, S.

M. Bengtsson, S. Wallström, M. Sjöholm, R. Grönlund, B. Anderson, A. Larsson, S. Karlsson, S. Kröll, and S. Svanberg, “Fungus covered insulator materials studied with laser-induced fluorescence and principal component analysis,” Appl. Spectrosc. 59(8), 1037–1041 (2005).
[CrossRef] [PubMed]

M. Bengtsson, R. Grönlund, M. Sjöholm, C. Abrahamsson, A. D. Dernfalk, S. Wallström, A. Larsson, P. Weibring, S. Karlsson, S. M. Gubanski, S. Kröll, and S. Svanberg, “Fluorescence lidar imaging of fungal growth on high-voltage outdoor composite insulators,” Opt. Lasers Eng. 43(6), 624–632 (2005).
[CrossRef]

Larsson, A.

M. Bengtsson, R. Grönlund, M. Sjöholm, C. Abrahamsson, A. D. Dernfalk, S. Wallström, A. Larsson, P. Weibring, S. Karlsson, S. M. Gubanski, S. Kröll, and S. Svanberg, “Fluorescence lidar imaging of fungal growth on high-voltage outdoor composite insulators,” Opt. Lasers Eng. 43(6), 624–632 (2005).
[CrossRef]

M. Bengtsson, S. Wallström, M. Sjöholm, R. Grönlund, B. Anderson, A. Larsson, S. Karlsson, S. Kröll, and S. Svanberg, “Fungus covered insulator materials studied with laser-induced fluorescence and principal component analysis,” Appl. Spectrosc. 59(8), 1037–1041 (2005).
[CrossRef] [PubMed]

Li, J. K.

J. K. Li, E. C. Asali, A. E. Humphrey, and J. J. Horvath, “Monitoring cell concentration and activity by multiple excitation fluorometry,” Biotechnol. Prog. 7(1), 21–27 (1991).
[CrossRef] [PubMed]

Lindemann, C.

S. Marose, C. Lindemann, and T. Scheper, “Two-dimensional fluorescence spectroscopy: a new tool for on-line bioprocess monitoring,” Biotechnol. Prog. 14(1), 63–74 (1998).
[CrossRef] [PubMed]

Lognoli, D.

V. Raimondi, L. Palombi, G. Cecchi, D. Lognoli, M. Trambusti, and I. Gomoiu, “Remote detection of laser-induced autofluorescence on pure cultures of fungal and bacterial strains and their analysis with multivariate techniques,” Opt. Commun. 273(1), 219–225 (2007).
[CrossRef]

Lu, X.

M. Ganzlin, S. Marose, X. Lu, B. Hitzmann, T. Scheper, and U. Rinas, “In situ multi-wavelength fluorescence spectroscopy as effective tool to simultaneously monitor spore germination, metabolic activity and quantitative protein production in recombinant Aspergillus niger fed-batch cultures,” J. Biotechnol. 132(4), 461–468 (2007).
[CrossRef] [PubMed]

Luther, T. T.

P. Kayatz, G. Thumann, T. T. Luther, J. F. Jordan, K. U. Bartz-Schmidt, P. J. Esser, and U. Schraermeyer, “Oxidation causes melanin fluorescence,” Invest. Ophthalmol. Vis. Sci. 42(1), 241–246 (2001).
[PubMed]

Lynch, R. M.

J. Eng, R. M. Lynch, and R. S. Balaban, “Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes,” Biophys. J. 55(4), 621–630 (1989).
[CrossRef] [PubMed]

Marose, S.

M. Ganzlin, S. Marose, X. Lu, B. Hitzmann, T. Scheper, and U. Rinas, “In situ multi-wavelength fluorescence spectroscopy as effective tool to simultaneously monitor spore germination, metabolic activity and quantitative protein production in recombinant Aspergillus niger fed-batch cultures,” J. Biotechnol. 132(4), 461–468 (2007).
[CrossRef] [PubMed]

S. Marose, C. Lindemann, and T. Scheper, “Two-dimensional fluorescence spectroscopy: a new tool for on-line bioprocess monitoring,” Biotechnol. Prog. 14(1), 63–74 (1998).
[CrossRef] [PubMed]

Marsden, A.

D. Rativa, J. P. Batista Barbalho, J. Ferreira Martins Filho, R. Evangelista de Araujo, A. Stevens, L. Gomes, L. Gonzaga de Castro Souza Filho, and A. Marsden, “Perspectives on in vitro fungal diagnosis with UV light,” Revista Brasileira de Engenharia Biomédica 23, 25–30 (2007).

McKhann, G. M.

R. C. Benson, R. A. Meyer, M. E. Zaruba, and G. M. McKhann, “Cellular autofluorescence--is it due to flavins?” J. Histochem. Cytochem. 27(1), 44–48 (1979).
[CrossRef] [PubMed]

Méjean, G.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J. P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004).
[CrossRef]

Meyer, R. A.

R. C. Benson, R. A. Meyer, M. E. Zaruba, and G. M. McKhann, “Cellular autofluorescence--is it due to flavins?” J. Histochem. Cytochem. 27(1), 44–48 (1979).
[CrossRef] [PubMed]

Mogaldea, D.

I. Gomoiu, E. Saratopoulou, Z. Kollia, A. C. Cefalas, J. van Loon, D. Mogaldea, D. Hasegan, and V. Valeanu, “Colored fungal spores as candidates for space experiments,” Orig. Life Evol. Biosph. (to be published).

Monici, M.

L. Rigacci, R. Alterini, P. A. Bernabei, P. R. Ferrini, G. Agati, F. Fusi, and M. Monici, “Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues,” Photochem. Photobiol. 71(6), 737–742 (2000).
[CrossRef] [PubMed]

Monti, M.

M. Dellinger, M. Geze, R. Santus, E. Kohen, C. Kohen, J. G. Hirschberg, and M. Monti, “Imaging of cells by autofluorescence: a new tool in the probing of biopharmaceutical effects at the intracellular level,” Biotechnol. Appl. Biochem. 28(Pt 1), 25–32 (1998).
[PubMed]

Morawska, L.

H. Kanaani, M. Hargreaves, Z. Ristovski, and L. Morawska, “Performance assessment of UVAPS: influence of fungal spore age and air exposure,” J. Aerosol Sci. 38(1), 83–96 (2007).
[CrossRef]

Nichols, M. G.

L. M. Tiede, M. G. Nichols, and LeA, “Photobleaching of reduced nicotinamide adenine dinucleotide and the development of highly fluorescent lesions in rat basophilic leukemia cells during multiphoton microscopy,” Photochem. Photobiol. 82(3), 656–664 (2006).
[CrossRef] [PubMed]

Nurmikko, A. V.

Onofri, S.

C. Arcangeli, L. Zucconi, S. Onofri, and S. Cannistraro, “Fluorescence study on whole Antarctic fungal spores under enhanced UV irradiation,” J. Photochem. Photobiol. B 39(3), 258–264 (1997).
[CrossRef]

Palombi, L.

V. Raimondi, L. Palombi, G. Cecchi, D. Lognoli, M. Trambusti, and I. Gomoiu, “Remote detection of laser-induced autofluorescence on pure cultures of fungal and bacterial strains and their analysis with multivariate techniques,” Opt. Commun. 273(1), 219–225 (2007).
[CrossRef]

Pan, Y.-L.

Patterson, W. R.

Raimondi, V.

V. Raimondi, L. Palombi, G. Cecchi, D. Lognoli, M. Trambusti, and I. Gomoiu, “Remote detection of laser-induced autofluorescence on pure cultures of fungal and bacterial strains and their analysis with multivariate techniques,” Opt. Commun. 273(1), 219–225 (2007).
[CrossRef]

Rativa, D.

D. Rativa, J. P. Batista Barbalho, J. Ferreira Martins Filho, R. Evangelista de Araujo, A. Stevens, L. Gomes, L. Gonzaga de Castro Souza Filho, and A. Marsden, “Perspectives on in vitro fungal diagnosis with UV light,” Revista Brasileira de Engenharia Biomédica 23, 25–30 (2007).

Rigacci, L.

L. Rigacci, R. Alterini, P. A. Bernabei, P. R. Ferrini, G. Agati, F. Fusi, and M. Monici, “Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues,” Photochem. Photobiol. 71(6), 737–742 (2000).
[CrossRef] [PubMed]

Rinas, U.

M. Ganzlin, S. Marose, X. Lu, B. Hitzmann, T. Scheper, and U. Rinas, “In situ multi-wavelength fluorescence spectroscopy as effective tool to simultaneously monitor spore germination, metabolic activity and quantitative protein production in recombinant Aspergillus niger fed-batch cultures,” J. Biotechnol. 132(4), 461–468 (2007).
[CrossRef] [PubMed]

Ristovski, Z.

H. Kanaani, M. Hargreaves, Z. Ristovski, and L. Morawska, “Performance assessment of UVAPS: influence of fungal spore age and air exposure,” J. Aerosol Sci. 38(1), 83–96 (2007).
[CrossRef]

Salmon, E.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J. P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004).
[CrossRef]

Santus, R.

M. Dellinger, M. Geze, R. Santus, E. Kohen, C. Kohen, J. G. Hirschberg, and M. Monti, “Imaging of cells by autofluorescence: a new tool in the probing of biopharmaceutical effects at the intracellular level,” Biotechnol. Appl. Biochem. 28(Pt 1), 25–32 (1998).
[PubMed]

Saratopoulou, E.

I. Gomoiu, E. Saratopoulou, Z. Kollia, A. C. Cefalas, J. van Loon, D. Mogaldea, D. Hasegan, and V. Valeanu, “Colored fungal spores as candidates for space experiments,” Orig. Life Evol. Biosph. (to be published).

Scheper, T.

M. Ganzlin, S. Marose, X. Lu, B. Hitzmann, T. Scheper, and U. Rinas, “In situ multi-wavelength fluorescence spectroscopy as effective tool to simultaneously monitor spore germination, metabolic activity and quantitative protein production in recombinant Aspergillus niger fed-batch cultures,” J. Biotechnol. 132(4), 461–468 (2007).
[CrossRef] [PubMed]

S. Marose, C. Lindemann, and T. Scheper, “Two-dimensional fluorescence spectroscopy: a new tool for on-line bioprocess monitoring,” Biotechnol. Prog. 14(1), 63–74 (1998).
[CrossRef] [PubMed]

Schraermeyer, U.

P. Kayatz, G. Thumann, T. T. Luther, J. F. Jordan, K. U. Bartz-Schmidt, P. J. Esser, and U. Schraermeyer, “Oxidation causes melanin fluorescence,” Invest. Ophthalmol. Vis. Sci. 42(1), 241–246 (2001).
[PubMed]

Scotto, C.

Sivaprakasam, V.

Sjöholm, M.

M. Bengtsson, S. Wallström, M. Sjöholm, R. Grönlund, B. Anderson, A. Larsson, S. Karlsson, S. Kröll, and S. Svanberg, “Fungus covered insulator materials studied with laser-induced fluorescence and principal component analysis,” Appl. Spectrosc. 59(8), 1037–1041 (2005).
[CrossRef] [PubMed]

M. Bengtsson, R. Grönlund, M. Sjöholm, C. Abrahamsson, A. D. Dernfalk, S. Wallström, A. Larsson, P. Weibring, S. Karlsson, S. M. Gubanski, S. Kröll, and S. Svanberg, “Fluorescence lidar imaging of fungal growth on high-voltage outdoor composite insulators,” Opt. Lasers Eng. 43(6), 624–632 (2005).
[CrossRef]

Song, Y.-K.

Stevens, A.

D. Rativa, J. P. Batista Barbalho, J. Ferreira Martins Filho, R. Evangelista de Araujo, A. Stevens, L. Gomes, L. Gonzaga de Castro Souza Filho, and A. Marsden, “Perspectives on in vitro fungal diagnosis with UV light,” Revista Brasileira de Engenharia Biomédica 23, 25–30 (2007).

Svanberg, S.

M. Bengtsson, S. Wallström, M. Sjöholm, R. Grönlund, B. Anderson, A. Larsson, S. Karlsson, S. Kröll, and S. Svanberg, “Fungus covered insulator materials studied with laser-induced fluorescence and principal component analysis,” Appl. Spectrosc. 59(8), 1037–1041 (2005).
[CrossRef] [PubMed]

M. Bengtsson, R. Grönlund, M. Sjöholm, C. Abrahamsson, A. D. Dernfalk, S. Wallström, A. Larsson, P. Weibring, S. Karlsson, S. M. Gubanski, S. Kröll, and S. Svanberg, “Fluorescence lidar imaging of fungal growth on high-voltage outdoor composite insulators,” Opt. Lasers Eng. 43(6), 624–632 (2005).
[CrossRef]

Taylor, C. R.

P. Asawanonda and C. R. Taylor, “Wood's light in dermatology,” Review International Journal of Dermatology 38(11), 801–807 (1999).
[CrossRef]

Thumann, G.

P. Kayatz, G. Thumann, T. T. Luther, J. F. Jordan, K. U. Bartz-Schmidt, P. J. Esser, and U. Schraermeyer, “Oxidation causes melanin fluorescence,” Invest. Ophthalmol. Vis. Sci. 42(1), 241–246 (2001).
[PubMed]

Tiede, L. M.

L. M. Tiede, M. G. Nichols, and LeA, “Photobleaching of reduced nicotinamide adenine dinucleotide and the development of highly fluorescent lesions in rat basophilic leukemia cells during multiphoton microscopy,” Photochem. Photobiol. 82(3), 656–664 (2006).
[CrossRef] [PubMed]

Trambusti, M.

V. Raimondi, L. Palombi, G. Cecchi, D. Lognoli, M. Trambusti, and I. Gomoiu, “Remote detection of laser-induced autofluorescence on pure cultures of fungal and bacterial strains and their analysis with multivariate techniques,” Opt. Commun. 273(1), 219–225 (2007).
[CrossRef]

Tromberg, B. J.

K. König, M. W. Berns, and B. J. Tromberg, “Time-resolved and steady-state fluorescence measurements of beta-nicotinamide adenine dinucleotide-alcohol dehydrogenase complex during UVA exposure,” J. Photochem. Photobiol. B 37(1-2), 91–95 (1997).
[CrossRef] [PubMed]

K. Konig, T. Krasieva, E. Bauer, U. Fiedler, M. W. Berns, B. J. Tromberg, and K. O. Greulich, “Cell damage by UVA radiation of a mercury microscopy lamp probed by autofluorescence modifications, cloning assay and comet assay,” J. Biochem. Opt. 1, 217–222 (1996).

Valeanu, V.

I. Gomoiu, E. Saratopoulou, Z. Kollia, A. C. Cefalas, J. van Loon, D. Mogaldea, D. Hasegan, and V. Valeanu, “Colored fungal spores as candidates for space experiments,” Orig. Life Evol. Biosph. (to be published).

van Loon, J.

I. Gomoiu, E. Saratopoulou, Z. Kollia, A. C. Cefalas, J. van Loon, D. Mogaldea, D. Hasegan, and V. Valeanu, “Colored fungal spores as candidates for space experiments,” Orig. Life Evol. Biosph. (to be published).

Wallström, S.

M. Bengtsson, R. Grönlund, M. Sjöholm, C. Abrahamsson, A. D. Dernfalk, S. Wallström, A. Larsson, P. Weibring, S. Karlsson, S. M. Gubanski, S. Kröll, and S. Svanberg, “Fluorescence lidar imaging of fungal growth on high-voltage outdoor composite insulators,” Opt. Lasers Eng. 43(6), 624–632 (2005).
[CrossRef]

M. Bengtsson, S. Wallström, M. Sjöholm, R. Grönlund, B. Anderson, A. Larsson, S. Karlsson, S. Kröll, and S. Svanberg, “Fungus covered insulator materials studied with laser-induced fluorescence and principal component analysis,” Appl. Spectrosc. 59(8), 1037–1041 (2005).
[CrossRef] [PubMed]

Weibring, P.

M. Bengtsson, R. Grönlund, M. Sjöholm, C. Abrahamsson, A. D. Dernfalk, S. Wallström, A. Larsson, P. Weibring, S. Karlsson, S. M. Gubanski, S. Kröll, and S. Svanberg, “Fluorescence lidar imaging of fungal growth on high-voltage outdoor composite insulators,” Opt. Lasers Eng. 43(6), 624–632 (2005).
[CrossRef]

Wen, H.

F. Joubert, H. M. Fales, H. Wen, C. A. Combs, and R. S. Balaban, “NADH enzyme-dependent fluorescence recovery after photobleaching: applications to enzyme and mitochondrial reactions kinetics, in vitro,” Biophys. J. 86(1), 629–645 (2004).
[CrossRef] [PubMed]

Wolf, J. P.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J. P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004).
[CrossRef]

Yu, J.

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J. P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004).
[CrossRef]

Yu, W.

C. Arcangeli, W. Yu, S. Cannistraro, and E. Gratton, “Two-photon autofluorescence microscopy and spectroscopy of Antarctic fungus: new approach for studying effects of UV-B irradiation,” Biopolymers 57(4), 218–225 (2000).
[CrossRef] [PubMed]

Zaruba, M. E.

R. C. Benson, R. A. Meyer, M. E. Zaruba, and G. M. McKhann, “Cellular autofluorescence--is it due to flavins?” J. Histochem. Cytochem. 27(1), 44–48 (1979).
[CrossRef] [PubMed]

Zucconi, L.

C. Arcangeli, L. Zucconi, S. Onofri, and S. Cannistraro, “Fluorescence study on whole Antarctic fungal spores under enhanced UV irradiation,” J. Photochem. Photobiol. B 39(3), 258–264 (1997).
[CrossRef]

Am. J. Clin. Pathol. (1)

A. R. Graham, “Fungal autofluorescence with ultraviolet illumination,” Am. J. Clin. Pathol. 79(2), 231–234 (1983).
[PubMed]

Anal. Biochem. (1)

N. Billinton and A. W. Knight, “Seeing the wood through the trees: a review of techniques for distinguishing green fluorescent protein from endogenous autofluorescence,” Anal. Biochem. 291(2), 175–197 (2001).
[CrossRef] [PubMed]

Appl. Phys. B (1)

G. Méjean, J. Kasparian, J. Yu, S. Frey, E. Salmon, and J. P. Wolf, “Remote detection and identification of biological aerosols using a femtosecond terawatt lidar system,” Appl. Phys. B 78, 535–537 (2004).
[CrossRef]

Appl. Spectrosc. (1)

Biophys. J. (3)

J. Eng, R. M. Lynch, and R. S. Balaban, “Nicotinamide adenine dinucleotide fluorescence spectroscopy and imaging of isolated cardiac myocytes,” Biophys. J. 55(4), 621–630 (1989).
[CrossRef] [PubMed]

F. Joubert, H. M. Fales, H. Wen, C. A. Combs, and R. S. Balaban, “NADH enzyme-dependent fluorescence recovery after photobleaching: applications to enzyme and mitochondrial reactions kinetics, in vitro,” Biophys. J. 86(1), 629–645 (2004).
[CrossRef] [PubMed]

C. A. Combs and R. S. Balaban, “Direct imaging of dehydrogenase activity within living cells using enzyme-dependent fluorescence recovery after photobleaching (ED-FRAP),” Biophys. J. 80(4), 2018–2028 (2001).
[CrossRef] [PubMed]

Biopolymers (1)

C. Arcangeli, W. Yu, S. Cannistraro, and E. Gratton, “Two-photon autofluorescence microscopy and spectroscopy of Antarctic fungus: new approach for studying effects of UV-B irradiation,” Biopolymers 57(4), 218–225 (2000).
[CrossRef] [PubMed]

Biotechnol. Appl. Biochem. (1)

M. Dellinger, M. Geze, R. Santus, E. Kohen, C. Kohen, J. G. Hirschberg, and M. Monti, “Imaging of cells by autofluorescence: a new tool in the probing of biopharmaceutical effects at the intracellular level,” Biotechnol. Appl. Biochem. 28(Pt 1), 25–32 (1998).
[PubMed]

Biotechnol. Prog. (2)

J. K. Li, E. C. Asali, A. E. Humphrey, and J. J. Horvath, “Monitoring cell concentration and activity by multiple excitation fluorometry,” Biotechnol. Prog. 7(1), 21–27 (1991).
[CrossRef] [PubMed]

S. Marose, C. Lindemann, and T. Scheper, “Two-dimensional fluorescence spectroscopy: a new tool for on-line bioprocess monitoring,” Biotechnol. Prog. 14(1), 63–74 (1998).
[CrossRef] [PubMed]

BMC Microbiol. (1)

D. M. Elston, “Fluorescence of fungi in superficial and deep fungal infections,” BMC Microbiol. 1(1), 21 (2001).
[CrossRef] [PubMed]

Invest. Ophthalmol. Vis. Sci. (1)

P. Kayatz, G. Thumann, T. T. Luther, J. F. Jordan, K. U. Bartz-Schmidt, P. J. Esser, and U. Schraermeyer, “Oxidation causes melanin fluorescence,” Invest. Ophthalmol. Vis. Sci. 42(1), 241–246 (2001).
[PubMed]

J. Aerosol Sci. (1)

H. Kanaani, M. Hargreaves, Z. Ristovski, and L. Morawska, “Performance assessment of UVAPS: influence of fungal spore age and air exposure,” J. Aerosol Sci. 38(1), 83–96 (2007).
[CrossRef]

J. Biochem. Opt. (1)

K. Konig, T. Krasieva, E. Bauer, U. Fiedler, M. W. Berns, B. J. Tromberg, and K. O. Greulich, “Cell damage by UVA radiation of a mercury microscopy lamp probed by autofluorescence modifications, cloning assay and comet assay,” J. Biochem. Opt. 1, 217–222 (1996).

J. Biotechnol. (1)

M. Ganzlin, S. Marose, X. Lu, B. Hitzmann, T. Scheper, and U. Rinas, “In situ multi-wavelength fluorescence spectroscopy as effective tool to simultaneously monitor spore germination, metabolic activity and quantitative protein production in recombinant Aspergillus niger fed-batch cultures,” J. Biotechnol. 132(4), 461–468 (2007).
[CrossRef] [PubMed]

J. Histochem. Cytochem. (1)

R. C. Benson, R. A. Meyer, M. E. Zaruba, and G. M. McKhann, “Cellular autofluorescence--is it due to flavins?” J. Histochem. Cytochem. 27(1), 44–48 (1979).
[CrossRef] [PubMed]

J. Photochem. Photobiol. B (2)

K. König, M. W. Berns, and B. J. Tromberg, “Time-resolved and steady-state fluorescence measurements of beta-nicotinamide adenine dinucleotide-alcohol dehydrogenase complex during UVA exposure,” J. Photochem. Photobiol. B 37(1-2), 91–95 (1997).
[CrossRef] [PubMed]

C. Arcangeli, L. Zucconi, S. Onofri, and S. Cannistraro, “Fluorescence study on whole Antarctic fungal spores under enhanced UV irradiation,” J. Photochem. Photobiol. B 39(3), 258–264 (1997).
[CrossRef]

Opt. Commun. (1)

V. Raimondi, L. Palombi, G. Cecchi, D. Lognoli, M. Trambusti, and I. Gomoiu, “Remote detection of laser-induced autofluorescence on pure cultures of fungal and bacterial strains and their analysis with multivariate techniques,” Opt. Commun. 273(1), 219–225 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lasers Eng. (1)

M. Bengtsson, R. Grönlund, M. Sjöholm, C. Abrahamsson, A. D. Dernfalk, S. Wallström, A. Larsson, P. Weibring, S. Karlsson, S. M. Gubanski, S. Kröll, and S. Svanberg, “Fluorescence lidar imaging of fungal growth on high-voltage outdoor composite insulators,” Opt. Lasers Eng. 43(6), 624–632 (2005).
[CrossRef]

Orig. Life Evol. Biosph. (1)

I. Gomoiu, E. Saratopoulou, Z. Kollia, A. C. Cefalas, J. van Loon, D. Mogaldea, D. Hasegan, and V. Valeanu, “Colored fungal spores as candidates for space experiments,” Orig. Life Evol. Biosph. (to be published).

Photochem. Photobiol. (2)

L. Rigacci, R. Alterini, P. A. Bernabei, P. R. Ferrini, G. Agati, F. Fusi, and M. Monici, “Multispectral imaging autofluorescence microscopy for the analysis of lymph-node tissues,” Photochem. Photobiol. 71(6), 737–742 (2000).
[CrossRef] [PubMed]

L. M. Tiede, M. G. Nichols, and LeA, “Photobleaching of reduced nicotinamide adenine dinucleotide and the development of highly fluorescent lesions in rat basophilic leukemia cells during multiphoton microscopy,” Photochem. Photobiol. 82(3), 656–664 (2006).
[CrossRef] [PubMed]

Review International Journal of Dermatology (1)

P. Asawanonda and C. R. Taylor, “Wood's light in dermatology,” Review International Journal of Dermatology 38(11), 801–807 (1999).
[CrossRef]

Revista Brasileira de Engenharia Biomédica (1)

D. Rativa, J. P. Batista Barbalho, J. Ferreira Martins Filho, R. Evangelista de Araujo, A. Stevens, L. Gomes, L. Gonzaga de Castro Souza Filho, and A. Marsden, “Perspectives on in vitro fungal diagnosis with UV light,” Revista Brasileira de Engenharia Biomédica 23, 25–30 (2007).

Other (2)

G. Palumbo, and R. Pratesi, Laser and current optical techniques in biology (ESP RSC Publishing, Cambridge, 2004).

F. Sidney, Velick, “Spectra and structure in enzyme complexes of pyridine and flavine nucleotides,” in Light and Life, W. D. McElroy and B. Glass, eds. (Johns Hopkins Press, Baltimore, 1961).

Supplementary Material (2)

» Media 1: AVI (4040 KB)     
» Media 2: AVI (3040 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Photo of the fungal strain (Aspergillus niger) isolated and cultivated in the laboratory. The dark brownish color of the colony is due to the melanin high content of this species.

Fig. 2
Fig. 2

Technical drawing depicting the experimental set-up used for the autofluorescence measurements. The set-up integrated an epifluorescence microscope with a CCD camera, a multichannel spectral analyzer (microspectrofluorimeter) and an eyepiece-mounted webcam.

Fig. 3
Fig. 3

Transmission images, fluorescence images and fluorescence spectra of isolated spores of Aspergillus niger: (a), (b), and (c) were acquired on a dry sample prepared from a 13-day-old culture. (d), (e), and (f) were acquired on a dry sample prepared from a 21-day-old culture. All data were acquired using the x100 objective. Images were acquired using the webcam; fluorescence spectra were acquired using the microspectrofluorimeter.

Fig. 4
Fig. 4

Temporal sequence of endogenous fluorescence spectra and images of fungal spores (21-day old culture; dry sample). All data were acquired using the x100 objective. Images were acquired using the webcam; fluorescence spectra were acquired using the microspectrofluorimeter. (a) Sequence of fluorescence spectra. (b) Sequence of fluorescence images acquired using the webcam (time step: about 1 min). (c) Fluorescence spectra acquired at three selected times during the sequence: start of the sequence (t = 0 min), after a few minutes of exposure (t = 6.4 min), and at the end of the sequence (t = 34.6 min). (d) Trend of the main fluorescence contributions as a function of time.

Fig. 5
Fig. 5

Close-ups of transmission and fluorescence images, acquired using the webcam, referring to fluorescence data in Fig. 4. (a) Transmission image before UV exposure. (b) Transmission image at the end of the temporal sequence (35-min long UV exposure). The red circle indicates the area irradiated by the UV light. (c) Fluorescence image superimposed on the transmission image. The fluorescing spores indicate the area irradiated by the UV light.

Fig. 6
Fig. 6

In vivo real-time recording of endogenous fluorescence modifications due to UV irradiation using the webcam on: (a) hypha (Media 1), and (b) spores (Media 2) of Aspergillus niger (21-day-old culture; wet sample). The images were acquired using the x100 objective.

Fig. 7
Fig. 7

Temporal sequence of endogenous fluorescence spectra and images of fungal spores (21-day-old culture; wet sample). All data were acquired using the x100 objective. Images were acquired using the webcam; fluorescence spectra were acquired with the microspectrofluorimeter. (a) Sequence of fluorescence spectra; (b) sequence of fluorescence images acquired using the webcam (time step: about 1 min). (c) three fluorescence spectra acquired at the three selected times during the sequence: t0 (start of the sequence), t0 + 4.3 min (maximum emission of yellow fluorescence), t0 + 26.8 min (end of the sequence); (d) trend of the main fluorescence contributions as a function of time.

Fig. 8
Fig. 8

Close-ups of transmission and fluorescence images, acquired using the webcam, referring to fluorescence data shown in Fig. 7. (a) Transmission image before UV exposure; (b) Transmission image at the end of the sequence (26.8-min long UV exposure). (c) Fluorescence image at t0 + 4.3 min (maximum emission of yellow fluorescence). (d) Fluorescence image at the end of the sequence (26.8-min long UV exposure).

Fig. 9
Fig. 9

False-color coded fluorescence images of spores (13-day-old culture; dry sample) acquired using the CCD camera and interferential filters. The images were acquired with the x10 objective. Excitation is at 365 nm. Images are normalized to the maximum intensity. (a) Fluorescence emitted at 450 nm. (b) Fluorescence emitted at 550 nm. (c) RB merging of the two fluorescence images (450-nm fluorescence on the blue (B) channel and 550-nm fluorescence on the red (R) channel).

Metrics