Abstract

In this paper we investigate a novel method to manufacture gratings in optical fiber microwires and discuss their application to sensing. Gratings can be manufactured by wrapping an optical fiber microwire on a microstructured rod. This method avoids post-processing the thin optical fiber microwire and it has great flexibility: chirping can be realized by designing the air hole size and position in the microstructured rod. By exploiting the large evanescent field in an inner channel, microfluidic refractometric sensors with sensitivity > 103 nm/RIU can be achieved.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Brambilla, V. Finazzi, and D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
    [CrossRef] [PubMed]
  2. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  3. A. M. Clohessy, N. Healy, D. F. Murphy, and C. D. Hussey, “Short low-loss nanowire tapers on singlemode fibres,” Electron. Lett. 41(17), 954–955 (2005).
    [CrossRef]
  4. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
    [CrossRef]
  5. V. Hodzic, J. Orloff, and C. C. Davis, “Periodic Structures on Biconically Tapered Optical Fibers Using Ion Beam Milling and Boron Implantation,” J. Lightwave Technol. 22(6), 1610–1614 (2004).
    [CrossRef]
  6. D. Grobnic, S. J. Mihailov, C. W. Smelser, M. Becker, and M. W. Rothhardt, “Femtosecond laser fabrication of Bragg gratings in borosilicate ion-exchange waveguides,” IEEE Photon. Technol. Lett. 18(13), 1403–1405 (2006).
    [CrossRef]
  7. J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
    [CrossRef] [PubMed]
  8. M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
    [CrossRef] [PubMed]
  9. G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett. 42(9), 517–519 (2006).
    [CrossRef]
  10. W. Streifer, D. Scifres, and R. Burnham, “Coupling coefficients for distributed feedback single- and double-heterostructure diode lasers,” Quantum Electronics, IEEE Journal of 11(11), 867–873 (1975).
    [CrossRef]
  11. W. Streifer, and A. Hardy, “Analysis of two-dimensional waveguides with misaligned or curved gratings,” Quantum Electronics,” IEEE Journal of 14(12), 935–943 (1978).
  12. C. Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24(3), 1395–1402 (2006).
    [CrossRef]
  13. S. Campopiano, R. Bernini, L. Zeni, and P. M. Sarro, “Microfluidic sensor based on integrated optical hollow waveguides,” Opt. Lett. 29(16), 1894–1896 (2004).
    [CrossRef] [PubMed]
  14. I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31(9), 1319–1321 (2006).
    [CrossRef] [PubMed]
  15. M. Sumetsky, R. S. Windeler, Y. Dulashko, and X. Fan, “Optical liquid ring resonator sensor,” Opt. Express 15(22), 14376–14381 (2007).
    [CrossRef] [PubMed]
  16. A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiO[sub x] microtube refractometer,” Appl. Phys. Lett. 93(9), 094106 (2008).
    [CrossRef]
  17. V. Zamora, A. Díez, M. V. Andrés, and B. Gimeno, “Refractometric sensor based on whispering-gallery modes of thin capillarie,” Opt. Express 15(19), 12011–12016 (2007).
    [CrossRef] [PubMed]
  18. M. Hee-Jong, P. Gun-Woo, L. Sang-Bum, A. Kyungwon, and L. Jai-Hyung, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett. 84(22), 4547–4549 (2004).
    [CrossRef]
  19. F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
    [CrossRef] [PubMed]
  20. A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
    [CrossRef]

2008

A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiO[sub x] microtube refractometer,” Appl. Phys. Lett. 93(9), 094106 (2008).
[CrossRef]

2007

2006

I. M. White, H. Oveys, and X. Fan, “Liquid-core optical ring-resonator sensors,” Opt. Lett. 31(9), 1319–1321 (2006).
[CrossRef] [PubMed]

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett. 42(9), 517–519 (2006).
[CrossRef]

C. Y. Chao and L. J. Guo, “Design and optimization of microring resonators in biochemical sensing applications,” J. Lightwave Technol. 24(3), 1395–1402 (2006).
[CrossRef]

D. Grobnic, S. J. Mihailov, C. W. Smelser, M. Becker, and M. W. Rothhardt, “Femtosecond laser fabrication of Bragg gratings in borosilicate ion-exchange waveguides,” IEEE Photon. Technol. Lett. 18(13), 1403–1405 (2006).
[CrossRef]

2005

A. M. Clohessy, N. Healy, D. F. Murphy, and C. D. Hussey, “Short low-loss nanowire tapers on singlemode fibres,” Electron. Lett. 41(17), 954–955 (2005).
[CrossRef]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[CrossRef]

2004

G. Brambilla, V. Finazzi, and D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004).
[CrossRef] [PubMed]

V. Hodzic, J. Orloff, and C. C. Davis, “Periodic Structures on Biconically Tapered Optical Fibers Using Ion Beam Milling and Boron Implantation,” J. Lightwave Technol. 22(6), 1610–1614 (2004).
[CrossRef]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

S. Campopiano, R. Bernini, L. Zeni, and P. M. Sarro, “Microfluidic sensor based on integrated optical hollow waveguides,” Opt. Lett. 29(16), 1894–1896 (2004).
[CrossRef] [PubMed]

M. Hee-Jong, P. Gun-Woo, L. Sang-Bum, A. Kyungwon, and L. Jai-Hyung, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett. 84(22), 4547–4549 (2004).
[CrossRef]

2003

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

1978

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

W. Streifer, and A. Hardy, “Analysis of two-dimensional waveguides with misaligned or curved gratings,” Quantum Electronics,” IEEE Journal of 14(12), 935–943 (1978).

1975

W. Streifer, D. Scifres, and R. Burnham, “Coupling coefficients for distributed feedback single- and double-heterostructure diode lasers,” Quantum Electronics, IEEE Journal of 11(11), 867–873 (1975).
[CrossRef]

Abouraddy, A. F.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

Andrés, M. V.

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Bayindir, M.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

Becker, M.

D. Grobnic, S. J. Mihailov, C. W. Smelser, M. Becker, and M. W. Rothhardt, “Femtosecond laser fabrication of Bragg gratings in borosilicate ion-exchange waveguides,” IEEE Photon. Technol. Lett. 18(13), 1403–1405 (2006).
[CrossRef]

Benyoucef, M.

A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiO[sub x] microtube refractometer,” Appl. Phys. Lett. 93(9), 094106 (2008).
[CrossRef]

Bernardi, A.

A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiO[sub x] microtube refractometer,” Appl. Phys. Lett. 93(9), 094106 (2008).
[CrossRef]

Bernini, R.

Brambilla, G.

Burnham, R.

W. Streifer, D. Scifres, and R. Burnham, “Coupling coefficients for distributed feedback single- and double-heterostructure diode lasers,” Quantum Electronics, IEEE Journal of 11(11), 867–873 (1975).
[CrossRef]

Campopiano, S.

Chao, C. Y.

Chryssis, A. N.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[CrossRef]

Clohessy, A. M.

A. M. Clohessy, N. Healy, D. F. Murphy, and C. D. Hussey, “Short low-loss nanowire tapers on singlemode fibres,” Electron. Lett. 41(17), 954–955 (2005).
[CrossRef]

Dagenais, M.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[CrossRef]

Davis, C. C.

Díez, A.

Dulashko, Y.

Fan, X.

Feng, X.

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett. 42(9), 517–519 (2006).
[CrossRef]

Finazzi, V.

Fink, Y.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Gimeno, B.

Grobnic, D.

D. Grobnic, S. J. Mihailov, C. W. Smelser, M. Becker, and M. W. Rothhardt, “Femtosecond laser fabrication of Bragg gratings in borosilicate ion-exchange waveguides,” IEEE Photon. Technol. Lett. 18(13), 1403–1405 (2006).
[CrossRef]

Gun-Woo, P.

M. Hee-Jong, P. Gun-Woo, L. Sang-Bum, A. Kyungwon, and L. Jai-Hyung, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett. 84(22), 4547–4549 (2004).
[CrossRef]

Guo, L. J.

Hart, S. D.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Healy, N.

A. M. Clohessy, N. Healy, D. F. Murphy, and C. D. Hussey, “Short low-loss nanowire tapers on singlemode fibres,” Electron. Lett. 41(17), 954–955 (2005).
[CrossRef]

Hee-Jong, M.

M. Hee-Jong, P. Gun-Woo, L. Sang-Bum, A. Kyungwon, and L. Jai-Hyung, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett. 84(22), 4547–4549 (2004).
[CrossRef]

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Hodzic, V.

Horak, P.

Hussey, C. D.

A. M. Clohessy, N. Healy, D. F. Murphy, and C. D. Hussey, “Short low-loss nanowire tapers on singlemode fibres,” Electron. Lett. 41(17), 954–955 (2005).
[CrossRef]

Jai-Hyung, L.

M. Hee-Jong, P. Gun-Woo, L. Sang-Bum, A. Kyungwon, and L. Jai-Hyung, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett. 84(22), 4547–4549 (2004).
[CrossRef]

Joannopoulos, J. D.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

Johnson, D. C.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

Kiravittaya, S.

A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiO[sub x] microtube refractometer,” Appl. Phys. Lett. 93(9), 094106 (2008).
[CrossRef]

Knight, J. C.

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

Kyungwon, A.

M. Hee-Jong, P. Gun-Woo, L. Sang-Bum, A. Kyungwon, and L. Jai-Hyung, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett. 84(22), 4547–4549 (2004).
[CrossRef]

Lee, S. B.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[CrossRef]

Lee, S. M.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[CrossRef]

Lou, J.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mihailov, S. J.

D. Grobnic, S. J. Mihailov, C. W. Smelser, M. Becker, and M. W. Rothhardt, “Femtosecond laser fabrication of Bragg gratings in borosilicate ion-exchange waveguides,” IEEE Photon. Technol. Lett. 18(13), 1403–1405 (2006).
[CrossRef]

Murphy, D. F.

A. M. Clohessy, N. Healy, D. F. Murphy, and C. D. Hussey, “Short low-loss nanowire tapers on singlemode fibres,” Electron. Lett. 41(17), 954–955 (2005).
[CrossRef]

Orloff, J.

Oveys, H.

Rastelli, A.

A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiO[sub x] microtube refractometer,” Appl. Phys. Lett. 93(9), 094106 (2008).
[CrossRef]

Richardson, D.

Rothhardt, M. W.

D. Grobnic, S. J. Mihailov, C. W. Smelser, M. Becker, and M. W. Rothhardt, “Femtosecond laser fabrication of Bragg gratings in borosilicate ion-exchange waveguides,” IEEE Photon. Technol. Lett. 18(13), 1403–1405 (2006).
[CrossRef]

Saini, S. S.

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[CrossRef]

Sang-Bum, L.

M. Hee-Jong, P. Gun-Woo, L. Sang-Bum, A. Kyungwon, and L. Jai-Hyung, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett. 84(22), 4547–4549 (2004).
[CrossRef]

Sarro, P. M.

Schmidt, O. G.

A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiO[sub x] microtube refractometer,” Appl. Phys. Lett. 93(9), 094106 (2008).
[CrossRef]

Scifres, D.

W. Streifer, D. Scifres, and R. Burnham, “Coupling coefficients for distributed feedback single- and double-heterostructure diode lasers,” Quantum Electronics, IEEE Journal of 11(11), 867–873 (1975).
[CrossRef]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Smelser, C. W.

D. Grobnic, S. J. Mihailov, C. W. Smelser, M. Becker, and M. W. Rothhardt, “Femtosecond laser fabrication of Bragg gratings in borosilicate ion-exchange waveguides,” IEEE Photon. Technol. Lett. 18(13), 1403–1405 (2006).
[CrossRef]

Songmuang, R.

A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiO[sub x] microtube refractometer,” Appl. Phys. Lett. 93(9), 094106 (2008).
[CrossRef]

Sorin, F.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

Streifer, W.

W. Streifer, D. Scifres, and R. Burnham, “Coupling coefficients for distributed feedback single- and double-heterostructure diode lasers,” Quantum Electronics, IEEE Journal of 11(11), 867–873 (1975).
[CrossRef]

Sumetsky, M.

Thurmer, D. J.

A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiO[sub x] microtube refractometer,” Appl. Phys. Lett. 93(9), 094106 (2008).
[CrossRef]

Tong, L.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Viens, J.

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

White, I. M.

Windeler, R. S.

Xu, F.

F. Xu, P. Horak, and G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007).
[CrossRef] [PubMed]

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett. 42(9), 517–519 (2006).
[CrossRef]

Zamora, V.

Zeni, L.

Appl. Phys. Lett.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[CrossRef]

A. Bernardi, S. Kiravittaya, A. Rastelli, R. Songmuang, D. J. Thurmer, M. Benyoucef, and O. G. Schmidt, “On-chip Si/SiO[sub x] microtube refractometer,” Appl. Phys. Lett. 93(9), 094106 (2008).
[CrossRef]

M. Hee-Jong, P. Gun-Woo, L. Sang-Bum, A. Kyungwon, and L. Jai-Hyung, “Waveguide mode lasing via evanescent-wave-coupled gain from a thin cylindrical shell resonator,” Appl. Phys. Lett. 84(22), 4547–4549 (2004).
[CrossRef]

Electron. Lett.

A. M. Clohessy, N. Healy, D. F. Murphy, and C. D. Hussey, “Short low-loss nanowire tapers on singlemode fibres,” Electron. Lett. 41(17), 954–955 (2005).
[CrossRef]

G. Brambilla, F. Xu, and X. Feng, “Fabrication of optical fibre nanowires and their optical and mechanical characterisation,” Electron. Lett. 42(9), 517–519 (2006).
[CrossRef]

IEEE Journal of

W. Streifer, and A. Hardy, “Analysis of two-dimensional waveguides with misaligned or curved gratings,” Quantum Electronics,” IEEE Journal of 14(12), 935–943 (1978).

IEEE Photon. Technol. Lett.

D. Grobnic, S. J. Mihailov, C. W. Smelser, M. Becker, and M. W. Rothhardt, “Femtosecond laser fabrication of Bragg gratings in borosilicate ion-exchange waveguides,” IEEE Photon. Technol. Lett. 18(13), 1403–1405 (2006).
[CrossRef]

A. N. Chryssis, S. M. Lee, S. B. Lee, S. S. Saini, and M. Dagenais, “High sensitivity evanescent field fiber Bragg grating sensor,” IEEE Photon. Technol. Lett. 17(6), 1253–1255 (2005).
[CrossRef]

J. Lightwave Technol.

Nature

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003).
[CrossRef] [PubMed]

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003).
[CrossRef] [PubMed]

M. Bayindir, F. Sorin, A. F. Abouraddy, J. Viens, S. D. Hart, J. D. Joannopoulos, and Y. Fink, “Metal-insulator-semiconductor optoelectronic fibres,” Nature 431(7010), 826–829 (2004).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Quantum Electronics, IEEE Journal of

W. Streifer, D. Scifres, and R. Burnham, “Coupling coefficients for distributed feedback single- and double-heterostructure diode lasers,” Quantum Electronics, IEEE Journal of 11(11), 867–873 (1975).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic of the embedded OFM grating. (b) The equivalent planar structure; n1, n2,n3,n4 are the refractive indexes of the hole, the rod, the OFM, and the coating, respectively; Λ is the distance between two adjacent holes; d1 and d2 are the thickness of the outer and inner walls of the one-ring microstructured rod, r is the hole radius.

Fig. 2
Fig. 2

(a) Illustration of the outer layer structure of the support rod in Streifer’s theory. n1 and n2 represent the refractive indices of the hole and rod, Λ the distance between two adjacent holes, g1 and g2 the boundaries between different layers, g0 the new equivalent boundary between n2 and n1. (b) The cross-section of the OFM in the equivalent outer straight layer structure, n3 and n4 are the index of the OFM and coating, R is the radius of the OFM and deff is the effective wall thickness

Fig. 3
Fig. 3

(3) the effective index of OFM grating at different OFM radius depend on deff for n1 =1, n2 =1.311, n3 =1.451, n4 =1.375,and λ=1550 nm. (b) ∂neff/∂deff depends on deff at different OFM radius.

Fig. 4
Fig. 4

Illustration of the outer layer structure of the support rod for d2<0.

Fig. 5
Fig. 5

(a) Dependence of the sensitivity S on OFM radius R for etched standard fiber gratings. n1 =1.332 and λ=1550 nm; (b) Dependence of S on deff for OFM gratings. n1 =1.332, λ~1550nm and n4=1.311 (Teflon).(c) Dependence of S on θ for OFM gratings, d1 =100 nm, r=Λ/4 and m=2.

Tables (1)

Tables Icon

Table 1 . Sensitivity for evanescent field microfludic refractometric sensors.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

d eff = g 1 + g 2 g 0 = d 1 + d 2 + 2 r π r 2 / Λ
{ λ d = 2 m n eff d eff Λ λ Λ = 2 m n eff d eff π r 2 Λ + 2 m n eff λ r = 2 m n eff d eff ( 2 Λ 2 π r )
λ φ = 2 n eff Λ sin φ m cos 2 φ ~ 2 n eff Λ φ m = Λ φ
d eff = d 1 + r ( 1 + cos θ ) ( r 2 / Λ ) ( π θ + sin θ cos θ ) .
S = λ n 1 = λ n eff n eff n 1 = λ n eff n eff n 1

Metrics