Abstract

We propose a technique of chemical etching for fabrication of near perfect optical fiber nanoprobe (NNP). It uses photosensitive single mode optical fiber to etch in hydro fluoric (HF) acid solution. The difference in etching rate for cladding and photosensitive core in HF acid solution creates capillary ring along core-cladding boundary under a given condition. The capillary ring is filled with acid solution due to surface tension and capillary action. Finally it creates near perfect symmetric tip at the apex of the fiber as the height of the acid level in capillary ring decreases while width of the ring increases with continuous etching. Typical tip features are short taper length (~4 µm), large cone angle (~38°), and small probe tip dimension (<100 nm). A finite difference time domain (FDTD) analysis is also presented to compare near field optics of the NNP with conventional nanoprobe (CNP). The probe may be ideal for near field optical imaging and sensor applications.

© 2009 OSA

PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ohtsu, “Progress of high-resolution photon scanning tunneling microscopy due to a nanometric fiber probe,” J. Lightwave Technol. 13(7), 1200–1221 (1995).
    [CrossRef]
  2. S. Jiang, H. Ohsawa, K. Yamada, T. Pangaribuan, M. Ohtsu, K. Imai, and A. Ikai,“Nanometric scale biosample observation using a photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2282–2287 (1992).
    [CrossRef]
  3. Y. Saito and P. Verma, “Imaging and spectroscopy through plasmonic nanoprobe,” Eur. Phys. J. Appl. Phys. 46(2), 20101 (2009).
    [CrossRef]
  4. T. Vo-Dinh, P. Kasili, and M. Wabuuyele, “Nanoprobes and nanobiosensors for monitoring imaging individual living cells,” Nanomedicine: NBM 2, 22–30 (2006).
  5. M. Chaigneau, G. Ollivier, T. Minea, and G. Louarn, “Nanoprobes for near-field optical microscopy manufactured by substitute-sheath etching and hollow cathode sputtering,” Rev. Sci. Instrum. 77(10), 103702 (2006).
    [CrossRef]
  6. D. R. Turner, United States Patent, 4,469,554, AT&T Bell Laboratories, Murray Hill, NJ, USA, 1983.
  7. S. Mononobe and M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14(10), 2231–2235 (1996).
    [CrossRef]
  8. R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild,“High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75(2), 160–162 (1999).
    [CrossRef]
  9. K. W. C. Lai, C. C. H. Kwong, and W. J. Li, “KL Probes for Robotic-Based Cellular Nano Surgery”, in Proceedings of IEEE Conference on Nanotechnology (Institute of Electrical and Electronics Engineers, 2003), pp. 152–155.
  10. S. T. Huntington, B. C. Gibson, J. Canning, K. Digweed-Lyytikäinen, J. D. Love, and V. Steblina, “A fractal-based fibre for ultra-high throughput optical probes,” Opt. Express 15(5), 2468–2475 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-5-2468 .
    [CrossRef]
  11. T. J. Antosiewicz and T. Szoplik, “Corrugated metal-coated tapered tip for scanning near-field optical microscope,” Opt. Express 15(17), 10920–10928 (2007), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-17-10920 .
    [CrossRef]
  12. V. F. Dryakhlushin, V. P. Veiko, and N. B. Voznesenskii, “Scanning near-field optical microscopy and near-field optical probes: properties, fabrication, and control of parameters,” Quantum Electron. 37(2), 193–203 (2007).
    [CrossRef]
  13. C. W. Extrand and S. I. Moon, “Critical meniscus height of liquids at the circular edge of cylindrical rods and disks,” Langmuir 25(2), 992–996 (2009).
    [CrossRef]
  14. K. S. Birdi, D. T. Vu, and A. Winter, andA. Norregard, “Capillary rise of liquids in rectangular tubings,” Colloid Polym. Sci. 266, 470–474 (1988).
    [CrossRef]
  15. A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech: Norwood, MA, 2000).
  16. S. S. Wang, J. Fu, M. Qiu, K. J. Huang, Z. Ma, and L. M. Tong, “Modeling endface output patterns of optical micro/nanofibers,” Opt. Express 16(12), 8887–8895 (2008), http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-16-12-8887 .
    [CrossRef]
  17. A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31(20), 2972–2974 (2006).
    [CrossRef]

2009 (2)

Y. Saito and P. Verma, “Imaging and spectroscopy through plasmonic nanoprobe,” Eur. Phys. J. Appl. Phys. 46(2), 20101 (2009).
[CrossRef]

C. W. Extrand and S. I. Moon, “Critical meniscus height of liquids at the circular edge of cylindrical rods and disks,” Langmuir 25(2), 992–996 (2009).
[CrossRef]

2008 (1)

2007 (3)

2006 (3)

T. Vo-Dinh, P. Kasili, and M. Wabuuyele, “Nanoprobes and nanobiosensors for monitoring imaging individual living cells,” Nanomedicine: NBM 2, 22–30 (2006).

M. Chaigneau, G. Ollivier, T. Minea, and G. Louarn, “Nanoprobes for near-field optical microscopy manufactured by substitute-sheath etching and hollow cathode sputtering,” Rev. Sci. Instrum. 77(10), 103702 (2006).
[CrossRef]

A. Farjadpour, D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, S. G. Johnson, and G. W. Burr, “Improving accuracy by subpixel smoothing in the finite-difference time domain,” Opt. Lett. 31(20), 2972–2974 (2006).
[CrossRef]

1999 (1)

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild,“High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75(2), 160–162 (1999).
[CrossRef]

1996 (1)

S. Mononobe and M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14(10), 2231–2235 (1996).
[CrossRef]

1995 (1)

M. Ohtsu, “Progress of high-resolution photon scanning tunneling microscopy due to a nanometric fiber probe,” J. Lightwave Technol. 13(7), 1200–1221 (1995).
[CrossRef]

1992 (1)

S. Jiang, H. Ohsawa, K. Yamada, T. Pangaribuan, M. Ohtsu, K. Imai, and A. Ikai,“Nanometric scale biosample observation using a photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2282–2287 (1992).
[CrossRef]

1988 (1)

K. S. Birdi, D. T. Vu, and A. Winter, andA. Norregard, “Capillary rise of liquids in rectangular tubings,” Colloid Polym. Sci. 266, 470–474 (1988).
[CrossRef]

K. S. Birdi, D. T. Vu, and A. Winter, andA. Norregard, “Capillary rise of liquids in rectangular tubings,” Colloid Polym. Sci. 266, 470–474 (1988).
[CrossRef]

Antosiewicz, T. J.

Bermel, P.

Birdi, K. S.

K. S. Birdi, D. T. Vu, and A. Winter, andA. Norregard, “Capillary rise of liquids in rectangular tubings,” Colloid Polym. Sci. 266, 470–474 (1988).
[CrossRef]

Burr, G. W.

Canning, J.

Chaigneau, M.

M. Chaigneau, G. Ollivier, T. Minea, and G. Louarn, “Nanoprobes for near-field optical microscopy manufactured by substitute-sheath etching and hollow cathode sputtering,” Rev. Sci. Instrum. 77(10), 103702 (2006).
[CrossRef]

Deckert, V.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild,“High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75(2), 160–162 (1999).
[CrossRef]

Digweed-Lyytikäinen, K.

Dryakhlushin, V. F.

V. F. Dryakhlushin, V. P. Veiko, and N. B. Voznesenskii, “Scanning near-field optical microscopy and near-field optical probes: properties, fabrication, and control of parameters,” Quantum Electron. 37(2), 193–203 (2007).
[CrossRef]

Extrand, C. W.

C. W. Extrand and S. I. Moon, “Critical meniscus height of liquids at the circular edge of cylindrical rods and disks,” Langmuir 25(2), 992–996 (2009).
[CrossRef]

Farjadpour, A.

Fokas, C.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild,“High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75(2), 160–162 (1999).
[CrossRef]

Fu, J.

Gibson, B. C.

Hecht, B.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild,“High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75(2), 160–162 (1999).
[CrossRef]

Huang, K. J.

Huntington, S. T.

Ibanescu, M.

Ikai, A.

S. Jiang, H. Ohsawa, K. Yamada, T. Pangaribuan, M. Ohtsu, K. Imai, and A. Ikai,“Nanometric scale biosample observation using a photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2282–2287 (1992).
[CrossRef]

Imai, K.

S. Jiang, H. Ohsawa, K. Yamada, T. Pangaribuan, M. Ohtsu, K. Imai, and A. Ikai,“Nanometric scale biosample observation using a photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2282–2287 (1992).
[CrossRef]

Jiang, S.

S. Jiang, H. Ohsawa, K. Yamada, T. Pangaribuan, M. Ohtsu, K. Imai, and A. Ikai,“Nanometric scale biosample observation using a photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2282–2287 (1992).
[CrossRef]

Joannopoulos, J. D.

Johnson, S. G.

Kasili, P.

T. Vo-Dinh, P. Kasili, and M. Wabuuyele, “Nanoprobes and nanobiosensors for monitoring imaging individual living cells,” Nanomedicine: NBM 2, 22–30 (2006).

Louarn, G.

M. Chaigneau, G. Ollivier, T. Minea, and G. Louarn, “Nanoprobes for near-field optical microscopy manufactured by substitute-sheath etching and hollow cathode sputtering,” Rev. Sci. Instrum. 77(10), 103702 (2006).
[CrossRef]

Love, J. D.

Ma, Z.

Minea, T.

M. Chaigneau, G. Ollivier, T. Minea, and G. Louarn, “Nanoprobes for near-field optical microscopy manufactured by substitute-sheath etching and hollow cathode sputtering,” Rev. Sci. Instrum. 77(10), 103702 (2006).
[CrossRef]

Mononobe, S.

S. Mononobe and M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14(10), 2231–2235 (1996).
[CrossRef]

Moon, S. I.

C. W. Extrand and S. I. Moon, “Critical meniscus height of liquids at the circular edge of cylindrical rods and disks,” Langmuir 25(2), 992–996 (2009).
[CrossRef]

Norregard, A.

K. S. Birdi, D. T. Vu, and A. Winter, andA. Norregard, “Capillary rise of liquids in rectangular tubings,” Colloid Polym. Sci. 266, 470–474 (1988).
[CrossRef]

Ohsawa, H.

S. Jiang, H. Ohsawa, K. Yamada, T. Pangaribuan, M. Ohtsu, K. Imai, and A. Ikai,“Nanometric scale biosample observation using a photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2282–2287 (1992).
[CrossRef]

Ohtsu, M.

S. Mononobe and M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14(10), 2231–2235 (1996).
[CrossRef]

M. Ohtsu, “Progress of high-resolution photon scanning tunneling microscopy due to a nanometric fiber probe,” J. Lightwave Technol. 13(7), 1200–1221 (1995).
[CrossRef]

S. Jiang, H. Ohsawa, K. Yamada, T. Pangaribuan, M. Ohtsu, K. Imai, and A. Ikai,“Nanometric scale biosample observation using a photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2282–2287 (1992).
[CrossRef]

Ollivier, G.

M. Chaigneau, G. Ollivier, T. Minea, and G. Louarn, “Nanoprobes for near-field optical microscopy manufactured by substitute-sheath etching and hollow cathode sputtering,” Rev. Sci. Instrum. 77(10), 103702 (2006).
[CrossRef]

Pangaribuan, T.

S. Jiang, H. Ohsawa, K. Yamada, T. Pangaribuan, M. Ohtsu, K. Imai, and A. Ikai,“Nanometric scale biosample observation using a photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2282–2287 (1992).
[CrossRef]

Qiu, M.

Rodriguez, A.

Roundy, D.

Saito, Y.

Y. Saito and P. Verma, “Imaging and spectroscopy through plasmonic nanoprobe,” Eur. Phys. J. Appl. Phys. 46(2), 20101 (2009).
[CrossRef]

Sick, B.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild,“High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75(2), 160–162 (1999).
[CrossRef]

Steblina, V.

Stöckle, R.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild,“High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75(2), 160–162 (1999).
[CrossRef]

Szoplik, T.

Tong, L. M.

Veiko, V. P.

V. F. Dryakhlushin, V. P. Veiko, and N. B. Voznesenskii, “Scanning near-field optical microscopy and near-field optical probes: properties, fabrication, and control of parameters,” Quantum Electron. 37(2), 193–203 (2007).
[CrossRef]

Verma, P.

Y. Saito and P. Verma, “Imaging and spectroscopy through plasmonic nanoprobe,” Eur. Phys. J. Appl. Phys. 46(2), 20101 (2009).
[CrossRef]

Vo-Dinh, T.

T. Vo-Dinh, P. Kasili, and M. Wabuuyele, “Nanoprobes and nanobiosensors for monitoring imaging individual living cells,” Nanomedicine: NBM 2, 22–30 (2006).

Voznesenskii, N. B.

V. F. Dryakhlushin, V. P. Veiko, and N. B. Voznesenskii, “Scanning near-field optical microscopy and near-field optical probes: properties, fabrication, and control of parameters,” Quantum Electron. 37(2), 193–203 (2007).
[CrossRef]

Vu, D. T.

K. S. Birdi, D. T. Vu, and A. Winter, andA. Norregard, “Capillary rise of liquids in rectangular tubings,” Colloid Polym. Sci. 266, 470–474 (1988).
[CrossRef]

Wabuuyele, M.

T. Vo-Dinh, P. Kasili, and M. Wabuuyele, “Nanoprobes and nanobiosensors for monitoring imaging individual living cells,” Nanomedicine: NBM 2, 22–30 (2006).

Wang, S. S.

Wild, U. P.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild,“High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75(2), 160–162 (1999).
[CrossRef]

Winter, A.

K. S. Birdi, D. T. Vu, and A. Winter, andA. Norregard, “Capillary rise of liquids in rectangular tubings,” Colloid Polym. Sci. 266, 470–474 (1988).
[CrossRef]

Yamada, K.

S. Jiang, H. Ohsawa, K. Yamada, T. Pangaribuan, M. Ohtsu, K. Imai, and A. Ikai,“Nanometric scale biosample observation using a photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2282–2287 (1992).
[CrossRef]

Zenobi, R.

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild,“High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75(2), 160–162 (1999).
[CrossRef]

Appl. Phys. Lett. (1)

R. Stöckle, C. Fokas, V. Deckert, R. Zenobi, B. Sick, B. Hecht, and U. P. Wild,“High-quality near-field optical probes by tube etching,” Appl. Phys. Lett. 75(2), 160–162 (1999).
[CrossRef]

Colloid Polym. Sci. (1)

K. S. Birdi, D. T. Vu, and A. Winter, andA. Norregard, “Capillary rise of liquids in rectangular tubings,” Colloid Polym. Sci. 266, 470–474 (1988).
[CrossRef]

Eur. Phys. J. Appl. Phys. (1)

Y. Saito and P. Verma, “Imaging and spectroscopy through plasmonic nanoprobe,” Eur. Phys. J. Appl. Phys. 46(2), 20101 (2009).
[CrossRef]

J. Lightwave Technol. (2)

M. Ohtsu, “Progress of high-resolution photon scanning tunneling microscopy due to a nanometric fiber probe,” J. Lightwave Technol. 13(7), 1200–1221 (1995).
[CrossRef]

S. Mononobe and M. Ohtsu, “Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching,” J. Lightwave Technol. 14(10), 2231–2235 (1996).
[CrossRef]

Jpn. J. Appl. Phys. (1)

S. Jiang, H. Ohsawa, K. Yamada, T. Pangaribuan, M. Ohtsu, K. Imai, and A. Ikai,“Nanometric scale biosample observation using a photon scanning tunneling microscope,” Jpn. J. Appl. Phys. 31(Part 1, No. 7), 2282–2287 (1992).
[CrossRef]

Langmuir (1)

C. W. Extrand and S. I. Moon, “Critical meniscus height of liquids at the circular edge of cylindrical rods and disks,” Langmuir 25(2), 992–996 (2009).
[CrossRef]

Nanomedicine: NBM (1)

T. Vo-Dinh, P. Kasili, and M. Wabuuyele, “Nanoprobes and nanobiosensors for monitoring imaging individual living cells,” Nanomedicine: NBM 2, 22–30 (2006).

Opt. Express (3)

Opt. Lett. (1)

Quantum Electron. (1)

V. F. Dryakhlushin, V. P. Veiko, and N. B. Voznesenskii, “Scanning near-field optical microscopy and near-field optical probes: properties, fabrication, and control of parameters,” Quantum Electron. 37(2), 193–203 (2007).
[CrossRef]

Rev. Sci. Instrum. (1)

M. Chaigneau, G. Ollivier, T. Minea, and G. Louarn, “Nanoprobes for near-field optical microscopy manufactured by substitute-sheath etching and hollow cathode sputtering,” Rev. Sci. Instrum. 77(10), 103702 (2006).
[CrossRef]

Other (3)

D. R. Turner, United States Patent, 4,469,554, AT&T Bell Laboratories, Murray Hill, NJ, USA, 1983.

K. W. C. Lai, C. C. H. Kwong, and W. J. Li, “KL Probes for Robotic-Based Cellular Nano Surgery”, in Proceedings of IEEE Conference on Nanotechnology (Institute of Electrical and Electronics Engineers, 2003), pp. 152–155.

A. Taflove and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech: Norwood, MA, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics