Abstract

This paper explores a time-resolved functional imaging method based on Monte Carlo model for whole-body functional imaging of small animals. To improve the spatial resolution and quantitative accuracy of the functional map, a Bayesian hierarchical method with a high resolution spatial prior is applied to guide the optical reconstructions. Simulated data using the proposed approach are employed on an anatomically accurate mouse model where the optical properties range and volume limitations of the diffusion equation model exist. We investigate the performances of using time-gated data type and spatial priors to quantitatively image the functional parameters of multiple organs. Accurate reconstructions of the two main functional parameters of the blood volume and the relative oxygenation are demonstrated by using our method. Moreover, nonlinear optode settings guided by anatomical prior is proved to be critical to imaging small organs such as the heart.

© 2009 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, “Small animal imaging. current technology and perspectives for oncological imaging,” Eur. J. Cancer 38(16), 2173–2188 (2002).
    [CrossRef] [PubMed]
  2. V. Koo, P. W. Hamilton, and K. Williamson, “Non-invasive in vivo imaging in small animal research,” Cell. Oncol. 28(4), 127–139 (2006).
    [PubMed]
  3. A. H. Hielscher, “Optical tomographic imaging of small animals,” Curr. Opin. Biotechnol. 16(1), 79–88 (2005).
    [CrossRef] [PubMed]
  4. F. Azar, and X. Intes, Translational Multimodality Optical Imaging, chap. Introduction to Clinical Optical Imaging, p. 1 (Artech House, Norwood, 2008).
  5. S. Bjoern, S. V. Patwardhan, and J. P. Culver, “The influence of heterogeneous optical properties on fluorescence diffusion tomography of small animals,” in 2006 OSA/BOSD, AOIMP, TLA (2006).
  6. L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
    [CrossRef] [PubMed]
  7. S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
    [CrossRef] [PubMed]
  8. X. Intes and B. Chance, “Non-PET functional imaging techniques: optical,” Radiol. Clin. North Am. 43(1), 221–234, xii (2005).
    [CrossRef] [PubMed]
  9. D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Ganudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
    [CrossRef]
  10. S. R. Arridge and W. R. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23(11), 882–884 (1998).
    [CrossRef]
  11. X. Intes and B. Chance, “Multi-frequency diffuse optical tomography,” J. Mod. Opt. 52(15), 2139–2159 (2005).
    [CrossRef]
  12. U. Burcin, O. Birgul, R. Shafiiha, G. Gulsen, and O. Nalcioglu, “Diffuse optical tomographic reconstruction using multifrequency,” J. Biomed. Opt. 11, 054008 (2006).
    [CrossRef]
  13. B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69(10), 3457–3481 (1998).
    [CrossRef]
  14. A. Pineda, M. Schweiger, S. Arridge, and H. Barrett, “Information content of data types in time-domain optical tomography,” J. Opt. Soc. Am. A 23(12), 2989–2996 (2006).
    [CrossRef]
  15. E. Alerstam, S. Andersson-Engels, and T. Svensson, “Improved accuracy in time-resolved diffuse reflectance spectroscopy,” Opt. Express 16(14), 10440–10447 (2008).
    [CrossRef] [PubMed]
  16. X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography SoftScan: initial results,” Acad. Radiol. 12(8), 934–947 (2005).
    [CrossRef] [PubMed]
  17. S. Lam, F. Lesage, and X. Intes, “Time Domain Fluorescent Diffuse Optical Tomography: analytical expressions,” Opt. Express 13(7), 2263–2275 (2005).
    [CrossRef] [PubMed]
  18. S. D. Konecky, G. Y. Panasyuk, K. Lee, V. Markel, A. G. Yodh, and J. C. Schotland, “Imaging complex structures with diffuse light,” Opt. Express 16(7), 5048–5060 (2008).
    [CrossRef] [PubMed]
  19. K. M. Yoo, F. Liu, and R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?” Phys. Rev. Lett. 64(22), 2647–2650 (1990).
    [CrossRef] [PubMed]
  20. J. C. Rasmussen, T. Pan, A. Joshi, T. Wareing, J. McGhee, and E. M. Sevick-Muraca, “Comparison of radiative transport, Monte Carlo, and Diffusion forward models for small animal optical tomography,” in 2007 IEEE ISBI, pp. 824–827 (2007).
  21. Y. P. Kumar and R. M. Vasu, “Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method,” J. Biomed. Opt. 9(5), 1002–1012 (2004).
    [CrossRef] [PubMed]
  22. J. Chen, V. Venugopal, and X. Intes, “Diffuse optical tomography with time-gated perturbation Monte Carlo method,” Proc. SPIE 7171, 717113–717119 (2009).
    [CrossRef]
  23. Translational Multimodality Optical Imaging, F. Azar and X. Intes (eds.), Artech House, Norwood, 2008.
  24. X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance,“Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49(12N155CN), 163 (2004).
    [CrossRef]
  25. S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo Model of Light Propagation in Tissue,” in SPIE Institute Series IS 5, (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1989), pp. 102–111.
  26. L. Wang, S. L. Jacques, and L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
    [CrossRef]
  27. D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002).
    [PubMed]
  28. C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26(17), 1335–1337 (2001).
    [CrossRef]
  29. A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44(11), 2082–2093 (2005).
    [CrossRef] [PubMed]
  30. M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50(12), 2837–2858 (2005).
    [CrossRef] [PubMed]
  31. B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52(3), 577–587 (2007).
    [CrossRef] [PubMed]
  32. D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, “Creating a whole body digital mouse atlas with PET, CT and cryosection images,” Mol. Imaging Biol. 4(4), S27 (2002).
  33. V. Venugopal, J. Chen, and X. Intes, “Quantifying optical properties in small animals using MR-guided multi-spectral time-resolved imaging,” Proc. SPIE 7171, 717114–717118 (2009).
    [CrossRef]
  34. W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
    [CrossRef]
  35. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
    [CrossRef] [PubMed]
  36. A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
    [CrossRef] [PubMed]
  37. J. Chen, and X. Intes, “Time-resolved perturbation Monte Carlo for 3D optical imaging in small animals,” 34th Annual Northeast Bioengineering Conference, April 4th 2008.
  38. E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(041), 304 (2008).
    [CrossRef]

2009 (2)

J. Chen, V. Venugopal, and X. Intes, “Diffuse optical tomography with time-gated perturbation Monte Carlo method,” Proc. SPIE 7171, 717113–717119 (2009).
[CrossRef]

V. Venugopal, J. Chen, and X. Intes, “Quantifying optical properties in small animals using MR-guided multi-spectral time-resolved imaging,” Proc. SPIE 7171, 717114–717118 (2009).
[CrossRef]

2008 (4)

2007 (2)

L. Hervé, A. Koenig, A. Da Silva, M. Berger, J. Boutet, J. M. Dinten, P. Peltié, and P. Rizo, “Noncontact fluorescence diffuse optical tomography of heterogeneous media,” Appl. Opt. 46(22), 4896–4906 (2007).
[CrossRef] [PubMed]

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52(3), 577–587 (2007).
[CrossRef] [PubMed]

2006 (3)

V. Koo, P. W. Hamilton, and K. Williamson, “Non-invasive in vivo imaging in small animal research,” Cell. Oncol. 28(4), 127–139 (2006).
[PubMed]

U. Burcin, O. Birgul, R. Shafiiha, G. Gulsen, and O. Nalcioglu, “Diffuse optical tomographic reconstruction using multifrequency,” J. Biomed. Opt. 11, 054008 (2006).
[CrossRef]

A. Pineda, M. Schweiger, S. Arridge, and H. Barrett, “Information content of data types in time-domain optical tomography,” J. Opt. Soc. Am. A 23(12), 2989–2996 (2006).
[CrossRef]

2005 (8)

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography SoftScan: initial results,” Acad. Radiol. 12(8), 934–947 (2005).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

A. Corlu, R. Choe, T. Durduran, K. Lee, M. Schweiger, S. R. Arridge, E. M. Hillman, and A. G. Yodh, “Diffuse optical tomography with spectral constraints and wavelength optimization,” Appl. Opt. 44(11), 2082–2093 (2005).
[CrossRef] [PubMed]

S. Lam, F. Lesage, and X. Intes, “Time Domain Fluorescent Diffuse Optical Tomography: analytical expressions,” Opt. Express 13(7), 2263–2275 (2005).
[CrossRef] [PubMed]

X. Intes and B. Chance, “Multi-frequency diffuse optical tomography,” J. Mod. Opt. 52(15), 2139–2159 (2005).
[CrossRef]

A. H. Hielscher, “Optical tomographic imaging of small animals,” Curr. Opin. Biotechnol. 16(1), 79–88 (2005).
[CrossRef] [PubMed]

X. Intes and B. Chance, “Non-PET functional imaging techniques: optical,” Radiol. Clin. North Am. 43(1), 221–234, xii (2005).
[CrossRef] [PubMed]

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50(12), 2837–2858 (2005).
[CrossRef] [PubMed]

2004 (2)

Y. P. Kumar and R. M. Vasu, “Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method,” J. Biomed. Opt. 9(5), 1002–1012 (2004).
[CrossRef] [PubMed]

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance,“Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49(12N155CN), 163 (2004).
[CrossRef]

2002 (3)

D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, “Creating a whole body digital mouse atlas with PET, CT and cryosection images,” Mol. Imaging Biol. 4(4), S27 (2002).

J. S. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, “Small animal imaging. current technology and perspectives for oncological imaging,” Eur. J. Cancer 38(16), 2173–2188 (2002).
[CrossRef] [PubMed]

D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002).
[PubMed]

2001 (3)

C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26(17), 1335–1337 (2001).
[CrossRef]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[CrossRef] [PubMed]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Ganudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[CrossRef]

1998 (2)

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69(10), 3457–3481 (1998).
[CrossRef]

S. R. Arridge and W. R. Lionheart, “Nonuniqueness in diffusion-based optical tomography,” Opt. Lett. 23(11), 882–884 (1998).
[CrossRef]

1995 (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[CrossRef]

1990 (2)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[CrossRef]

K. M. Yoo, F. Liu, and R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?” Phys. Rev. Lett. 64(22), 2647–2650 (1990).
[CrossRef] [PubMed]

Achilefu, S.

J. S. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, “Small animal imaging. current technology and perspectives for oncological imaging,” Eur. J. Cancer 38(16), 2173–2188 (2002).
[CrossRef] [PubMed]

Alerstam, E.

E. Alerstam, S. Andersson-Engels, and T. Svensson, “Improved accuracy in time-resolved diffuse reflectance spectroscopy,” Opt. Express 16(14), 10440–10447 (2008).
[CrossRef] [PubMed]

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(041), 304 (2008).
[CrossRef]

Alexandrakis, G.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

Alfano, R. R.

K. M. Yoo, F. Liu, and R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?” Phys. Rev. Lett. 64(22), 2647–2650 (1990).
[CrossRef] [PubMed]

Andersson-Engels, S.

E. Alerstam, S. Andersson-Engels, and T. Svensson, “Improved accuracy in time-resolved diffuse reflectance spectroscopy,” Opt. Express 16(14), 10440–10447 (2008).
[CrossRef] [PubMed]

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(041), 304 (2008).
[CrossRef]

Arridge, S.

Arridge, S. R.

Barrett, H.

Berger, A. J.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[CrossRef] [PubMed]

Berger, M.

Bevilacqua, F.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[CrossRef] [PubMed]

C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26(17), 1335–1337 (2001).
[CrossRef]

Birgul, O.

U. Burcin, O. Birgul, R. Shafiiha, G. Gulsen, and O. Nalcioglu, “Diffuse optical tomographic reconstruction using multifrequency,” J. Biomed. Opt. 11, 054008 (2006).
[CrossRef]

Boas, D.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography SoftScan: initial results,” Acad. Radiol. 12(8), 934–947 (2005).
[CrossRef] [PubMed]

Boas, D. A.

D. A. Boas, J. P. Culver, J. J. Stott, and A. K. Dunn, “Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10(3), 159–170 (2002).
[PubMed]

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Ganudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[CrossRef]

Boutet, J.

Brooks, D. H.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Ganudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[CrossRef]

Burcin, U.

U. Burcin, O. Birgul, R. Shafiiha, G. Gulsen, and O. Nalcioglu, “Diffuse optical tomographic reconstruction using multifrequency,” J. Biomed. Opt. 11, 054008 (2006).
[CrossRef]

Butler, J.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[CrossRef] [PubMed]

Cerussi, A. E.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[CrossRef] [PubMed]

Chance, B.

X. Intes and B. Chance, “Non-PET functional imaging techniques: optical,” Radiol. Clin. North Am. 43(1), 221–234, xii (2005).
[CrossRef] [PubMed]

X. Intes and B. Chance, “Multi-frequency diffuse optical tomography,” J. Mod. Opt. 52(15), 2139–2159 (2005).
[CrossRef]

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50(12), 2837–2858 (2005).
[CrossRef] [PubMed]

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance,“Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49(12N155CN), 163 (2004).
[CrossRef]

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69(10), 3457–3481 (1998).
[CrossRef]

Chatziioannou, A.

D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, “Creating a whole body digital mouse atlas with PET, CT and cryosection images,” Mol. Imaging Biol. 4(4), S27 (2002).

Chatziioannou, A. F.

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52(3), 577–587 (2007).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

Chen, J.

V. Venugopal, J. Chen, and X. Intes, “Quantifying optical properties in small animals using MR-guided multi-spectral time-resolved imaging,” Proc. SPIE 7171, 717114–717118 (2009).
[CrossRef]

J. Chen, V. Venugopal, and X. Intes, “Diffuse optical tomography with time-gated perturbation Monte Carlo method,” Proc. SPIE 7171, 717113–717119 (2009).
[CrossRef]

Cheong, W. F.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[CrossRef]

Choe, R.

Chow, P.

D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, “Creating a whole body digital mouse atlas with PET, CT and cryosection images,” Mol. Imaging Biol. 4(4), S27 (2002).

Cope, M.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69(10), 3457–3481 (1998).
[CrossRef]

Corlu, A.

Culver, J. P.

Da Silva, A.

DiMarzio, C. A.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Ganudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[CrossRef]

Dinten, J. M.

Djeziri, S.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography SoftScan: initial results,” Acad. Radiol. 12(8), 934–947 (2005).
[CrossRef] [PubMed]

Dogdas, B.

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52(3), 577–587 (2007).
[CrossRef] [PubMed]

Dunn, A. K.

Durduran, T.

Fleiszer, D.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography SoftScan: initial results,” Acad. Radiol. 12(8), 934–947 (2005).
[CrossRef] [PubMed]

Gambhir, S.

D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, “Creating a whole body digital mouse atlas with PET, CT and cryosection images,” Mol. Imaging Biol. 4(4), S27 (2002).

Ganudette, R. J.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Ganudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[CrossRef]

Garbow, J. R.

J. S. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, “Small animal imaging. current technology and perspectives for oncological imaging,” Eur. J. Cancer 38(16), 2173–2188 (2002).
[CrossRef] [PubMed]

Gratton, E.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69(10), 3457–3481 (1998).
[CrossRef]

Gulsen, G.

U. Burcin, O. Birgul, R. Shafiiha, G. Gulsen, and O. Nalcioglu, “Diffuse optical tomographic reconstruction using multifrequency,” J. Biomed. Opt. 11, 054008 (2006).
[CrossRef]

Guven, M.

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50(12), 2837–2858 (2005).
[CrossRef] [PubMed]

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance,“Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49(12N155CN), 163 (2004).
[CrossRef]

Hall, D.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography SoftScan: initial results,” Acad. Radiol. 12(8), 934–947 (2005).
[CrossRef] [PubMed]

Hamilton, P. W.

V. Koo, P. W. Hamilton, and K. Williamson, “Non-invasive in vivo imaging in small animal research,” Cell. Oncol. 28(4), 127–139 (2006).
[PubMed]

Hayakawa, C. K.

Hervé, L.

Hielscher, A. H.

A. H. Hielscher, “Optical tomographic imaging of small animals,” Curr. Opin. Biotechnol. 16(1), 79–88 (2005).
[CrossRef] [PubMed]

Hillman, E. M.

Holcombe, R. F.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[CrossRef] [PubMed]

Ichalalene, Z.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography SoftScan: initial results,” Acad. Radiol. 12(8), 934–947 (2005).
[CrossRef] [PubMed]

Intes, X.

J. Chen, V. Venugopal, and X. Intes, “Diffuse optical tomography with time-gated perturbation Monte Carlo method,” Proc. SPIE 7171, 717113–717119 (2009).
[CrossRef]

V. Venugopal, J. Chen, and X. Intes, “Quantifying optical properties in small animals using MR-guided multi-spectral time-resolved imaging,” Proc. SPIE 7171, 717114–717118 (2009).
[CrossRef]

X. Intes and B. Chance, “Non-PET functional imaging techniques: optical,” Radiol. Clin. North Am. 43(1), 221–234, xii (2005).
[CrossRef] [PubMed]

S. Lam, F. Lesage, and X. Intes, “Time Domain Fluorescent Diffuse Optical Tomography: analytical expressions,” Opt. Express 13(7), 2263–2275 (2005).
[CrossRef] [PubMed]

X. Intes and B. Chance, “Multi-frequency diffuse optical tomography,” J. Mod. Opt. 52(15), 2139–2159 (2005).
[CrossRef]

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography SoftScan: initial results,” Acad. Radiol. 12(8), 934–947 (2005).
[CrossRef] [PubMed]

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50(12), 2837–2858 (2005).
[CrossRef] [PubMed]

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance,“Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49(12N155CN), 163 (2004).
[CrossRef]

Jacques, S. L.

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
[CrossRef] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[CrossRef]

Jakubowski, D.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[CrossRef] [PubMed]

Kilmer, M.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Ganudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[CrossRef]

Koenig, A.

Konecky, S. D.

Koo, V.

V. Koo, P. W. Hamilton, and K. Williamson, “Non-invasive in vivo imaging in small animal research,” Cell. Oncol. 28(4), 127–139 (2006).
[PubMed]

Kumar, Y. P.

Y. P. Kumar and R. M. Vasu, “Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method,” J. Biomed. Opt. 9(5), 1002–1012 (2004).
[CrossRef] [PubMed]

Laforest, R.

J. S. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, “Small animal imaging. current technology and perspectives for oncological imaging,” Eur. J. Cancer 38(16), 2173–2188 (2002).
[CrossRef] [PubMed]

Lam, S.

Leahy, R. M.

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52(3), 577–587 (2007).
[CrossRef] [PubMed]

D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, “Creating a whole body digital mouse atlas with PET, CT and cryosection images,” Mol. Imaging Biol. 4(4), S27 (2002).

Lee, K.

Lesage, F.

S. Lam, F. Lesage, and X. Intes, “Time Domain Fluorescent Diffuse Optical Tomography: analytical expressions,” Opt. Express 13(7), 2263–2275 (2005).
[CrossRef] [PubMed]

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography SoftScan: initial results,” Acad. Radiol. 12(8), 934–947 (2005).
[CrossRef] [PubMed]

Lewis, J. S.

J. S. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, “Small animal imaging. current technology and perspectives for oncological imaging,” Eur. J. Cancer 38(16), 2173–2188 (2002).
[CrossRef] [PubMed]

Lewis, X.

D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, “Creating a whole body digital mouse atlas with PET, CT and cryosection images,” Mol. Imaging Biol. 4(4), S27 (2002).

Lionheart, W. R.

Liu, F.

K. M. Yoo, F. Liu, and R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?” Phys. Rev. Lett. 64(22), 2647–2650 (1990).
[CrossRef] [PubMed]

Maloux, C.

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance,“Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49(12N155CN), 163 (2004).
[CrossRef]

Markel, V.

Mesurolle, B.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography SoftScan: initial results,” Acad. Radiol. 12(8), 934–947 (2005).
[CrossRef] [PubMed]

Miller, E. L.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Ganudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[CrossRef]

Mincu, N.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography SoftScan: initial results,” Acad. Radiol. 12(8), 934–947 (2005).
[CrossRef] [PubMed]

Nalcioglu, O.

U. Burcin, O. Birgul, R. Shafiiha, G. Gulsen, and O. Nalcioglu, “Diffuse optical tomographic reconstruction using multifrequency,” J. Biomed. Opt. 11, 054008 (2006).
[CrossRef]

Panasyuk, G. Y.

Peltié, P.

Pineda, A.

Pogue, B. W.

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
[CrossRef] [PubMed]

Polyzos, M.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography SoftScan: initial results,” Acad. Radiol. 12(8), 934–947 (2005).
[CrossRef] [PubMed]

Prahl, S. A.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[CrossRef]

Ramanujam, N.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69(10), 3457–3481 (1998).
[CrossRef]

Rannou, F. R.

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

Rizo, P.

Schotland, J. C.

Schweiger, M.

Sha?iha, R.

U. Burcin, O. Birgul, R. Shafiiha, G. Gulsen, and O. Nalcioglu, “Diffuse optical tomographic reconstruction using multifrequency,” J. Biomed. Opt. 11, 054008 (2006).
[CrossRef]

Shah, N.

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[CrossRef] [PubMed]

Silverman, R.

D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, “Creating a whole body digital mouse atlas with PET, CT and cryosection images,” Mol. Imaging Biol. 4(4), S27 (2002).

Spanier, J.

St-Jean, P.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography SoftScan: initial results,” Acad. Radiol. 12(8), 934–947 (2005).
[CrossRef] [PubMed]

Stott, J. J.

Stout, D.

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52(3), 577–587 (2007).
[CrossRef] [PubMed]

D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, “Creating a whole body digital mouse atlas with PET, CT and cryosection images,” Mol. Imaging Biol. 4(4), S27 (2002).

Svensson, T.

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(041), 304 (2008).
[CrossRef]

E. Alerstam, S. Andersson-Engels, and T. Svensson, “Improved accuracy in time-resolved diffuse reflectance spectroscopy,” Opt. Express 16(14), 10440–10447 (2008).
[CrossRef] [PubMed]

Tromberg, B.

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69(10), 3457–3481 (1998).
[CrossRef]

Tromberg, B. J.

C. K. Hayakawa, J. Spanier, F. Bevilacqua, A. K. Dunn, J. S. You, B. J. Tromberg, and V. Venugopalan, “Perturbation Monte Carlo methods to solve inverse photon migration problems in heterogeneous tissues,” Opt. Lett. 26(17), 1335–1337 (2001).
[CrossRef]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[CrossRef] [PubMed]

Vasu, R. M.

Y. P. Kumar and R. M. Vasu, “Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method,” J. Biomed. Opt. 9(5), 1002–1012 (2004).
[CrossRef] [PubMed]

Venugopal, V.

V. Venugopal, J. Chen, and X. Intes, “Quantifying optical properties in small animals using MR-guided multi-spectral time-resolved imaging,” Proc. SPIE 7171, 717114–717118 (2009).
[CrossRef]

J. Chen, V. Venugopal, and X. Intes, “Diffuse optical tomography with time-gated perturbation Monte Carlo method,” Proc. SPIE 7171, 717113–717119 (2009).
[CrossRef]

Venugopalan, V.

Wang, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[CrossRef]

Wang, Y.

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography SoftScan: initial results,” Acad. Radiol. 12(8), 934–947 (2005).
[CrossRef] [PubMed]

Welch, A. J.

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[CrossRef]

Welch, M. J.

J. S. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, “Small animal imaging. current technology and perspectives for oncological imaging,” Eur. J. Cancer 38(16), 2173–2188 (2002).
[CrossRef] [PubMed]

Williamson, K.

V. Koo, P. W. Hamilton, and K. Williamson, “Non-invasive in vivo imaging in small animal research,” Cell. Oncol. 28(4), 127–139 (2006).
[PubMed]

Yazici, B.

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50(12), 2837–2858 (2005).
[CrossRef] [PubMed]

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance,“Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49(12N155CN), 163 (2004).
[CrossRef]

Yodh, A. G.

Yoo, K. M.

K. M. Yoo, F. Liu, and R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?” Phys. Rev. Lett. 64(22), 2647–2650 (1990).
[CrossRef] [PubMed]

You, J. S.

Zhang, Q.

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Ganudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[CrossRef]

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[CrossRef]

Acad. Radiol. (2)

X. Intes, S. Djeziri, Z. Ichalalene, N. Mincu, Y. Wang, P. St-Jean, F. Lesage, D. Hall, D. Boas, M. Polyzos, D. Fleiszer, and B. Mesurolle, “Time-domain optical mammography SoftScan: initial results,” Acad. Radiol. 12(8), 934–947 (2005).
[CrossRef] [PubMed]

A. E. Cerussi, A. J. Berger, F. Bevilacqua, N. Shah, D. Jakubowski, J. Butler, R. F. Holcombe, and B. J. Tromberg, “Sources of absorption and scattering contrast for near-infrared optical mammography,” Acad. Radiol. 8(3), 211–218 (2001).
[CrossRef] [PubMed]

Appl. Opt. (2)

Cell. Oncol. (1)

V. Koo, P. W. Hamilton, and K. Williamson, “Non-invasive in vivo imaging in small animal research,” Cell. Oncol. 28(4), 127–139 (2006).
[PubMed]

Comput. Meth. Prog. Bio. (1)

L. Wang, S. L. Jacques, and L. Zheng, “MCML - Monte Carlo modeling of light transport in multi-layered tissues,” Comput. Meth. Prog. Bio. 47(2), 131–146 (1995).
[CrossRef]

Curr. Opin. Biotechnol. (1)

A. H. Hielscher, “Optical tomographic imaging of small animals,” Curr. Opin. Biotechnol. 16(1), 79–88 (2005).
[CrossRef] [PubMed]

Eur. J. Cancer (1)

J. S. Lewis, S. Achilefu, J. R. Garbow, R. Laforest, and M. J. Welch, “Small animal imaging. current technology and perspectives for oncological imaging,” Eur. J. Cancer 38(16), 2173–2188 (2002).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (1)

W. F. Cheong, S. A. Prahl, and A. J. Welch, “A review of the optical properties of biological tissues,” IEEE J. Quantum Electron. 26(12), 2166–2185 (1990).
[CrossRef]

IEEE Signal Process. Mag. (1)

D. A. Boas, D. H. Brooks, E. L. Miller, C. A. DiMarzio, M. Kilmer, R. J. Ganudette, and Q. Zhang, “Imaging the body with diffuse optical tomography,” IEEE Signal Process. Mag. 18(6), 57–75 (2001).
[CrossRef]

J. Biomed. Opt. (4)

S. L. Jacques and B. W. Pogue, “Tutorial on diffuse light transport,” J. Biomed. Opt. 13(4), 041302 (2008).
[CrossRef] [PubMed]

U. Burcin, O. Birgul, R. Shafiiha, G. Gulsen, and O. Nalcioglu, “Diffuse optical tomographic reconstruction using multifrequency,” J. Biomed. Opt. 11, 054008 (2006).
[CrossRef]

Y. P. Kumar and R. M. Vasu, “Reconstruction of optical properties of low-scattering tissue using derivative estimated through perturbation Monte-Carlo method,” J. Biomed. Opt. 9(5), 1002–1012 (2004).
[CrossRef] [PubMed]

E. Alerstam, S. Andersson-Engels, and T. Svensson, “White Monte Carlo for time-resolved photon migration,” J. Biomed. Opt. 13(041), 304 (2008).
[CrossRef]

J. Mod. Opt. (1)

X. Intes and B. Chance, “Multi-frequency diffuse optical tomography,” J. Mod. Opt. 52(15), 2139–2159 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

Mol. Imaging Biol. (1)

D. Stout, P. Chow, R. Silverman, R. M. Leahy, X. Lewis, S. Gambhir, and A. Chatziioannou, “Creating a whole body digital mouse atlas with PET, CT and cryosection images,” Mol. Imaging Biol. 4(4), S27 (2002).

Opt. Express (4)

Opt. Lett. (2)

Phys. Med. Biol. (4)

M. Guven, B. Yazici, X. Intes, and B. Chance, “Diffuse optical tomography with a priori anatomical information,” Phys. Med. Biol. 50(12), 2837–2858 (2005).
[CrossRef] [PubMed]

B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Phys. Med. Biol. 52(3), 577–587 (2007).
[CrossRef] [PubMed]

G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Phys. Med. Biol. 50(17), 4225–4241 (2005).
[CrossRef] [PubMed]

X. Intes, C. Maloux, M. Guven, B. Yazici, and B. Chance,“Diffuse optical tomography with physiological and spatial a priori constraints,” Phys. Med. Biol. 49(12N155CN), 163 (2004).
[CrossRef]

Phys. Rev. Lett. (1)

K. M. Yoo, F. Liu, and R. R. Alfano, “When does the diffusion approximation fail to describe photon transport in random media?” Phys. Rev. Lett. 64(22), 2647–2650 (1990).
[CrossRef] [PubMed]

Proc. SPIE (2)

J. Chen, V. Venugopal, and X. Intes, “Diffuse optical tomography with time-gated perturbation Monte Carlo method,” Proc. SPIE 7171, 717113–717119 (2009).
[CrossRef]

V. Venugopal, J. Chen, and X. Intes, “Quantifying optical properties in small animals using MR-guided multi-spectral time-resolved imaging,” Proc. SPIE 7171, 717114–717118 (2009).
[CrossRef]

Radiol. Clin. North Am. (1)

X. Intes and B. Chance, “Non-PET functional imaging techniques: optical,” Radiol. Clin. North Am. 43(1), 221–234, xii (2005).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

B. Chance, M. Cope, E. Gratton, N. Ramanujam, and B. Tromberg, “Phase measurement of light absorption and scatter in human tissue,” Rev. Sci. Instrum. 69(10), 3457–3481 (1998).
[CrossRef]

Other (6)

Translational Multimodality Optical Imaging, F. Azar and X. Intes (eds.), Artech House, Norwood, 2008.

S. A. Prahl, M. Keijzer, S. L. Jacques, and A. J. Welch, “A Monte Carlo Model of Light Propagation in Tissue,” in SPIE Institute Series IS 5, (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1989), pp. 102–111.

J. C. Rasmussen, T. Pan, A. Joshi, T. Wareing, J. McGhee, and E. M. Sevick-Muraca, “Comparison of radiative transport, Monte Carlo, and Diffusion forward models for small animal optical tomography,” in 2007 IEEE ISBI, pp. 824–827 (2007).

F. Azar, and X. Intes, Translational Multimodality Optical Imaging, chap. Introduction to Clinical Optical Imaging, p. 1 (Artech House, Norwood, 2008).

S. Bjoern, S. V. Patwardhan, and J. P. Culver, “The influence of heterogeneous optical properties on fluorescence diffusion tomography of small animals,” in 2006 OSA/BOSD, AOIMP, TLA (2006).

J. Chen, and X. Intes, “Time-resolved perturbation Monte Carlo for 3D optical imaging in small animals,” 34th Annual Northeast Bioengineering Conference, April 4th 2008.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) The original high resolution mouse model (b) The resized mouse model with five organs (heart {teal}, stomach {green}, liver {yellow}, kidneys {red} and lungs {purple} extracted from Fig. 1(a))

Fig. 4
Fig. 4

Anatomically guided nonlinear sampling: (a) Evenly spanned source (black dots) and detectors (red dots) configuration and reconstructed (c) blood volume and (d) oxygen saturation; (b) dense source and detector pairs around the overlapping organs and the reconstructed (e) blood volume and (f) oxygen saturation. The heart and stomach have been delineated with white lines.

Fig. 3
Fig. 3

Typical Jacobians for three different time gates in a mouse model. First column: TPSF simulated and selected time gates (first half maximum, maximum and last half maximum of TPSFs). Second column: Sagittal plane of the synthetic phantom and normalized Jacobians corresponding to each selected time gate. Third column: Transverse plane of the murine model with associated normalized Jacobian. The Jacobians are plotted in log scale to provide better visualization.

Fig. 2
Fig. 2

(a) Time cost with increasing number of nodes, from 105 to 1010 with homogeneous optical properties. (b) Computational time when simulating different gates and detectors.

Tables (3)

Tables Icon

Table 1 Functional parameters from the literature.

Tables Icon

Table 2 Absorption coefficients for the spectral set investigation.

Tables Icon

Table 3 Errors and standard deviations of the reconstructed maps: a crossed cell in n-Lin or Baye. indicates reconstructions using non-linear source detector sampling and Bayesian formulation in the inverse problem conversely to linear sampling and non-constrained reconstructions if not marked. All the values herein are provided in %.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

w^=w(μ^s/μ^tμs/μt)p(μ^tμt)pexp((μ^tμt)L).
w^(t)=w(t)(μ^s/μ^tμ^s/μ^t)p(μ^tμt)pexp((μ^tμ^t)L).
W^(t)=W(t)j=1n(μ^s(rj)/μ^t(rj)μs(rj)/μt(rj))p(rj,t)(μ^t(rj)μt(rj))p(rj,t)exp((μ^t(rj)μt(rj))L(rj,t)).
[ΔW1(sd,t)ΔWm(sd,t)]=[J11(t)J1n(t)J1m(t)Jmn(t)]×[Δδμ(r1)Δδμ(rn)]=J(t)×[Δδμ(r1)Δδμ(rn)].
[ΔW1(sd,t1)ΔWm×k(sd,tk)]=[J(t1)J(tk)]×[Δδμ(r1)Δδμ(rn)]=J×[Δδμ(r1)Δδμ(r1)].
δμaλk(rj)=[εHbλkεHbO2λkεHbO2λk]×[δ[Hb(rj)]δ[HbO2(rj)]δ[H2O(rj)]]
[δW1λk(sd,t)δWmλk(sd,t)]=[εHbλkJλkεHbO2λkJλkεH2Oλ1Jλk]×[δ[Hb]δ[HbO2]δ[H2O]]
x^MAP=argmaxx{logp(y|x)+logp(x,σ|C)}
p(xi|σi)=1(2πσi2)Ni/2exp(12σi2||xiμi||2),i=1,2,,M
p(σi)=1(2πγi2)Ni/2exp(12γi2||σiσ¯i||2),i=1,2,M
errorXi=(X^¯iXi)/Xi
errorXi=X^¯iXi
σi=1Ni||X^iX^¯i||2

Metrics