Abstract

Weighted residuals and the reduced χ2R 2) value are investigated with regard to their relevance for assessing optical property estimates using the diffusion equation for time-resolved measurements in turbid media. It is shown and explained, for all photon counting experiments including lifetime estimation, why χR 2 increases linearly with the number of photons when there is a model bias. Only when a sufficient number of photons has been acquired, χR 2 is a pertinent value for assessing the accuracy of μa and μs' estimates. It was concluded that χR 2 is of particular interest for cases of small interfiber separation, low-level scattering, strong absorption and incorrect measurement of instrument response function. It was also found that χR 2 is less pertinent for judging μa in case of air boundary effects.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
    [CrossRef] [PubMed]
  2. V. V. Tuchin, Handbook of optical biomedical diagnostics. (2002).
  3. L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt. 9(6), 1137–1142 (2004).
    [CrossRef] [PubMed]
  4. B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol. 53(9), R61–R109 (2008).
    [CrossRef] [PubMed]
  5. A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
    [CrossRef] [PubMed]
  6. R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32(4), 1128–1139 (2005).
    [CrossRef] [PubMed]
  7. A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696–6716 (2007).
    [CrossRef] [PubMed]
  8. A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
    [CrossRef] [PubMed]
  9. X. F. Cheng and D. A. Boas, “Systematic diffuse optical image errors resulting from uncertainty in the background optical properties,” Opt. Express 4(8), 299–307 (1999).
    [CrossRef] [PubMed]
  10. V. Chernomordik, D. Hattery, I. Gannot, and A. H. Gandjbakhche, “Inverse method 3-D reconstruction of localized in vivo fluorescence - Application to Sjogren syndrome,” IEEE J. Sel. Top. Quant. 5(4), 930–935 (1999).
    [CrossRef]
  11. J. Swartling, J. S. Dam, and S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42(22), 4612–4620 (2003).
    [CrossRef] [PubMed]
  12. B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of Time-Resolved and -Unresolved Measurements of Deoxyhemoglobin in Brain,” Proc. Natl. Acad. Sci. U.S.A. 85(14), 4971–4975 (1988).
    [CrossRef] [PubMed]
  13. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of Optical Pathlength through Tissue from Direct Time of Flight Measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
    [CrossRef] [PubMed]
  14. S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36(12), 1155–1161 (1989).
    [CrossRef] [PubMed]
  15. M. S. Patterson, B. Chance, and B. C. Wilson, “Time Resolved Reflectance and Transmittance for the Noninvasive Measurement of Tissue Optical-Properties,” Appl. Opt. 28(12), 2331–2336 (1989).
    [CrossRef] [PubMed]
  16. B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, and G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174(2), 698–707 (1988).
    [CrossRef] [PubMed]
  17. T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 50(11), 2559–2571 (2005).
    [CrossRef] [PubMed]
  18. R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol. 72(3), 383–391 (2000).
    [PubMed]
  19. T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
    [CrossRef] [PubMed]
  20. K. M. Yoo, F. Liu, and R. R. Alfano, “When Does the Diffusion Approximation Fail to Describe Photon Transport in Random Media?” Phys. Rev. Lett. 64(22), 2647–2650 (1990).
    [CrossRef] [PubMed]
  21. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23(9), 1625–1633 (1996).
    [CrossRef] [PubMed]
  22. R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, and G. Valentini, “Time-Resolved Reflectance - a Systematic Study for Application to the Optical Characterization of Tissues,” IEEE J. Quantum Electron. 30(10), 2421–2430 (1994).
    [CrossRef]
  23. A. Laidevant, A. da Silva, M. Berger, and J. M. Dinten, “Effects of the surface boundary on the determination of the optical properties of a turbid medium with time-resolved reflectance,” Appl. Opt. 45(19), 4756–4764 (2006).
    [CrossRef] [PubMed]
  24. E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
    [CrossRef] [PubMed]
  25. E. Alerstam, S. Andersson-Engels, and T. Svensson, “Improved accuracy in time-resolved diffuse reflectance spectroscopy,” Opt. Express 16(14), 10440–10454 (2008).
    [CrossRef] [PubMed]
  26. A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum. 78(5), 053103 (2007).
    [CrossRef] [PubMed]
  27. B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).
    [CrossRef] [PubMed]
  28. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML-Monte Carlo Modeling of Light Transport in Multi-layered Tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
    [CrossRef] [PubMed]
  29. S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo Modeling of Light Propagation in Highly Scattering Tissue .1. Model Predictions and Comparison with Diffusion-Theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
    [CrossRef] [PubMed]
  30. T. Svensson, E. Alerstam, M. Einarsdóttír, K. Svanberg, and S. Andersson-Engels, “Towards accurate in vivo spectroscopy of the human prostate,” J. Biophoton. 1(3), 200–203 (2008).
    [CrossRef]
  31. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (2006).
  32. H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “Optical properties of pure water,” Ocean Optics XII Proc. SPIE 2258, 174–183 (1994).
  33. S. Prahl, “Monte Carlo Simulations,” http://omlc.ogi.edu/software/mc/ .
  34. S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” Dosimetry of Laser Radiation in Medicine and Biology - Proc. SPIE IS 5, 102–111 (1989).
  35. J. C. J. Paasschens, “Solution of the time-dependent Boltzmann equation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56(1), 1135–1141 (1997).
    [CrossRef]
  36. M. Bassani, F. Martelli, G. Zaccanti, and D. Contini, “Independence of the diffusion coefficient from absorption: experimental and numerical evidence,” Opt. Lett. 22(12), 853–855 (1997).
    [CrossRef] [PubMed]
  37. A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
    [CrossRef] [PubMed]
  38. A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005).
    [CrossRef] [PubMed]
  39. L. Leonardi and D. H. Burns, “Quantitative measurements in scattering media: Photon time-of-flight analysis with analytical descriptors,” Appl. Spectrosc. 53(6), 628–636 (1999).
    [CrossRef]

2008 (5)

B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol. 53(9), R61–R109 (2008).
[CrossRef] [PubMed]

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

T. Svensson, E. Alerstam, M. Einarsdóttír, K. Svanberg, and S. Andersson-Engels, “Towards accurate in vivo spectroscopy of the human prostate,” J. Biophoton. 1(3), 200–203 (2008).
[CrossRef]

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
[CrossRef] [PubMed]

E. Alerstam, S. Andersson-Engels, and T. Svensson, “Improved accuracy in time-resolved diffuse reflectance spectroscopy,” Opt. Express 16(14), 10440–10454 (2008).
[CrossRef] [PubMed]

2007 (3)

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696–6716 (2007).
[CrossRef] [PubMed]

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum. 78(5), 053103 (2007).
[CrossRef] [PubMed]

2006 (1)

2005 (5)

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005).
[CrossRef] [PubMed]

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 50(11), 2559–2571 (2005).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32(4), 1128–1139 (2005).
[CrossRef] [PubMed]

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

2004 (1)

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt. 9(6), 1137–1142 (2004).
[CrossRef] [PubMed]

2003 (2)

J. Swartling, J. S. Dam, and S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42(22), 4612–4620 (2003).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
[CrossRef] [PubMed]

2000 (1)

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol. 72(3), 383–391 (2000).
[PubMed]

1999 (3)

1997 (2)

M. Bassani, F. Martelli, G. Zaccanti, and D. Contini, “Independence of the diffusion coefficient from absorption: experimental and numerical evidence,” Opt. Lett. 22(12), 853–855 (1997).
[CrossRef] [PubMed]

J. C. J. Paasschens, “Solution of the time-dependent Boltzmann equation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56(1), 1135–1141 (1997).
[CrossRef]

1996 (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23(9), 1625–1633 (1996).
[CrossRef] [PubMed]

1995 (1)

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML-Monte Carlo Modeling of Light Transport in Multi-layered Tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

1994 (1)

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, and G. Valentini, “Time-Resolved Reflectance - a Systematic Study for Application to the Optical Characterization of Tissues,” IEEE J. Quantum Electron. 30(10), 2421–2430 (1994).
[CrossRef]

1990 (1)

K. M. Yoo, F. Liu, and R. R. Alfano, “When Does the Diffusion Approximation Fail to Describe Photon Transport in Random Media?” Phys. Rev. Lett. 64(22), 2647–2650 (1990).
[CrossRef] [PubMed]

1989 (3)

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo Modeling of Light Propagation in Highly Scattering Tissue .1. Model Predictions and Comparison with Diffusion-Theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
[CrossRef] [PubMed]

S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36(12), 1155–1161 (1989).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time Resolved Reflectance and Transmittance for the Noninvasive Measurement of Tissue Optical-Properties,” Appl. Opt. 28(12), 2331–2336 (1989).
[CrossRef] [PubMed]

1988 (3)

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of Time-Resolved and -Unresolved Measurements of Deoxyhemoglobin in Brain,” Proc. Natl. Acad. Sci. U.S.A. 85(14), 4971–4975 (1988).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of Optical Pathlength through Tissue from Direct Time of Flight Measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, and G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174(2), 698–707 (1988).
[CrossRef] [PubMed]

1983 (1)

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).
[CrossRef] [PubMed]

Adam, G.

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).
[CrossRef] [PubMed]

Alerstam, E.

E. Alerstam, S. Andersson-Engels, and T. Svensson, “Improved accuracy in time-resolved diffuse reflectance spectroscopy,” Opt. Express 16(14), 10440–10454 (2008).
[CrossRef] [PubMed]

T. Svensson, E. Alerstam, M. Einarsdóttír, K. Svanberg, and S. Andersson-Engels, “Towards accurate in vivo spectroscopy of the human prostate,” J. Biophoton. 1(3), 200–203 (2008).
[CrossRef]

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
[CrossRef] [PubMed]

Alfano, R. R.

K. M. Yoo, F. Liu, and R. R. Alfano, “When Does the Diffusion Approximation Fail to Describe Photon Transport in Random Media?” Phys. Rev. Lett. 64(22), 2647–2650 (1990).
[CrossRef] [PubMed]

Andersson-Engels, S.

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
[CrossRef] [PubMed]

T. Svensson, E. Alerstam, M. Einarsdóttír, K. Svanberg, and S. Andersson-Engels, “Towards accurate in vivo spectroscopy of the human prostate,” J. Biophoton. 1(3), 200–203 (2008).
[CrossRef]

E. Alerstam, S. Andersson-Engels, and T. Svensson, “Improved accuracy in time-resolved diffuse reflectance spectroscopy,” Opt. Express 16(14), 10440–10454 (2008).
[CrossRef] [PubMed]

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005).
[CrossRef] [PubMed]

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 50(11), 2559–2571 (2005).
[CrossRef] [PubMed]

J. Swartling, J. S. Dam, and S. Andersson-Engels, “Comparison of spatially and temporally resolved diffuse-reflectance measurement systems for determination of biomedical optical properties,” Appl. Opt. 42(22), 4612–4620 (2003).
[CrossRef] [PubMed]

Arridge, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of Optical Pathlength through Tissue from Direct Time of Flight Measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Arridge, S. R.

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696–6716 (2007).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32(4), 1128–1139 (2005).
[CrossRef] [PubMed]

Avrillier, S.

Bassani, M.

Bassi, A.

Berger, M.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

A. Laidevant, A. da Silva, M. Berger, and J. M. Dinten, “Effects of the surface boundary on the determination of the optical properties of a turbid medium with time-resolved reflectance,” Appl. Opt. 45(19), 4756–4764 (2006).
[CrossRef] [PubMed]

Boas, D. A.

Boretsky, R.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of Time-Resolved and -Unresolved Measurements of Deoxyhemoglobin in Brain,” Proc. Natl. Acad. Sci. U.S.A. 85(14), 4971–4975 (1988).
[CrossRef] [PubMed]

Boutet, J.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

Burns, D. H.

Chance, B.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32(4), 1128–1139 (2005).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time Resolved Reflectance and Transmittance for the Noninvasive Measurement of Tissue Optical-Properties,” Appl. Opt. 28(12), 2331–2336 (1989).
[CrossRef] [PubMed]

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of Time-Resolved and -Unresolved Measurements of Deoxyhemoglobin in Brain,” Proc. Natl. Acad. Sci. U.S.A. 85(14), 4971–4975 (1988).
[CrossRef] [PubMed]

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, and G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174(2), 698–707 (1988).
[CrossRef] [PubMed]

Cheng, X. F.

Chernomordik, V.

V. Chernomordik, D. Hattery, I. Gannot, and A. H. Gandjbakhche, “Inverse method 3-D reconstruction of localized in vivo fluorescence - Application to Sjogren syndrome,” IEEE J. Sel. Top. Quant. 5(4), 930–935 (1999).
[CrossRef]

Choe, R.

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696–6716 (2007).
[CrossRef] [PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32(4), 1128–1139 (2005).
[CrossRef] [PubMed]

Cohen, P.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of Time-Resolved and -Unresolved Measurements of Deoxyhemoglobin in Brain,” Proc. Natl. Acad. Sci. U.S.A. 85(14), 4971–4975 (1988).
[CrossRef] [PubMed]

Coll, J. L.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

Comelli, D.

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum. 78(5), 053103 (2007).
[CrossRef] [PubMed]

Contini, D.

Cope, M.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of Optical Pathlength through Tissue from Direct Time of Flight Measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Corlu, A.

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696–6716 (2007).
[CrossRef] [PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32(4), 1128–1139 (2005).
[CrossRef] [PubMed]

Cubeddu, R.

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum. 78(5), 053103 (2007).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt. 9(6), 1137–1142 (2004).
[CrossRef] [PubMed]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol. 72(3), 383–391 (2000).
[PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23(9), 1625–1633 (1996).
[CrossRef] [PubMed]

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, and G. Valentini, “Time-Resolved Reflectance - a Systematic Study for Application to the Optical Characterization of Tissues,” IEEE J. Quantum Electron. 30(10), 2421–2430 (1994).
[CrossRef]

Czerniecki, B. J.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32(4), 1128–1139 (2005).
[CrossRef] [PubMed]

D’Andrea, C.

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol. 72(3), 383–391 (2000).
[PubMed]

Da Silva, A.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

A. Laidevant, A. da Silva, M. Berger, and J. M. Dinten, “Effects of the surface boundary on the determination of the optical properties of a turbid medium with time-resolved reflectance,” Appl. Opt. 45(19), 4756–4764 (2006).
[CrossRef] [PubMed]

Dam, J. S.

Danesini, G. M.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt. 9(6), 1137–1142 (2004).
[CrossRef] [PubMed]

Delpy, D. T.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of Optical Pathlength through Tissue from Direct Time of Flight Measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

DeMichele, A.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32(4), 1128–1139 (2005).
[CrossRef] [PubMed]

Dinten, J. M.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

A. Laidevant, A. da Silva, M. Berger, and J. M. Dinten, “Effects of the surface boundary on the determination of the optical properties of a turbid medium with time-resolved reflectance,” Appl. Opt. 45(19), 4756–4764 (2006).
[CrossRef] [PubMed]

Durduran, T.

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696–6716 (2007).
[CrossRef] [PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32(4), 1128–1139 (2005).
[CrossRef] [PubMed]

Einarsdóttír, M.

T. Svensson, E. Alerstam, M. Einarsdóttír, K. Svanberg, and S. Andersson-Engels, “Towards accurate in vivo spectroscopy of the human prostate,” J. Biophoton. 1(3), 200–203 (2008).
[CrossRef]

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[CrossRef] [PubMed]

Finander, M.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of Time-Resolved and -Unresolved Measurements of Deoxyhemoglobin in Brain,” Proc. Natl. Acad. Sci. U.S.A. 85(14), 4971–4975 (1988).
[CrossRef] [PubMed]

Flock, S. T.

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo Modeling of Light Propagation in Highly Scattering Tissue .1. Model Predictions and Comparison with Diffusion-Theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
[CrossRef] [PubMed]

Fountain, M.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, and G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174(2), 698–707 (1988).
[CrossRef] [PubMed]

Fraker, D. L.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32(4), 1128–1139 (2005).
[CrossRef] [PubMed]

Gandjbakhche, A. H.

V. Chernomordik, D. Hattery, I. Gannot, and A. H. Gandjbakhche, “Inverse method 3-D reconstruction of localized in vivo fluorescence - Application to Sjogren syndrome,” IEEE J. Sel. Top. Quant. 5(4), 930–935 (1999).
[CrossRef]

Gannot, I.

V. Chernomordik, D. Hattery, I. Gannot, and A. H. Gandjbakhche, “Inverse method 3-D reconstruction of localized in vivo fluorescence - Application to Sjogren syndrome,” IEEE J. Sel. Top. Quant. 5(4), 930–935 (1999).
[CrossRef]

Gibson, A. P.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

Greenfeld, R.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, and G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174(2), 698–707 (1988).
[CrossRef] [PubMed]

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of Time-Resolved and -Unresolved Measurements of Deoxyhemoglobin in Brain,” Proc. Natl. Acad. Sci. U.S.A. 85(14), 4971–4975 (1988).
[CrossRef] [PubMed]

Grosenick, D.

Grosicka-Koptyra, M.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32(4), 1128–1139 (2005).
[CrossRef] [PubMed]

Hattery, D.

V. Chernomordik, D. Hattery, I. Gannot, and A. H. Gandjbakhche, “Inverse method 3-D reconstruction of localized in vivo fluorescence - Application to Sjogren syndrome,” IEEE J. Sel. Top. Quant. 5(4), 930–935 (1999).
[CrossRef]

Hebden, J. C.

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

Hervé, L.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

Holtom, G.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, and G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174(2), 698–707 (1988).
[CrossRef] [PubMed]

Ingvar, C.

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 50(11), 2559–2571 (2005).
[CrossRef] [PubMed]

Jacques, S. L.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML-Monte Carlo Modeling of Light Transport in Multi-layered Tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36(12), 1155–1161 (1989).
[CrossRef] [PubMed]

Josserand, V.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

Kaufmann, K.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of Time-Resolved and -Unresolved Measurements of Deoxyhemoglobin in Brain,” Proc. Natl. Acad. Sci. U.S.A. 85(14), 4971–4975 (1988).
[CrossRef] [PubMed]

Kent, J.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, and G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174(2), 698–707 (1988).
[CrossRef] [PubMed]

Koenig, A.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

Konecky, S. D.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32(4), 1128–1139 (2005).
[CrossRef] [PubMed]

Laidevant, A.

Lee, K.

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32(4), 1128–1139 (2005).
[CrossRef] [PubMed]

Leigh, J. S.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of Time-Resolved and -Unresolved Measurements of Deoxyhemoglobin in Brain,” Proc. Natl. Acad. Sci. U.S.A. 85(14), 4971–4975 (1988).
[CrossRef] [PubMed]

Leonardi, L.

Levy, W.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of Time-Resolved and -Unresolved Measurements of Deoxyhemoglobin in Brain,” Proc. Natl. Acad. Sci. U.S.A. 85(14), 4971–4975 (1988).
[CrossRef] [PubMed]

Liebert, A.

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
[CrossRef] [PubMed]

Lindblom, P.

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 50(11), 2559–2571 (2005).
[CrossRef] [PubMed]

Liu, F.

K. M. Yoo, F. Liu, and R. R. Alfano, “When Does the Diffusion Approximation Fail to Describe Photon Transport in Random Media?” Phys. Rev. Lett. 64(22), 2647–2650 (1990).
[CrossRef] [PubMed]

Macdonald, R.

Martelli, F.

McCully, K.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, and G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174(2), 698–707 (1988).
[CrossRef] [PubMed]

Miyake, H.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of Time-Resolved and -Unresolved Measurements of Deoxyhemoglobin in Brain,” Proc. Natl. Acad. Sci. U.S.A. 85(14), 4971–4975 (1988).
[CrossRef] [PubMed]

Möller, M.

Musolino, M.

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, and G. Valentini, “Time-Resolved Reflectance - a Systematic Study for Application to the Optical Characterization of Tissues,” IEEE J. Quantum Electron. 30(10), 2421–2430 (1994).
[CrossRef]

Nghiem, H. L.

Nioka, S.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, and G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174(2), 698–707 (1988).
[CrossRef] [PubMed]

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of Time-Resolved and -Unresolved Measurements of Deoxyhemoglobin in Brain,” Proc. Natl. Acad. Sci. U.S.A. 85(14), 4971–4975 (1988).
[CrossRef] [PubMed]

Ntziachristos, V.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

Paasschens, J. C. J.

J. C. J. Paasschens, “Solution of the time-dependent Boltzmann equation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56(1), 1135–1141 (1997).
[CrossRef]

Patterson, M. S.

B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol. 53(9), R61–R109 (2008).
[CrossRef] [PubMed]

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo Modeling of Light Propagation in Highly Scattering Tissue .1. Model Predictions and Comparison with Diffusion-Theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time Resolved Reflectance and Transmittance for the Noninvasive Measurement of Tissue Optical-Properties,” Appl. Opt. 28(12), 2331–2336 (1989).
[CrossRef] [PubMed]

Peltié, P.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

Pifferi, A.

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum. 78(5), 053103 (2007).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt. 9(6), 1137–1142 (2004).
[CrossRef] [PubMed]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol. 72(3), 383–391 (2000).
[PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23(9), 1625–1633 (1996).
[CrossRef] [PubMed]

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, and G. Valentini, “Time-Resolved Reflectance - a Systematic Study for Application to the Optical Characterization of Tissues,” IEEE J. Quantum Electron. 30(10), 2421–2430 (1994).
[CrossRef]

Ripoll, J.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

Rizo, P.

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

Rosen, M. A.

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696–6716 (2007).
[CrossRef] [PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32(4), 1128–1139 (2005).
[CrossRef] [PubMed]

Schnall, M. D.

Schweiger, M.

Smith, D. S.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of Time-Resolved and -Unresolved Measurements of Deoxyhemoglobin in Brain,” Proc. Natl. Acad. Sci. U.S.A. 85(14), 4971–4975 (1988).
[CrossRef] [PubMed]

Spinelli, L.

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt. 9(6), 1137–1142 (2004).
[CrossRef] [PubMed]

Stamm, H.

Sterenborg, H. J.

Svanberg, K.

T. Svensson, E. Alerstam, M. Einarsdóttír, K. Svanberg, and S. Andersson-Engels, “Towards accurate in vivo spectroscopy of the human prostate,” J. Biophoton. 1(3), 200–203 (2008).
[CrossRef]

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[CrossRef] [PubMed]

Svensson, T.

E. Alerstam, S. Andersson-Engels, and T. Svensson, “Improved accuracy in time-resolved diffuse reflectance spectroscopy,” Opt. Express 16(14), 10440–10454 (2008).
[CrossRef] [PubMed]

T. Svensson, E. Alerstam, M. Einarsdóttír, K. Svanberg, and S. Andersson-Engels, “Towards accurate in vivo spectroscopy of the human prostate,” J. Biophoton. 1(3), 200–203 (2008).
[CrossRef]

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
[CrossRef] [PubMed]

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005).
[CrossRef] [PubMed]

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 50(11), 2559–2571 (2005).
[CrossRef] [PubMed]

Swartling, J.

Taroni, P.

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum. 78(5), 053103 (2007).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005).
[CrossRef] [PubMed]

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 50(11), 2559–2571 (2005).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt. 9(6), 1137–1142 (2004).
[CrossRef] [PubMed]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol. 72(3), 383–391 (2000).
[PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23(9), 1625–1633 (1996).
[CrossRef] [PubMed]

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, and G. Valentini, “Time-Resolved Reflectance - a Systematic Study for Application to the Optical Characterization of Tissues,” IEEE J. Quantum Electron. 30(10), 2421–2430 (1994).
[CrossRef]

Torricelli, A.

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum. 78(5), 053103 (2007).
[CrossRef] [PubMed]

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 50(11), 2559–2571 (2005).
[CrossRef] [PubMed]

A. Pifferi, A. Torricelli, A. Bassi, P. Taroni, R. Cubeddu, H. Wabnitz, D. Grosenick, M. Möller, R. Macdonald, J. Swartling, T. Svensson, S. Andersson-Engels, R. L. van Veen, H. J. Sterenborg, J. M. Tualle, H. L. Nghiem, S. Avrillier, M. Whelan, and H. Stamm, “Performance assessment of photon migration instruments: the MEDPHOT protocol,” Appl. Opt. 44(11), 2104–2114 (2005).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt. 9(6), 1137–1142 (2004).
[CrossRef] [PubMed]

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol. 72(3), 383–391 (2000).
[PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23(9), 1625–1633 (1996).
[CrossRef] [PubMed]

Tualle, J. M.

Valentini, G.

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol. 72(3), 383–391 (2000).
[PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23(9), 1625–1633 (1996).
[CrossRef] [PubMed]

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, and G. Valentini, “Time-Resolved Reflectance - a Systematic Study for Application to the Optical Characterization of Tissues,” IEEE J. Quantum Electron. 30(10), 2421–2430 (1994).
[CrossRef]

van der Zee, P.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of Optical Pathlength through Tissue from Direct Time of Flight Measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

van Veen, R. L.

Wabnitz, H.

Wang, L. H.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML-Monte Carlo Modeling of Light Transport in Multi-layered Tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

Wang, L. V.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

Weissleder, R.

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

Whelan, M.

Wilson, B. C.

B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol. 53(9), R61–R109 (2008).
[CrossRef] [PubMed]

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo Modeling of Light Propagation in Highly Scattering Tissue .1. Model Predictions and Comparison with Diffusion-Theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
[CrossRef] [PubMed]

M. S. Patterson, B. Chance, and B. C. Wilson, “Time Resolved Reflectance and Transmittance for the Noninvasive Measurement of Tissue Optical-Properties,” Appl. Opt. 28(12), 2331–2336 (1989).
[CrossRef] [PubMed]

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).
[CrossRef] [PubMed]

Wray, S.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of Optical Pathlength through Tissue from Direct Time of Flight Measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Wyatt, J.

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of Optical Pathlength through Tissue from Direct Time of Flight Measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Wyman, D. R.

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo Modeling of Light Propagation in Highly Scattering Tissue .1. Model Predictions and Comparison with Diffusion-Theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
[CrossRef] [PubMed]

Yodh, A. G.

A. Corlu, R. Choe, T. Durduran, M. A. Rosen, M. Schweiger, S. R. Arridge, M. D. Schnall, and A. G. Yodh, “Three-dimensional in vivo fluorescence diffuse optical tomography of breast cancer in humans,” Opt. Express 15(11), 6696–6716 (2007).
[CrossRef] [PubMed]

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32(4), 1128–1139 (2005).
[CrossRef] [PubMed]

Yoo, K. M.

K. M. Yoo, F. Liu, and R. R. Alfano, “When Does the Diffusion Approximation Fail to Describe Photon Transport in Random Media?” Phys. Rev. Lett. 64(22), 2647–2650 (1990).
[CrossRef] [PubMed]

Yoshioka, H.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of Time-Resolved and -Unresolved Measurements of Deoxyhemoglobin in Brain,” Proc. Natl. Acad. Sci. U.S.A. 85(14), 4971–4975 (1988).
[CrossRef] [PubMed]

Young, M.

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of Time-Resolved and -Unresolved Measurements of Deoxyhemoglobin in Brain,” Proc. Natl. Acad. Sci. U.S.A. 85(14), 4971–4975 (1988).
[CrossRef] [PubMed]

Zaccanti, G.

Zheng, L. Q.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML-Monte Carlo Modeling of Light Transport in Multi-layered Tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

Anal. Biochem. (1)

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfeld, and G. Holtom, “Time-resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174(2), 698–707 (1988).
[CrossRef] [PubMed]

Appl. Opt. (4)

Appl. Spectrosc. (1)

Comput. Methods Programs Biomed. (1)

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML-Monte Carlo Modeling of Light Transport in Multi-layered Tissues,” Comput. Methods Programs Biomed. 47(2), 131–146 (1995).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

R. Cubeddu, M. Musolino, A. Pifferi, P. Taroni, and G. Valentini, “Time-Resolved Reflectance - a Systematic Study for Application to the Optical Characterization of Tissues,” IEEE J. Quantum Electron. 30(10), 2421–2430 (1994).
[CrossRef]

IEEE J. Sel. Top. Quant. (1)

V. Chernomordik, D. Hattery, I. Gannot, and A. H. Gandjbakhche, “Inverse method 3-D reconstruction of localized in vivo fluorescence - Application to Sjogren syndrome,” IEEE J. Sel. Top. Quant. 5(4), 930–935 (1999).
[CrossRef]

IEEE Trans. Biomed. Eng. (2)

S. T. Flock, M. S. Patterson, B. C. Wilson, and D. R. Wyman, “Monte Carlo Modeling of Light Propagation in Highly Scattering Tissue .1. Model Predictions and Comparison with Diffusion-Theory,” IEEE Trans. Biomed. Eng. 36(12), 1162–1168 (1989).
[CrossRef] [PubMed]

S. L. Jacques, “Time-resolved reflectance spectroscopy in turbid tissues,” IEEE Trans. Biomed. Eng. 36(12), 1155–1161 (1989).
[CrossRef] [PubMed]

J. Biomed. Opt. (5)

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(4), 041304 (2008).
[CrossRef] [PubMed]

A. Liebert, H. Wabnitz, D. Grosenick, and R. Macdonald, “Fiber dispersion in time domain measurements compromising the accuracy of determination of optical properties of strongly scattering media,” J. Biomed. Opt. 8(3), 512–516 (2003).
[CrossRef] [PubMed]

T. Svensson, S. Andersson-Engels, M. Einarsdóttír, and K. Svanberg, “In vivo optical characterization of human prostate tissue using near-infrared time-resolved spectroscopy,” J. Biomed. Opt. 12(1), 014022 (2007).
[CrossRef] [PubMed]

A. Koenig, L. Hervé, V. Josserand, M. Berger, J. Boutet, A. Da Silva, J. M. Dinten, P. Peltié, J. L. Coll, and P. Rizo, “In vivo mice lung tumor follow-up with fluorescence diffuse optical tomography,” J. Biomed. Opt. 13(1), 011008 (2008).
[CrossRef] [PubMed]

L. Spinelli, A. Torricelli, A. Pifferi, P. Taroni, G. M. Danesini, and R. Cubeddu, “Bulk optical properties and tissue components in the female breast from multiwavelength time-resolved optical mammography,” J. Biomed. Opt. 9(6), 1137–1142 (2004).
[CrossRef] [PubMed]

J. Biophoton. (1)

T. Svensson, E. Alerstam, M. Einarsdóttír, K. Svanberg, and S. Andersson-Engels, “Towards accurate in vivo spectroscopy of the human prostate,” J. Biophoton. 1(3), 200–203 (2008).
[CrossRef]

Med. Phys. (3)

R. Choe, A. Corlu, K. Lee, T. Durduran, S. D. Konecky, M. Grosicka-Koptyra, S. R. Arridge, B. J. Czerniecki, D. L. Fraker, A. DeMichele, B. Chance, M. A. Rosen, and A. G. Yodh, “Diffuse optical tomography of breast cancer during neoadjuvant chemotherapy: a case study with comparison to MRI,” Med. Phys. 32(4), 1128–1139 (2005).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Experimental test of theoretical models for time-resolved reflectance,” Med. Phys. 23(9), 1625–1633 (1996).
[CrossRef] [PubMed]

B. C. Wilson and G. Adam, “A Monte Carlo model for the absorption and flux distributions of light in tissue,” Med. Phys. 10(6), 824–830 (1983).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nat. Biotechnol. 23(3), 313–320 (2005).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (1)

Photochem. Photobiol. (1)

R. Cubeddu, C. D’Andrea, A. Pifferi, P. Taroni, A. Torricelli, and G. Valentini, “Effects of the menstrual cycle on the red and near-infrared optical properties of the human breast,” Photochem. Photobiol. 72(3), 383–391 (2000).
[PubMed]

Phys. Med. Biol. (4)

B. C. Wilson and M. S. Patterson, “The physics, biophysics and technology of photodynamic therapy,” Phys. Med. Biol. 53(9), R61–R109 (2008).
[CrossRef] [PubMed]

A. P. Gibson, J. C. Hebden, and S. R. Arridge, “Recent advances in diffuse optical imaging,” Phys. Med. Biol. 50(4), R1–R43 (2005).
[CrossRef] [PubMed]

T. Svensson, J. Swartling, P. Taroni, A. Torricelli, P. Lindblom, C. Ingvar, and S. Andersson-Engels, “Characterization of normal breast tissue heterogeneity using time-resolved near-infrared spectroscopy,” Phys. Med. Biol. 50(11), 2559–2571 (2005).
[CrossRef] [PubMed]

D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, “Estimation of Optical Pathlength through Tissue from Direct Time of Flight Measurement,” Phys. Med. Biol. 33(12), 1433–1442 (1988).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

J. C. J. Paasschens, “Solution of the time-dependent Boltzmann equation,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56(1), 1135–1141 (1997).
[CrossRef]

Phys. Rev. Lett. (1)

K. M. Yoo, F. Liu, and R. R. Alfano, “When Does the Diffusion Approximation Fail to Describe Photon Transport in Random Media?” Phys. Rev. Lett. 64(22), 2647–2650 (1990).
[CrossRef] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

B. Chance, J. S. Leigh, H. Miyake, D. S. Smith, S. Nioka, R. Greenfeld, M. Finander, K. Kaufmann, W. Levy, M. Young, P. Cohen, H. Yoshioka, and R. Boretsky, “Comparison of Time-Resolved and -Unresolved Measurements of Deoxyhemoglobin in Brain,” Proc. Natl. Acad. Sci. U.S.A. 85(14), 4971–4975 (1988).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

A. Pifferi, A. Torricelli, P. Taroni, D. Comelli, A. Bassi, and R. Cubeddu, “Fully automated time domain spectrometer for the absorption and scattering characterization of diffusive media,” Rev. Sci. Instrum. 78(5), 053103 (2007).
[CrossRef] [PubMed]

Other (5)

V. V. Tuchin, Handbook of optical biomedical diagnostics. (2002).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (2006).

H. Buiteveld, J. H. M. Hakvoort, and M. Donze, “Optical properties of pure water,” Ocean Optics XII Proc. SPIE 2258, 174–183 (1994).

S. Prahl, “Monte Carlo Simulations,” http://omlc.ogi.edu/software/mc/ .

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo model of light propagation in tissue,” Dosimetry of Laser Radiation in Medicine and Biology - Proc. SPIE IS 5, 102–111 (1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup. Sync stands for synchronization. Fibers are separated by a distance r and are both at depth z.

Fig. 2
Fig. 2

Weighted residuals, (a) uncorrected and (b) corrected, as a function of time (scalable MC simulation, μs’=7cm−1, μa=0.03cm−1, fitted by the diffusion equation). The fitting range 95/1 has been extended to 1% of the trailing edge in order to better emphasize the effect of the correction.

Fig. 3
Fig. 3

(a) χR 2 as a function of acquired photons for two solutions, varying ink concentrations and with same scatterer concentration (μs=16cm−1). Linear fits are also plotted, emphasizing the behavior of χR 2 ; for each fit a typical R2 value of 0.98 and an intercept of 1.01 ± 0.04 are obtained. Each data point corresponds to a different experiment, except in the case of a high number of photons for which independent acquisitions were added. (b) Weighted residuals for increasing numbers of acquired photons when there is only little model bias (expected μa=0.1cm−1) and (c) worse model bias (expected μa=0.3cm−1).

Fig. 4
Fig. 4

(a) Estimated parameters, μa and μs, as a function of interfiber distance r. The corresponding calculated parameter χR-C 2 is plotted. (b) Measured temporal profile, together with the estimated diffusion profile in an infinite medium for r = 0.8cm. The associated profile of weighted residuals over the fitting zone is clearly not randomly distributed around zero, emphasizing how wrong this fit is.

Fig. 5
Fig. 5

Estimated parameters, μa and μs, as a function of Acronal concentration, for t2 taken at 0.5% of the maximum. The corresponding calculated parameter χR-C 2 is plotted. For comparison, the expected μa values provided by absorption spectrometer measurements (the error bar arises from μa estimation error of the stock solution, but is identical for each point), and the linear increase in μs were plotted assuming the value of the most concentrated solution to be correct. Number of time channels used for fitting are between T=425 for the smallest and T=700 for the strongest concentration of Acronal.

Fig. 6
Fig. 6

(a) Estimated parameters, μa and μs, as a function of ink concentration. The corresponding calculated parameter χRC2 is plotted. After the first three measurements, the χRC2 values deviate from their plateau, thus highlighting incorrect fit. Number of channels used for fitting are T=470 for the lowest and T=190 for the strongest ink concentration. (b) Comparison between measured temporal profiles and MC simulation convolved with the experimental IRF, for excepted μa=0.4cm−1 and μs'=14.2cm−1 ([ink]=70 arbitrary units). The circle emphasizes the unexpected behavior of the data.

Fig. 7
Fig. 7

(a) Estimation errors and the χR2 value are plotted as a function of absorption for μs’=7cm−1 (scalable MC). (b) The χR2 value as a function of N for MCa in the case of a prostate simulated medium. (c)(d) Weighted residuals corresponding to small and large number of photons of the Fig. 7(b) (note the WRes scale). Number of channels used for the fit is T=80.

Fig. 8
Fig. 8

Estimated parameters, μa and μs, as a function of fiber depth z for r = 1.7cm. The corresponding χRC2 parameter is plotted.

Fig. 9
Fig. 9

(a) Weighted residuals and χRC2 are plotted for both holders (same solution). The fitting range has been extended to 80/5 in order to include more early photons to evidence the failure of the model in the presence of the large metallic piece. (b) Pictures of the holders. The needle holder is used in all the other data presented in the article.

Fig. 10
Fig. 10

Estimated parameters, μa and μs, as a function of an artificial introduced time shift. The corresponding calculated parameter χRC2 is plotted. Each grid line corresponds to a 5% error. Note that for a reasonable r measurement error (less than 5 mm) during the IRF, the time shift is very small (less than 17 ps).

Tables (4)

Tables Icon

Table 1 Probability of finding a certain value of χR 2 or higher, as a function of T, number of degrees of liberty, due to random distribution of photons. Deviation from the values in this table is indicative that the model is false.

Tables Icon

Table 2 Effect of deconvolution by an incorrect IRF. PMT voltage during the experiment was 2.83 kV.

Tables Icon

Table 3 Estimates of the Acronal solution as a function of fiber holders and fitting range. The error introduced by the presence of the large metallic holder is also indicated.

Tables Icon

Table 4 Summary of the role of χRC2 for judging the accuracy of estimation together with typical situations encountered by experimenters. When not specified, this table refers to values of μa ~0.1cm−1 and μs~10cm−1. Significant increase of χRC2 means χRC2>2 (due to the large number of photons N used as a reference).

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

mc(4πDc)3/2t3/2exp(r24Dctμact)
χR2=1Tpi(WRi)2=1Tpi(misisi)2
(misiσi)2=εi2σi2+2biσi2εi+bi2σi2εi2si+2bisiεi+bi2si

Metrics