Abstract

An imaging Fourier transform spectrometer (IFTS) designed for fluorescence emission measurements is reported. The spectral range extension from NIR to visible of the system is realized by using a simple and low-cost optical beam-folding position-tracking technique. Spectral resolution as high as 9.78cm−1(0.4nm at 632.8nm) and maximum image resolution up to 300×300 pixels are proved by the system tests on its optical performances. Imaging fluorescence spectra acquisition of quantum dot clusters and single 200nm diameter fluorescent beads have demonstrated the system’s potential for high throughput imaging spectroscopic measurements of fluorescent biological and chemical samples.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27(5), 367–374 (2002).
    [CrossRef] [PubMed]
  2. T. Zimmermann, J. Rietdorf, A. Girod, V. Georget, and R. Pepperkok, “Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair,” FEBS Lett. 531(2), 245–249 (2002).
    [CrossRef] [PubMed]
  3. E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
    [CrossRef] [PubMed]
  4. G. L. Liu, J. C. Doll, and L. P. Lee, “High-speed multispectral imaging of nanoplasmonic array,” Opt. Express 13(21), 8520–8525 (2005), 
 http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-13-21-8520 .
    [CrossRef] [PubMed]
  5. Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: Principles and applications,” Cytom, Part A 69A, 735–747 (2006).
    [CrossRef]
  6. R. J. Bell, Introductory Fourier transform spectroscopy (Academic Press, New York, 1972).
  7. S. Wartewig, IR and Raman spectroscopy: fundamental processing, Spectroscopic techniques. An interactive course. (Wiley-VCH, Weinheim, 2003).
  8. M. Fisher, V. Bulatov, S. Hasson, and I. Schechter, “Fast aerosol analysis by Fourier transform imaging fluorescence microscopy,” Anal. Chem. 70(11), 2409–2414 (1998).
    [CrossRef] [PubMed]
  9. R. K. Y. Chan, P. K. Lim, X. Z. Wang, and M. H. Chan, “Fourier transform ultraviolet-visible spectrometer based on a beam-folding technique,” Opt. Lett. 31(7), 903–905 (2006).
    [CrossRef] [PubMed]
  10. X. Z. Wang, R. K. Y. Chan, and A. S. K. Cheng, “Near UV-near IR Fourier transform spectrometer using the beam-folding position-tracking method based on retroreflectors,” Rev. Sci. Instrum. 79(12), 123108–123106 (2008).
    [CrossRef] [PubMed]
  11. N. J. E. Johnson, “Spectral imaging with the Michelson interferometer,” Proc. SPIE 226, 2–9 (1980).
  12. E. H. Wishnow, R. E. Wurtz, S. Blais-Ouellette, K. H. Cook, D. J. Carr, I. T. Lewis, F. Grandmont, and C. W. Stubbs, “Visible Imaging Fourier Transform Spectrometer: Design and Calibration,” Proc. SPIE 4841, 1067–1077 (2003).
    [CrossRef]
  13. D. Zhao, Z. He, W. H. Chan, and M. M. F. Choi, “Synthesis and Characterization of High-Quality Water-Soluble Near-Infrared-Emitting CdTe/CdS Quantum Dots Capped by N-Acetyl-l-cysteine Via Hydrothermal Method,” J. Phys. Chem. C 113(4), 1293–1300 (2008).
    [CrossRef]
  14. H. R. Petty, “Fluorescence microscopy: Established and emerging methods, experimental strategies, and applications in immunology,” Microsc. Res. Tech. 70(8), 687–709 (2007).
    [CrossRef] [PubMed]
  15. D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” in Biophotonics, Pt B (Academic Press Inc, San Diego, 2003).
  16. A. Curry, W. L. Hwang, and A. Wax, “Epi-illumination through the microscope objective applied to darkfield imaging and microspectroscopy of nanoparticle interaction with cells in culture,” Opt. Express 14(14), 6535–6542 (2006), 
 http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-14-6535 .
    [CrossRef] [PubMed]
  17. J. Yang, S. R. Dave, and X. H. Gao, “Quantum dot nanobarcodes: Epitaxial assembly of nanoparticle-polymer complexes in homogeneous solution,” J. Am. Chem. Soc. 130(15), 5286–5292 (2008).
    [CrossRef] [PubMed]
  18. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
    [CrossRef] [PubMed]

2008 (3)

X. Z. Wang, R. K. Y. Chan, and A. S. K. Cheng, “Near UV-near IR Fourier transform spectrometer using the beam-folding position-tracking method based on retroreflectors,” Rev. Sci. Instrum. 79(12), 123108–123106 (2008).
[CrossRef] [PubMed]

D. Zhao, Z. He, W. H. Chan, and M. M. F. Choi, “Synthesis and Characterization of High-Quality Water-Soluble Near-Infrared-Emitting CdTe/CdS Quantum Dots Capped by N-Acetyl-l-cysteine Via Hydrothermal Method,” J. Phys. Chem. C 113(4), 1293–1300 (2008).
[CrossRef]

J. Yang, S. R. Dave, and X. H. Gao, “Quantum dot nanobarcodes: Epitaxial assembly of nanoparticle-polymer complexes in homogeneous solution,” J. Am. Chem. Soc. 130(15), 5286–5292 (2008).
[CrossRef] [PubMed]

2007 (2)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

H. R. Petty, “Fluorescence microscopy: Established and emerging methods, experimental strategies, and applications in immunology,” Microsc. Res. Tech. 70(8), 687–709 (2007).
[CrossRef] [PubMed]

2006 (3)

2005 (1)

2003 (1)

E. H. Wishnow, R. E. Wurtz, S. Blais-Ouellette, K. H. Cook, D. J. Carr, I. T. Lewis, F. Grandmont, and C. W. Stubbs, “Visible Imaging Fourier Transform Spectrometer: Design and Calibration,” Proc. SPIE 4841, 1067–1077 (2003).
[CrossRef]

2002 (2)

Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27(5), 367–374 (2002).
[CrossRef] [PubMed]

T. Zimmermann, J. Rietdorf, A. Girod, V. Georget, and R. Pepperkok, “Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair,” FEBS Lett. 531(2), 245–249 (2002).
[CrossRef] [PubMed]

1998 (1)

M. Fisher, V. Bulatov, S. Hasson, and I. Schechter, “Fast aerosol analysis by Fourier transform imaging fluorescence microscopy,” Anal. Chem. 70(11), 2409–2414 (1998).
[CrossRef] [PubMed]

1996 (1)

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

1980 (1)

N. J. E. Johnson, “Spectral imaging with the Michelson interferometer,” Proc. SPIE 226, 2–9 (1980).

Bar-Am, I.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

Blais-Ouellette, S.

E. H. Wishnow, R. E. Wurtz, S. Blais-Ouellette, K. H. Cook, D. J. Carr, I. T. Lewis, F. Grandmont, and C. W. Stubbs, “Visible Imaging Fourier Transform Spectrometer: Design and Calibration,” Proc. SPIE 4841, 1067–1077 (2003).
[CrossRef]

Bulatov, V.

M. Fisher, V. Bulatov, S. Hasson, and I. Schechter, “Fast aerosol analysis by Fourier transform imaging fluorescence microscopy,” Anal. Chem. 70(11), 2409–2414 (1998).
[CrossRef] [PubMed]

Carr, D. J.

E. H. Wishnow, R. E. Wurtz, S. Blais-Ouellette, K. H. Cook, D. J. Carr, I. T. Lewis, F. Grandmont, and C. W. Stubbs, “Visible Imaging Fourier Transform Spectrometer: Design and Calibration,” Proc. SPIE 4841, 1067–1077 (2003).
[CrossRef]

Chan, M. H.

Chan, R. K. Y.

X. Z. Wang, R. K. Y. Chan, and A. S. K. Cheng, “Near UV-near IR Fourier transform spectrometer using the beam-folding position-tracking method based on retroreflectors,” Rev. Sci. Instrum. 79(12), 123108–123106 (2008).
[CrossRef] [PubMed]

R. K. Y. Chan, P. K. Lim, X. Z. Wang, and M. H. Chan, “Fourier transform ultraviolet-visible spectrometer based on a beam-folding technique,” Opt. Lett. 31(7), 903–905 (2006).
[CrossRef] [PubMed]

Chan, W. H.

D. Zhao, Z. He, W. H. Chan, and M. M. F. Choi, “Synthesis and Characterization of High-Quality Water-Soluble Near-Infrared-Emitting CdTe/CdS Quantum Dots Capped by N-Acetyl-l-cysteine Via Hydrothermal Method,” J. Phys. Chem. C 113(4), 1293–1300 (2008).
[CrossRef]

Cheng, A. S. K.

X. Z. Wang, R. K. Y. Chan, and A. S. K. Cheng, “Near UV-near IR Fourier transform spectrometer using the beam-folding position-tracking method based on retroreflectors,” Rev. Sci. Instrum. 79(12), 123108–123106 (2008).
[CrossRef] [PubMed]

Choi, M. M. F.

D. Zhao, Z. He, W. H. Chan, and M. M. F. Choi, “Synthesis and Characterization of High-Quality Water-Soluble Near-Infrared-Emitting CdTe/CdS Quantum Dots Capped by N-Acetyl-l-cysteine Via Hydrothermal Method,” J. Phys. Chem. C 113(4), 1293–1300 (2008).
[CrossRef]

Cook, K. H.

E. H. Wishnow, R. E. Wurtz, S. Blais-Ouellette, K. H. Cook, D. J. Carr, I. T. Lewis, F. Grandmont, and C. W. Stubbs, “Visible Imaging Fourier Transform Spectrometer: Design and Calibration,” Proc. SPIE 4841, 1067–1077 (2003).
[CrossRef]

Curry, A.

Dave, S. R.

J. Yang, S. R. Dave, and X. H. Gao, “Quantum dot nanobarcodes: Epitaxial assembly of nanoparticle-polymer complexes in homogeneous solution,” J. Am. Chem. Soc. 130(15), 5286–5292 (2008).
[CrossRef] [PubMed]

Doll, J. C.

du Manoir, S.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

Ferguson-Smith, M. A.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

Fisher, M.

M. Fisher, V. Bulatov, S. Hasson, and I. Schechter, “Fast aerosol analysis by Fourier transform imaging fluorescence microscopy,” Anal. Chem. 70(11), 2409–2414 (1998).
[CrossRef] [PubMed]

Gao, X. H.

J. Yang, S. R. Dave, and X. H. Gao, “Quantum dot nanobarcodes: Epitaxial assembly of nanoparticle-polymer complexes in homogeneous solution,” J. Am. Chem. Soc. 130(15), 5286–5292 (2008).
[CrossRef] [PubMed]

Garini, Y.

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: Principles and applications,” Cytom, Part A 69A, 735–747 (2006).
[CrossRef]

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

Georget, V.

T. Zimmermann, J. Rietdorf, A. Girod, V. Georget, and R. Pepperkok, “Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair,” FEBS Lett. 531(2), 245–249 (2002).
[CrossRef] [PubMed]

Girod, A.

T. Zimmermann, J. Rietdorf, A. Girod, V. Georget, and R. Pepperkok, “Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair,” FEBS Lett. 531(2), 245–249 (2002).
[CrossRef] [PubMed]

Grandmont, F.

E. H. Wishnow, R. E. Wurtz, S. Blais-Ouellette, K. H. Cook, D. J. Carr, I. T. Lewis, F. Grandmont, and C. W. Stubbs, “Visible Imaging Fourier Transform Spectrometer: Design and Calibration,” Proc. SPIE 4841, 1067–1077 (2003).
[CrossRef]

Haraguchi, T.

Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27(5), 367–374 (2002).
[CrossRef] [PubMed]

Hasson, S.

M. Fisher, V. Bulatov, S. Hasson, and I. Schechter, “Fast aerosol analysis by Fourier transform imaging fluorescence microscopy,” Anal. Chem. 70(11), 2409–2414 (1998).
[CrossRef] [PubMed]

He, Z.

D. Zhao, Z. He, W. H. Chan, and M. M. F. Choi, “Synthesis and Characterization of High-Quality Water-Soluble Near-Infrared-Emitting CdTe/CdS Quantum Dots Capped by N-Acetyl-l-cysteine Via Hydrothermal Method,” J. Phys. Chem. C 113(4), 1293–1300 (2008).
[CrossRef]

Hiraoka, Y.

Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27(5), 367–374 (2002).
[CrossRef] [PubMed]

Hwang, W. L.

Johnson, N. J. E.

N. J. E. Johnson, “Spectral imaging with the Michelson interferometer,” Proc. SPIE 226, 2–9 (1980).

Ledbetter, D. H.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

Lee, L. P.

Lewis, I. T.

E. H. Wishnow, R. E. Wurtz, S. Blais-Ouellette, K. H. Cook, D. J. Carr, I. T. Lewis, F. Grandmont, and C. W. Stubbs, “Visible Imaging Fourier Transform Spectrometer: Design and Calibration,” Proc. SPIE 4841, 1067–1077 (2003).
[CrossRef]

Lim, P. K.

Liu, G. L.

McNamara, G.

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: Principles and applications,” Cytom, Part A 69A, 735–747 (2006).
[CrossRef]

Ning, Y.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

Pepperkok, R.

T. Zimmermann, J. Rietdorf, A. Girod, V. Georget, and R. Pepperkok, “Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair,” FEBS Lett. 531(2), 245–249 (2002).
[CrossRef] [PubMed]

Petty, H. R.

H. R. Petty, “Fluorescence microscopy: Established and emerging methods, experimental strategies, and applications in immunology,” Microsc. Res. Tech. 70(8), 687–709 (2007).
[CrossRef] [PubMed]

Ried, T.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

Rietdorf, J.

T. Zimmermann, J. Rietdorf, A. Girod, V. Georget, and R. Pepperkok, “Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair,” FEBS Lett. 531(2), 245–249 (2002).
[CrossRef] [PubMed]

Schechter, I.

M. Fisher, V. Bulatov, S. Hasson, and I. Schechter, “Fast aerosol analysis by Fourier transform imaging fluorescence microscopy,” Anal. Chem. 70(11), 2409–2414 (1998).
[CrossRef] [PubMed]

Schoell, B.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

Schröck, E.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

Shimi, T.

Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27(5), 367–374 (2002).
[CrossRef] [PubMed]

Soenksen, D.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

Stubbs, C. W.

E. H. Wishnow, R. E. Wurtz, S. Blais-Ouellette, K. H. Cook, D. J. Carr, I. T. Lewis, F. Grandmont, and C. W. Stubbs, “Visible Imaging Fourier Transform Spectrometer: Design and Calibration,” Proc. SPIE 4841, 1067–1077 (2003).
[CrossRef]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Veldman, T.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

Wang, X. Z.

X. Z. Wang, R. K. Y. Chan, and A. S. K. Cheng, “Near UV-near IR Fourier transform spectrometer using the beam-folding position-tracking method based on retroreflectors,” Rev. Sci. Instrum. 79(12), 123108–123106 (2008).
[CrossRef] [PubMed]

R. K. Y. Chan, P. K. Lim, X. Z. Wang, and M. H. Chan, “Fourier transform ultraviolet-visible spectrometer based on a beam-folding technique,” Opt. Lett. 31(7), 903–905 (2006).
[CrossRef] [PubMed]

Wax, A.

Wienberg, J.

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Wishnow, E. H.

E. H. Wishnow, R. E. Wurtz, S. Blais-Ouellette, K. H. Cook, D. J. Carr, I. T. Lewis, F. Grandmont, and C. W. Stubbs, “Visible Imaging Fourier Transform Spectrometer: Design and Calibration,” Proc. SPIE 4841, 1067–1077 (2003).
[CrossRef]

Wurtz, R. E.

E. H. Wishnow, R. E. Wurtz, S. Blais-Ouellette, K. H. Cook, D. J. Carr, I. T. Lewis, F. Grandmont, and C. W. Stubbs, “Visible Imaging Fourier Transform Spectrometer: Design and Calibration,” Proc. SPIE 4841, 1067–1077 (2003).
[CrossRef]

Yang, J.

J. Yang, S. R. Dave, and X. H. Gao, “Quantum dot nanobarcodes: Epitaxial assembly of nanoparticle-polymer complexes in homogeneous solution,” J. Am. Chem. Soc. 130(15), 5286–5292 (2008).
[CrossRef] [PubMed]

Young, I. T.

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: Principles and applications,” Cytom, Part A 69A, 735–747 (2006).
[CrossRef]

Zhao, D.

D. Zhao, Z. He, W. H. Chan, and M. M. F. Choi, “Synthesis and Characterization of High-Quality Water-Soluble Near-Infrared-Emitting CdTe/CdS Quantum Dots Capped by N-Acetyl-l-cysteine Via Hydrothermal Method,” J. Phys. Chem. C 113(4), 1293–1300 (2008).
[CrossRef]

Zimmermann, T.

T. Zimmermann, J. Rietdorf, A. Girod, V. Georget, and R. Pepperkok, “Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair,” FEBS Lett. 531(2), 245–249 (2002).
[CrossRef] [PubMed]

Anal. Chem. (1)

M. Fisher, V. Bulatov, S. Hasson, and I. Schechter, “Fast aerosol analysis by Fourier transform imaging fluorescence microscopy,” Anal. Chem. 70(11), 2409–2414 (1998).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58(1), 267–297 (2007).
[CrossRef] [PubMed]

Cell Struct. Funct. (1)

Y. Hiraoka, T. Shimi, and T. Haraguchi, “Multispectral imaging fluorescence microscopy for living cells,” Cell Struct. Funct. 27(5), 367–374 (2002).
[CrossRef] [PubMed]

Cytom, Part A (1)

Y. Garini, I. T. Young, and G. McNamara, “Spectral imaging: Principles and applications,” Cytom, Part A 69A, 735–747 (2006).
[CrossRef]

FEBS Lett. (1)

T. Zimmermann, J. Rietdorf, A. Girod, V. Georget, and R. Pepperkok, “Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair,” FEBS Lett. 531(2), 245–249 (2002).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

J. Yang, S. R. Dave, and X. H. Gao, “Quantum dot nanobarcodes: Epitaxial assembly of nanoparticle-polymer complexes in homogeneous solution,” J. Am. Chem. Soc. 130(15), 5286–5292 (2008).
[CrossRef] [PubMed]

J. Phys. Chem. C (1)

D. Zhao, Z. He, W. H. Chan, and M. M. F. Choi, “Synthesis and Characterization of High-Quality Water-Soluble Near-Infrared-Emitting CdTe/CdS Quantum Dots Capped by N-Acetyl-l-cysteine Via Hydrothermal Method,” J. Phys. Chem. C 113(4), 1293–1300 (2008).
[CrossRef]

Microsc. Res. Tech. (1)

H. R. Petty, “Fluorescence microscopy: Established and emerging methods, experimental strategies, and applications in immunology,” Microsc. Res. Tech. 70(8), 687–709 (2007).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (2)

N. J. E. Johnson, “Spectral imaging with the Michelson interferometer,” Proc. SPIE 226, 2–9 (1980).

E. H. Wishnow, R. E. Wurtz, S. Blais-Ouellette, K. H. Cook, D. J. Carr, I. T. Lewis, F. Grandmont, and C. W. Stubbs, “Visible Imaging Fourier Transform Spectrometer: Design and Calibration,” Proc. SPIE 4841, 1067–1077 (2003).
[CrossRef]

Rev. Sci. Instrum. (1)

X. Z. Wang, R. K. Y. Chan, and A. S. K. Cheng, “Near UV-near IR Fourier transform spectrometer using the beam-folding position-tracking method based on retroreflectors,” Rev. Sci. Instrum. 79(12), 123108–123106 (2008).
[CrossRef] [PubMed]

Science (1)

E. Schröck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Bar-Am, D. Soenksen, Y. Garini, and T. Ried, “Multicolor spectral karyotyping of human chromosomes,” Science 273(5274), 494–497 (1996).
[CrossRef] [PubMed]

Other (3)

R. J. Bell, Introductory Fourier transform spectroscopy (Academic Press, New York, 1972).

S. Wartewig, IR and Raman spectroscopy: fundamental processing, Spectroscopic techniques. An interactive course. (Wiley-VCH, Weinheim, 2003).

D. Axelrod, “Total internal reflection fluorescence microscopy in cell biology,” in Biophotonics, Pt B (Academic Press Inc, San Diego, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(Color online): Schematic setup of the IFTS based on beam-folding position-tracking technique.

Fig. 2
Fig. 2

(Color online): Example interferogram images, spectral images and pixel spectra of a Ø200μm multimode fiber end illuminated by a He-Ne laser and a combination of a green and a red LEDs, respectively. (a) Interferogram image of the fiber end illuminated by a He-Ne laser (image resolution: 80×80 pixels, frame exposure time: 0.5ms). (b) Interferogram image of the fiber end simultaneously illuminated by a green and a red LEDs (image resolution: 300×300 pixels, frame exposure time: 1ms). (c) Spectral image of (b) at the wavenumber of 18596cm−1 (538nm). (d) Spectral image of (b) at the wavenumber of 15771cm−1 (634 nm). (e) Example pixel spectrum in (a). (f) Example pixel spectrum in (b).

Fig. 3
Fig. 3

(Color online): Interferogram images and pixel spectra of a quantum dot cluster and fluorescent beads. (a) Interferogram image of a quantum dots cluster (image resolution: 100×100 pixels, frame exposure time: 5ms). (b) Pixel spectrum of the red pixel pointed by the arrow in (a). (c) Interferogram image of fluorescent beads (image resolution: 100×100 pixels, frame exposure time: 15ms). (d) Spectrum of the individual fluorescent bead in the red circle pointed by the arrow in (c).

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I r ( x d ) = I r 0 cos ( 16 π σ 0 x )
I m ( x d ) = 0 B ( σ ) cos ( 8 π σ x ) d σ
R = σ max δ σ = 2 O P D max λ min = 12000
I p ( x d , θ ) = 0 B p ( σ ) cos ( 8 π σ x cos θ ) d Ω θ d σ
I p ( x d , θ ) = C 0 B p ( σ ) cos ( 8 π σ x cos θ ) d σ
B c ( σ ) = I p ( x , θ ) exp ( 2 π σ x ) d x = C cos θ B p ( σ / cos θ )
B p ( σ ) = 1 C B c ( σ cos θ ) cos θ

Metrics